STUDY NO. 00-4202 SPONSOR STUDY NO. 211-TAME-1G

GASOLINE TAME VAPOR CONDENSATE

A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION

TOXICITY STUDY IN RATS

Final Report

Submitted to: American Petroleum Institute

1220 L Street, Northwest Washington, D.C. 20005-4070

Attn: Thomas M. Gray, M.S., D.A.B.T.

Date: 22 January 2009

Date Amended: 19 March 2009

Page 1 of 698

STATEMENT OF COMPLIANCE

This study was conducted in compliance with the United States Environmental Protection Agency's Good Laboratory Practice Standards 79.60, CFR Vol. 59, No. 122, 27 June 1994 with the following exception:

It was the Sponsor's responsibility to maintain the method of synthesis, fabrication, or derivation of the test fuel, and this was not completed at the time of the study conduct but has been completed since and is on file with the Sponsor.

Gary M. Hoffman, B.A., D.A.B.T.

Study Director

2 day

Date

Momas M. Gray, M.S., D.A.D.

Sponsor Representative

Date

SIGNATURE PAGE

SCIENTISTS

The following Scientists were responsible for the overall conduct of this study. Departmental supervisory personnel are listed on the personnel page of this report (Appendix EE).

Gary M. Hoffman, B.A., D.A.B.T.

Study Director

22 Jus9

Date

Dianne Creasy, Ph.D., DipRCPath (Tox), FRCPath.

Senior Director of Pathology¹

Date

22nd Jan 09.

SCIENTIFIC REVIEW

The following Scientists have reviewed and approved this report.

Robert M. Parker, Ph.D., D.A.B.T.

Director, Developmental and Reproductive Toxicology

Sylvie J. Gosselin, D.V.M., Ph.D., Diplomate A.C.V.P.

Vice President, Safety Assessment

22 JAN 09

Date

¹Katharine M. Whitney was the Study Pathologist for this study and for submission of the draft report and is no longer employed at the Testing Facility. Dianne Creasy is assuming responsibility for finalization of the pathology evaluation of this report.

QUALITY ASSURANCE STATEMENT^a

Listed below are the dates that this study was inspected by the Quality Assurance Unit of Huntingdon Life Sciences, East Millstone, New Jersey, and the dates that findings were reported to the Study Director and Management.

Type of Inspection	Date(s) of Inspection	Reported to Study Director and Management
Pathology Associates Facility Inspection	24 Apr 01	2 Nov 01
GLP Protocol Review	9 Mar 01	14 Mar 01
Exposure, Monitoring & Equipment Record	23 Aug 01	24 Aug 01
Body Weight & Feeder Weight Data Collection & Training Records	12 Sep 01	12 Sep 01
Estrous Cycle Evaluations	10 Oct 01	10 Oct 01
Litter Check Evaluations	28 – 29 Nov 01	29 Nov 01
P ₀ Male Necropsy & Sperm Assessments	10 Dec 01	10 Dec 01
Maternal Sacrifice & Pup Necropsy	19 Dec 01	19 Dec 01
Exposure, Monitoring & Sampling	20 Dec 01	20 Dec 01
Final Analytical Report & Study Data	22 – 24 Apr 02	24 Apr 02
Final Report & Study Data	23 Apr – 13 May 02	13 May 02
Sponsor Comments & Additional Report Comments	20 – 23 Jul 04	23 Jul 04
Final Report Review & Protocol Amendment Nos. 1 - 3	16 & 22 Jan 09	22 Jan 09
Final Report Amendment No. 1	26 Feb 09	26 Feb 09
Sonya Gray		12-mor 09 Date

Senior Quality Assurance Auditor

^aStatement originally signed on 22 January 2009; re-signed due to performance of an additional audit.

Gasoline TAME Vapor Condensate: A One Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats

SUMMARY

This study was designed to assess the potential reproductive toxicity of Gasoline TAME Vapor Condensate when administered via whole-body inhalation exposures to Sprague Dawley rats (26/sex/group). The test substance was administered (using a nitrogen enriched air mixture) at target concentrations of 2000, 10000 and 20000 mg/m³ for 6 hours/day, 7 days/week for 10 weeks before mating, for 2 weeks during mating, for 3 weeks during gestation and for 4 weeks during lactation prior to weaning. In addition, a control group (26/sex) received nitrogen enriched air only while in chamber. Exposure levels were determined using an infra-red spectrophotometer 4 times per chamber per day. Additionally, the test substance's major components were assayed once per chamber per week. Particle size distribution measurements were also made once per chamber per week using a TSI Aerodynamic Particle Sizer.

Viability checks were performed twice daily to check for mortality and signs of severe toxic or pharmacologic effects. Physical observations and body weight measurements were made at least twice pretest and at least weekly during the study. Feed consumption measurements were obtained beginning the week prior to treatment initiation and at least weekly during the study. After completion of ~ 16 weeks of exposures, all parental male animals (P_0 generation) were sacrificed. All parental female animals (P_0 generation) were sacrificed on Lactation Day 28. For all parental animals, selected organs were weighed and organ/body weight and organ/brain weight ratios calculated. Complete macroscopic postmortem examinations were performed on all parental animals. Histopathological evaluations of selected tissues were conducted on selected parental animals.

Pups (F_1 generation) were observed as soon as possible after delivery for their sex, the number of live and dead pups and pup abnormalities. Thereafter, litters were observed twice daily. On the 4th day after parturition, litters with more than ten pups were randomly culled to ten pups with sex distribution equalized when possible. Pups were given a gross physical examination, were weighed and were sexed frequently until weaning on the 28^{th} day after parturition at which time they were sacrificed. A macroscopic postmortem evaluation and the weighing of selected organs were performed on selected pups.

The overall mean (\pm standard deviation) analytical exposure concentrations of Gasoline TAME Vapor Condensate were determined to be 0 ± 0 , 2060 ± 240 , 10500 ± 516 and 20500 ± 1184 mg/m³ for the Air Control and the exposure groups, respectively. The analytically measured exposure levels of the airborne test substance were acceptably close to the targeted exposure levels. The measured and nominal concentrations varied

SUMMARY

somewhat (less than 8%), but reasonably, from the expected 1:1 ratio for this type of vapor exposure. Chamber environmental conditions averaged 24°C and 44% relative humidity. Particle sizing results indicated that the atmospheres were essentially vapor only, as expected, since there was no substantial difference between the particulate levels in the test substance chambers and the Air Control chamber. Analysis of the major components in the neat test substance and the test atmospheres showed an acceptably close comparison between the neat test substance and the vaporized test substance. This data demonstrated that the test animals were exposed, as expected, to all of the major components of the test substance in their reasonably proper proportion. The data was consistent from week-to-week during the study indicating stability of the test substance and the atmosphere generation techniques.

There was no effect of treatment on survival, clinical observations, body weights or weight changes, estrous cycle (as measured by cycle length and number of estrous cycles), mating indices for the male rats and mating, fertility and gestation indices for the female rats. There were also no treatment-related differences in the other reproductive parameters up to the time of parturition including the percent of females completing delivery and the duration of gestation, when compared to the Air Control group. Exposure-related decreases in feed consumption were seen during the lactation period (especially during the mid-lactation period) in the test animals at all exposure levels compared to the Air Control animals and seemed to correlate with the decreases in pup body weight gains noted at the same time. There were also no treatment-related differences in all parturition parameters including the total number of pups delivered, the number of pups dying, the viability (4 day survival) and lactation (21 day survival) indices, the number of implantation sites per litter, the pup sex ratio and the number of live pups/litter, when compared to the Air Control group. Mean percent motility, epididymal sperm count, homogenization-resistant testicular sperm count and sperm morphology were not affected by treatment with the test substance at an exposure level of 20000 mg/m^3 .

There were no exposure-related differences in macroscopic postmortem evaluations in the test substance exposed animals compared to the Air Control animals. Exposure-related effects on organ weights included statistically significant increases in kidney weights (absolute and/or relative to body and brain weight) at all exposure levels in the males and at the highest exposure level in the females. These differences for the males (but not the females) were consistent with the microscopic findings (only the high exposure level animals were examined) discussed in the following section. Exposure-related effects on organ weights also included statistically significant increases in liver weights (absolute and/or relative to body and brain weight) at the 10000 and 20000 mg/m³ exposure levels in the males. These differences for the males were not consistent with any corresponding histopathology findings but may represent a metabolic

SUMMARY

response. Microscopic findings that were considered exposure-related were found only in the kidneys of male animals exposed to 20000 mg/m³ of Gasoline TAME Vapor Condensate and are consistent with hyaline droplet nephropathy, attributable to accumulation of alpha-2 microglobulin within renal tubular epithelial cells. This species-and gender-specific change has been well documented in male rats exposed to a variety of hydrocarbon compounds and is not considered relevant to humans. No test substance related microscopic changes were noted in male and female reproductive organs or other protocol-specified tissues in this study.

The pups were unremarkable during the lactation period. There were exposure-related decreases in body weight gains in the pups feeding from test substance exposed animals compared to the pups feeding from Air Control animals. These statistically significant differences in body weights and weight changes were noted at several intervals (especially during the mid-lactation period) for all of the exposed groups. There were no exposure-related differences in macroscopic postmortem evaluations and organ weights in the pups feeding from test substance exposed animals compared to the pups feeding from Air Control animals.

In conclusion, exposure of rats to 2000, 10000 and 20000 mg/m³ of vapor of Gasoline TAME Vapor Condensate resulted in decreased feed consumption in the dams during lactation at all exposure levels. There were also increases in liver weights in the parental male animals in the 10000 and/or 20000 mg/m³ exposed groups. Increases in relative kidney weights were observed in parental male animals in all exposure groups and in the parental female animals in the 20000 mg/m³ exposed group. Therefore, with respect to general toxicity, a no observable adverse effect level (NOAEL) was not clearly determined. Microscopic findings in high exposure male kidneys (only control and high exposure groups were examined microscopically) were consistent with hydrocarbon nephropathy. However, this finding has been generally accepted (US EPA 1991. Alpha 2 microglobulin: association with chemically induced renal toxicity and neoplasia in male rat. In Risk Assessment Forum, p.85. US Govt. Printing Office, Washington, DC.) not to be relevant to human risk assessment. There was no effect on reproductive performance in the study, including mating, fertility, parturition, lactation and offspring survival except decreases in pup body weight gains were seen at all exposure levels. Therefore, with respect to reproductive performance, a no observable adverse effect level (NOAEL) of Gasoline TAME Vapor Condensate was also not clearly determined. observable adverse effect level (LOAEL) of 2000 mg/m³ of Gasoline TAME Vapor Condensate was determined with respect to general toxicity and reproductive performance.

TABLE OF CONTENTS

COV	ER PAC	JE	1
STA	TEMEN	T OF COMPLIANCE	2
SIG	NATURI	E PAGE	3
QUA	ALITY A	SSURANCE STATEMENT	4
SUM	MARY		5
TAB	BLE OF (CONTENTS	8
1.	INTR	RODUCTION	11
2.	MAT	ERIALS AND METHODS	
	2.1.	Study Management	11
	2.2.	Study Dates	11
	2.3.	Experimental Outline	13
	2.4.	Test Substance	14
	2.5.	Test Animals	15
	2.6.	Animal Assignment	17
	2.7.	Animal Identification	17
	2.8.	Veterinary Care	17
	2.9.	Animal Husbandry During Non-Exposure Periods	17
	2.10.	Test Substance Administration and Chamber Operation	
	2.11.	Experimental Evaluations	20
	2.12.	Mating, Gestation and Lactation Procedures	22
	2.13.	Postmortem Parental Animals (P ₀)	23
	2.14.	Postmortem F ₁ Pups and Weanlings	26
	2.15.	Sperm Count, Motility and Morphology Assessments	27
	2.16.	Statistical Analysis	28
	2.17.	Data Storage	30
	2.18.	Regulatory References	31
	2.19.	Protocol Deviations	31
3.	RESU	ULTS AND DISCUSSION	
	3.1.	Chamber Monitoring	33
	3.2.	Parental Data (P ₀ Generation)	35
	3.3.	Pup Data (F ₁ Generation)	38
	3.4.	Postmortem Data	38
4	CON	CLUSION	42

TABLE OF CONTENTS

REFERENCES	43
CALCULATIONS	44
GENERAL PREFACE	45
TABLES	
1. Summary of Survival and Pregnancy	46
2. Summary of Weekly Clinical Observations - (Premating/Mating/Postmating))	47
3. Summary of Clinical Observations During Gestation	53
4. Summary of Maternal Clinical Observations During Lactation	54
5. Mean Body Weight Values – (Premating/Mating/Postmating)	56
6. Mean Body Weight Gain - (Premating / Mating/Postmating)	60
7. Summary of Gestation Body Weights	66
8. Summary of Gestation Body Weight Gain	67
9. Summary of Maternal Lactation Body Weights	68
10. Summary of Maternal Lactation Body Weight Gain	69
11. Mean Feed Consumption (grams/kg/day) - (Premating/Postmating)	70
12. Summary of Gestation Feed Consumption (grams/kg/day)	74
13. Summary of Lactation Feed Consumption (grams/kg/day)	75
14. Summary of Estrous Stages	76
15. Summary of Cohabitation Data	78
16. Summary of Delivery and Litter Data	79
17. Summary of Pup Clinical Observations During Lactation	82
18. Summary of Mean Pup Body Weights	83
19. Summary of Parental Necropsy Observations	89
20. Summary of Pup Necropsy Observations	82
Summary of Necropsy Observations for Dead Pups	95
Summary of Necropsy Observations for Stillborn Pups	97
Summary of Necropsy Observations for Cannibalized Pups	99
Summary of Necropsy Observations for Culled Pups	101
Summary of Necropsy Observations for Weanling Pups	102
21. Summary of Absolute Organ Weights	103
22. Summary of Pup Organ Weight Data	
23. Lesion Incidence Summary with Expanded Severity Levels	
ADDENDICES	
APPENDICES	100
A. Inhalation Report	
B. Analytical Report	17/8

TABLE OF CONTENTS

C.	Individual Animal Termination History	207
D.	Individual Weekly Clinical Observations - (Premating/Mating/Postmating)	215
E.	Individual Clinical Observations During Gestation	244
F.	Individual Maternal Clinical and Post-Dose Observations During Lactation	252
G.	Individual Body Weights - (Premating/Mating/Postmating)	264
H.	Individual Body Weight Gain - (Males – Premating/Mating/Postmating)	278
I.	Individual Gestation Body Weights	296
J.	Individual Gestation Body Weight Gain	300
K.	Individual Maternal Lactation Body Weights	304
L.	Individual Maternal Lactation Body Weight Gain	308
M.	Individual Feed Consumption (grams/kg/day) - (Premating/Postmating)	312
N.	Individual Gestation Feed Consumption (grams/kg/day)	320
O.	Individual Maternal Lactation Feed Consumption (grams/kg/day)	324
P.	Individual Estrous Cycle and Mating Data	328
Q.	Individual Mating Assignments	337
R.	Individual Delivery and Litter Data	341
S.	Individual Pup Sex and Status During Lactation	345
T.	Individual Pup Clinical Observations During Lactation	349
U.	Individual Pup Body Weights	395
V.	Individual Parental Necropsy Observations	419
W.	Individual Pup Necropsy Observations	441
X.	Individual Parental Organ Weights	476
Y.	Individual Pup Organ Weights	505
Z.	Individual Animal Gross and Microscopic Observations	525
AA.	Sperm Analysis Report	602
BB.	Historical Control Data (Histopathology of Reproductive Organs)	616
CC.	Certificates of Analysis – (Feed, Water and Bedding)	618
DD.	Protocol and Protocol Amendments	661
EE.	Testing Facility Personnel	697
FF.	Report Amendments	698

1. INTRODUCTION

This reproductive study was designed (see 2.18.1 for test guidelines) to provide general information concerning the effects of Gasoline-TAME Vapor Condensate on the integrity and performance of the male and female reproductive systems, including gonadal function, the estrous cycle, mating behavior, conception, gestation, parturition and lactation, and to provide information about the effects of the test substance on neonatal morbidity and mortality, and data on prenatal and postnatal developmental toxicity.

2. MATERIALS AND METHODS

2.1. STUDY MANAGEMENT

2.1.1. SPONSOR

American Petroleum Institute (API) 1220 L Street, Northwest Washington, DC 20005-4070

2.1.2. SPONSOR REPRESENTATIVE

Thomas M. Gray, M.S., D.A.B.T.

2.1.3. TESTING FACILITY

Huntingdon Life Sciences P.O. Box 2360 Mettlers Road East Millstone, New Jersey 08875-2360

2.1.4. STUDY DIRECTOR

Gary M. Hoffman, B.A., D.A.B.T.

2.2. STUDY DATES

2.2.1. STUDY INITIATION

8 August 2001 (Date Study Director signed the Protocol)

2.2.2. DATE OF ANIMAL RECEIPT

1 August 2001

2.2.3. EXPOSURE INITIATION

22 August 2001 (Experimental Start Date)

2.2.4. MATING INITIATION

30 October 2001

2.2.5. EXPOSURE TERMINATION

26 December 2001

2.2.6. TERMINAL SACRIFICE

P₀ Males: 10-11 December 2001

P₀ Females: 25 November 2001 – 27 December 2001

F₁ Pups: 19-27 December 2001

2.2.7. EXPERIMENTAL TERMINATION DATE

22 January 2009 (Date of last data collection = Date the Pathologist signed the Final Report)

2.2.8. STUDY COMPLETION

22 January 2009 (Date Study Director signed the Final Report)

2.3. EXPERIMENTAL OUTLINE

			Number of Animals				
			Mated Adults		Patholo	oscopic ogy Adult rations ^b	Macroscopic Postmortem Examinations-Pups
			F	P_0		P_0	
Group	Group Designation	Exposure Levels (mg/m ³) ^a	М	F	М	F	F_1
I	Control	0 (air only)	26	26	10	10	3/sex/litter
II	Low	2000	26	26	0	0	3/sex/litter
III	Middle	10000	26	26	0	0	3/sex/litter
IV	High	20000	26	26	10	10	3/sex/litter

^a Exposures daily (7 days/week) for 6 hours per day.

M = Male; F = Female; The first day of exposure was Day 0.

^bHistologic examinations were performed on reproductive tissues for the control and high-exposure animals.

2.4. TEST SUBSTANCE

Gasoline TAME Vapor Condensate

2.4.1. SUPPLIER

Chevron Texaco Energy Research and Technology Company 100 Chevron Way Richmond, CA 94802

2.4.2. LOT NUMBER

API 01-04

2.4.3. PURITY/ANALYTICAL CONCENTRATION

100% Gasoline TAME Vapor Condensate

2.4.4. DESCRIPTION

Colorless Liquid

2.4.5. DATES RECEIVED

14 June 2001 30 July 2001

2.4.6. EXPIRATION DATE

Not available; stable per MSDS and Appendix B.

2.4.7. ANALYSIS

Documentation of the identity, strength, purity, composition, stability, and method of synthesis, fabrication, and/or derivation of the test article and the maintenance of these records was the responsibility of the Sponsor. The Sponsor conducted a purity analysis of the test substance by GC prior to the start of this study.

2.4.8. STORAGE

The test substance was received in airtight containers that were stored under ambient conditions in an outdoor solvent shed (uncontrolled environment) or in an indoor laboratory (controlled environment).

2.4.9. DISPENSING

The test substance was received in 100-gallon cylinders. Since only 5-gallon cylinders were practical to be used for exposure operations, the test substance was dispensed, as needed, at the Testing Facility from the 100-gallon cylinders into 5-gallon cylinders using nitrogen pressurization.

2.4.10. ARCHIVAL SAMPLE

An archival sample from test substance was taken and stored in the Archives of the Testing Facility under conditions specified for test substance storage.

2.4.11. DISPOSITION

The unused portion of the test substance, as well as any empty test substance containers were returned to the supplier following the completion of the study. Empty test substance containers were returned on an as needed basis. The Sponsor is responsible for tracking their disposition.

2.5. TEST ANIMALS

Albino Rats (Outbred) VAF/Plus®

2.5.1. SPECIES

Sprague-Dawley derived CD[®] [Crl: CD[®] IGS BR]

2.5.2. SUPPLIER

Charles River Laboratories Kingston, New York 12484

2.5.3. JUSTIFICATION FOR TEST ANIMAL SELECTION

The rat was used as a surrogate to humans in the detection of reproductive effects and is a species in which known reproductive toxicants have been detected. The rat is a rodent animal model commonly utilized in reproduction studies and is recommended in the referenced guidelines (see 2.18.1). In addition, a historical control database with this strain of animal and supplier facility is available for comparative evaluation.

2.5.4. NUMBER OF ANIMALS

Received:

220 total (110 males, 110 females)

Placed on test:

208 total (104 males, 104 females)

Females were nulliparous and non-pregnant. Male and female rats originated from the same room at Charles River Laboratories and there was a possibility of brother-sister matings in the P_0 mating.

2.5.5. AGE AT RECEIPT

Approximately 29 days.

2.5.6. AGE AT INITIATION OF EXPOSURES

Approximately 50 days.

2.5.7. WEIGHT AT INITIATION OF EXPOSURES (GRAMS)

	Mean	Range
Male:	274	236-323
Female:	185	154-216

Individual weights of animals placed on test were within $\pm 20\%$ of the mean weight for each sex.

2.5.8. ACCLIMATION PERIOD

Animals were acclimated for 21 days. All animals were examined during the acclimation period to confirm suitability for study and checked twice daily for viability.

2.6. ANIMAL ASSIGNMENT

More animals than required for the study were purchased and acclimated. Animals considered suitable for the study on the basis of pretest body weight data and physical examination, were randomly assigned, by sex, to control or treated group, in an attempt to equalize mean group body weights. Disposition of all animals not utilized in the study is maintained in the study file.

2.7. ANIMAL IDENTIFICATION

Each rat was assigned a temporary identification number upon receipt. After selection for study (P_0 generation), each rat was identified with a metal ear tag bearing its assigned animal number. The assigned animal number plus the study number comprised the unique animal number for each animal. If the tag was lost, it was replaced. In addition, each cage was provided with a cage card that was color-coded for exposure level identification and contained the study number and animal number information.

2.8. VETERINARY CARE

Animals were monitored by the technical staff for any conditions requiring possible veterinary care and treated as necessary. Miscellaneous, non-test substance-related veterinarian evaluations and treatments (as necessary) for individual animals were reviewed by the Study Director and are documented in the study file.

2.9. ANIMAL HUSBANDRY DURING NON-EXPOSURE PERIODS

2.9.1. FACILITIES MANAGEMENT/ANIMAL HUSBANDRY

Currently acceptable practices of good animal husbandry were followed e.g., *Guide for the Care and Use of Laboratory Animals*; National Academy Press, 1996. Huntingdon Life Sciences, East Millstone, New Jersey is fully accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC).

2.9.2. HOUSING

Animals were housed in suspended, stainless steel cages with wire mesh fronts and floors. Animals were doubly housed during the initial week of acclimation and individually housed thereafter, except as follows.

Mating: One male and one female were co-housed continuously (except during treatment) for 14 days, or until mating occurred.

Lactation: Dam and litter were housed together in a solid plastic "shoebox" cage until weaning.

2.9.3. FEED

Certified Rodent Diet, No. 5002; (Meal) (PMI Nutrition International, St. Louis, Missouri) was available without restriction except during exposures.

2.9.4. FEED ANALYSIS

Analysis of each feed lot used during this study was performed by the manufacturer. Results can be found in Appendix CC. There were no known contaminants in the feed, which were expected to interfere with the results of this study.

2.9.5. WATER

Water (Elizabethtown Water Company, Westfield, New Jersey) was available without restriction, except during exposures, via an automated watering system.

2.9.6. WATER ANALYSIS

Water analyses are conducted by Elizabethtown Water Company, Westfield, New Jersey (Raritan-Millstone Plant) to ensure that water meets standards specified under the EPA Federal Safe Drinking Water Act Regulations (40 CFR Part 141). In addition, water samples are collected biannually from representative rooms in the Testing Facility; chemical and microbiological water analyses are conducted on these samples by a subcontract laboratory. Results of all water analyses can be found in

Appendix CC. There were no known contaminants in the water that were expected to interfere with the results of this study.

2.9.7. BEDDING SUBSTANCE

Ground corncob bedding (Bed-O'-Cobs[®] ¼ inch irradiated, The Andersons, Maumee, OH) was provided for each mated female on Day 18 of gestation. Fresh bedding was provided at least weekly and as needed during the lactation period (litters were weaned on Day 28 of lactation).

2.9.8. BEDDING ANALYSIS

Analyses for a representative batch of bedding used on study can be found in Appendix CC. There were no known contaminants in the bedding that were expected to interfere with the results of this study.

2.9.9. ENVIRONMENTAL CONDITIONS

Light/Dark Cycle

A twelve-hour light/dark cycle controlled by an automatic timer was provided.

Temperature

Temperature was monitored in accordance with Testing Facility SOPs and maintained within the specified range to the maximum extent possible. Excursions outside the specified range were considered not to have affected the integrity of the study.

Desired: 19 to 25 °C Actual: 16.6 to 27.0 °C Daily Average Range: 18.3 to 22.4 °C

Relative Humidity

Relative humidity was monitored in accordance with Testing Facility SOPs and maintained within the specified range to the maximum extent possible. Excursions outside the specified range were considered not to have affected the integrity of the study.

211-TAME-1G

Desired: 30 to 70%

Actual: 23.82 to 99.81% 36.75 to 76.11% Daily Average Range:

Air Changes

Air changes were monitored in accordance with Testing Facility SOPs and maintained within the specified range to the maximum extent possible.

Desired: 10 - 15 per hour Actual: 12.6 - 14.6 per hour

2.10. TEST **SUBSTANCE** ADMINISTRATION AND **CHAMBER OPERATION**

Inhalation (whole-body exposures).

Details of test article administration and chamber operation information are presented in the Inhalation Report (Appendix A).

2.11. EXPERIMENTAL EVALUATIONS

2.11.1. VIABILITY EXAMINATION (CAGESIDE)

Observations for mortality and signs of severe toxic or pharmacological effects were made at least twice daily (morning and afternoon).

2.11.2. DETAILED PHYSICAL EXAMINATIONS

The animals were observed as a group at least once during each exposure.

In addition, each parental animal was removed from its cage and examined twice pretest (Days -7 and 0), and weekly thereafter during the study period. Once mated, females were observed on Gestation Days 0, 7, 14 and 20 and on Lactation Days 1, 4, 7, 14, 21 and 28. Females that showed evidence of mating but did not deliver were observed on Gestation Days 0, 7, 14 and 20 and were euthanized on Gestation Day 25. Females without evidence of mating were continuously observed weekly until euthanized on the

last possible Gestation Day 25. Examinations included, but were not limited to, observations of general condition, skin and fur, eyes, nose, oral cavity, abdomen and external genitalia, as well as, evaluations of respiration and palpation for tissue masses. During the exposure period, physical examinations were performed postexposure.

2.11.3. BODY WEIGHT

Each parental animal was removed from its cage and weighed three times pretest (Days -14, -7 and 0), and weekly thereafter during the study period (including the mating period). Once mated, females were weighed on Gestation Days 0, 4, 7, 14 and 20 and on Lactation Days 1, 4, 7, 14, 21 and 28. Females that did not show evidence of mating and/or did not deliver pups were weighed weekly until euthanasia.

2.11.4. FEED CONSUMPTION

Feed consumption was measured once pretest and weekly thereafter during the study period. Once mated, female feed consumption was measured on Gestation Days 0, 4, 7, 14 and 20 and on Lactation Days 1, 4, 7, 14, 21 and 28 until euthanasia. Females without evidence of mating and/or that did not deliver pups had food consumption measured weekly until euthanasia. Feed consumption was not measured for any animal during the mating period when males and females were co-housed.

Calculation

Feed Consumption (g/kg/day) =

grams of food consumed ÷ # days body weight (kg)^a

^aThe average of the current and previous weight was used.

2.12. MATING, GESTATION, AND LACTATION PROCEDURES

2.12.1. ESTROUS CYCLING

Daily vaginal smears were taken at approximately the same time each day, and the stage of estrous was determined for each P_0 female beginning three weeks prior to cohabitation and continued until there was evidence of mating or until the 14-day mating period ended.

2.12.2. MATING PROCEDURE

Following a 10-week pre-mating treatment period, one male and one female from the same exposure group were caged together until evidence of mating was observed (a copulation plug in the vagina and/or microscopic observation of sperm in the vaginal smear) or 14 consecutive days had elapsed. During cohabitation period exposures, males and females were not paired together. The day evidence of mating was observed was defined as Day 0 of gestation.

2.12.3. PARTURITION AND LACTATION

On Day 18 of gestation, several days prior to expected parturition, each female was transferred to a solid plastic "shoe-box" cage. Bedding substance was provided and changed at least weekly as needed. Examinations for signs of parturition were made twice daily (morning and afternoon). The day on which parturition was first observed was defined as Day 0 of lactation. Females that exhibited no evidence of mating were transferred to plastic "shoebox" cages when the first animals mated reached their Day 18 of gestation.

2.12.4. LITTER EVALUATIONS (F_1)

Observations

F₁ litters were observed as soon as possible after delivery for the number of live and dead pups, sex of the pups and pup abnormalities. The sex was determined on the day of delivery completion for all pups by inspection of the anogenital distance. All pups were uniquely identified within the litter by toe tattoo on

Page 23

the day of delivery completion. Thereafter, litters were observed twice daily (morning and afternoon) for the presence of dead pups. These dead pups were examined to the extent possible for defects and/or cause of death and preserved in neutral, phosphate-buffered 10% formalin. Litter size was recorded daily from Lactation Day 1 until weaning on Lactation Day 28.

Culling Pups

On Day 4 of lactation, each litter with more that 10 pups was culled to that number, with sex distribution equalized (five/sex) when possible. The pups were culled randomly, preferential culling of runts not being performed.

Physical Examinations

Each F_1 pup was given a macroscopic physical examination on the day of delivery completion and on Day 4, 7, 14, 21 and 28 of lactation.

Body Weight

Individual F_1 pup weights were recorded on Day 1, 4 (precull intervals), 7, 14, 21 and 28 of lactation (postcull intervals).

Sexing

The sex of each individual pup was recorded on the day of delivery completion, then reconfirmed on Lactation Day 4, 7, 14, 21, and at weaning on Lactation Day 28.

2.13. POSTMORTEM PARENTAL ANIMALS (P_0)

Necropsy Information

Necropsy was performed on up to 26 animals/sex/group. All P_0 males were euthanized proximate to the first day F_1 litters were weaned. All P_0 females with litters were euthanized on Day 28 of lactation. P_0 females with no confirmed day of mating were euthanized on last possible Gestation Day 25. P_0 females with confirmed days of mating that did not deliver were euthanized on Gestation Day 25.

If a dam entirely lost her litter, she resumed exposures the next day (if prior to lactation day 5) or otherwise continued exposures. She was sacrificed on the initial day of weaning for the study (or later, as practical) and macroscopically examined and tissues retained but no organs were weighed.

Method of Euthanasia

Exsanguination following anesthesia with inhaled carbon dioxide.

Macroscopic Examination

Complete macroscopic postmortem examinations were performed on all adult animals, including animals found dead or killed accidentally and all abnormal observations were recorded. The necropsy of the parental animals included examination of the external surface and all orifices; the external surfaces of the brain and spinal cord; the organs and tissues of the cranial, thoracic, abdominal and pelvic cavities and neck; and the remainder of the carcass. Examination of all P_0 females included a vaginal smear to determine the stage of the estrous cycle and a count of uterine implantation scars, if present. The uteri of any apparently non-pregnant females were stained with ammonium sulfide (Salewski, 1964), to confirm non-pregnant status.

Organ Weights

Organs indicated in Table I (page 25) were weighed for all animals at the scheduled sacrifice intervals. Prior to weighing, the organs were carefully dissected and properly trimmed to remove adipose and other contiguous tissues in a uniform manner. Organs were weighed as soon as possible after dissection in order to avoid drying. Paired organs were weighed together (gonads were weighed separately). Organ weight data is presented as absolute values and relative to terminal body weight and brain weight. Organ weights were not recorded for an animal dying spontaneously or euthanized moribund.

Tissues Preserved and Examined Histopathologically

The tissues listed in Table I (page 25) were obtained at the scheduled sacrifice intervals and preserved for all animals. Slides of the indicated tissues were prepared and examined microscopically for 10 randomly

selected animals in the P_0 control and high exposure groups. Any abnormalities not noted during macroscopic examinations which were seen during histology processing were recorded.

Histopathological examinations of the testes were conducted to identify potential treatment-related effects such as retained spermatids, missing germ cell layers or types, multinucleated giant cells, or sloughing of spermatogenic cells into the lumen. The examination of the intact epididymis was of a longitudinal section that permitted examination of the caput, corpus and cauda regions, that could have identified such lesions as sperm granulomas, leukocytic infiltration (inflammation), aberrant cell types within the lumen, or the absence of clear cells in the cauda epididymal epithelium.

Histopathological examination of the ovary included evaluation of five sections taken at least $100~\mu m$ apart from the inner third of each ovary. These examinations could have detected depletion of the primordial follicle population and enumerated the total number of primordial follicles for comparison with the ovaries from control animals. These examinations could have also confirmed the presence or absence of growing follicles and corpora lutea in comparison to control ovaries. Qualitative evaluations of the P_0 animals were performed by HLS.

TABLE I

ORGAN NAME	WEIGHED	PRESERVED	EXAMINED MICROSCOPICALLY (Groups I and IV)
adrenal glands	X	X	X
brain (medulla, pons, cerebrum and cerebellum)	X	X	X
Epididymides (total and caudal)	X	X ^a	X^{a}
kidneys	X	X	X
liver	X	X	X
lungs (with mainstem bronchi)	X	X	X
ovaries	X	X	X
pituitary gland	X	X	X
prostate gland	X	X	X

ORGAN NAME	WEIGHED	PRESERVED	EXAMINED MICROSCOPICALLY (Groups I and IV)
seminal vesicles with coagulating glands	X	X	X
spleen	X	X	X
testes	X	X ^a	X ^a
uterus (body/horns) with cervix and oviducts	X	X	X
vagina		X	X
tissues with macroscopic findings including tissue masses		X	X

^aRight testis and epididymis only.

Preservatives

All tissues - 10% neutral buffered formalin (NBF).

Right testes and right epididymides were placed in Modified Davidson's solution 48 hours prior to permanent storage in 10% neutral buffered formalin. Lungs were infused with formalin prior to their immersion into a larger volume of the same fixative.

Processing

After fixation, the tissues and organs from all animals were routinely processed, embedded in paraffin, cut at a microtome setting of 4-7 microns, mounted on glass slides and stained with hematoxylin and eosin.

2.14. POSTMORTEM F₁ PUPS AND WEANLINGS

Method of Euthanasia

 F_1 pups and weanlings were euthanized by carbon dioxide asphyxiation.

Dead and Culled Pups

 F_1 pups found dead at birth were identified as stillborn or alive but found dead (lung flotation test). F_1 pups found dead during the lactation period were examined to the maximum extent possible for defects and/or the cause of death, and for the presence or absence of milk in the stomach. Dead pups were preserved intact in 10% NBF. Partially cannibalized pups

Page 27

were examined to the maximum extent possible and discarded. Culled F₁ pups were examined for external abnormalities. If unremarkable, these pups were then euthanized via an intraperitoneal injection of sodium pentobarbital and discarded. Culled F₁ pups with external abnormalities were preserved intact in 10% NBF.

Macroscopic Examination and Tissues Preserved

Macroscopic examinations were performed on up to 3 randomly selected pups/sex/litter on Day 28 of lactation. Examinations included observations of any structural abnormalities or pathological changes. Special attention was given to the organs of the reproductive system, brain, liver, kidneys, pituitary, adrenal gland, spleen, heart and thymus gland.

All remaining F₁ pups were examined for external abnormalities and euthanized. Pups with external abnormalities were preserved intact in 10% NBF. Pups with no external abnormalities were discarded. No further macroscopic postmortem examinations were performed.

Organ Weights

The following organs were weighed from one randomly selected pup/sex/litter sacrificed on Day 28 of lactation:

brain spleen thymus gland

Organ weight data is presented as absolute values and relative to terminal body weight and brain weight.

2.15. **SPERM** MOTILITY AND MORPHOLOGY COUNT, ASSESSMENTS

The following sperm evaluations were conducted for all control and high exposure P₀ males (samples and images were collected but not evaluated for all other males): 1) motility; 2) a count of homogenization-resistant testicular sperm; 3) a count of caudal epididymal sperm; and 4) sperm morphology (cauda epididymis). Evaluations were performed by Pathology Associates International, Frederick, MD (PAI) as follows:

The right testis and right epididymis from each animal were removed intact, weighed (testes weighed together and also separately) and preserved.

The left epididymis was removed intact, weighed, and frozen on dry ice for transport to PAI. The epididymides were stored frozen at -70 °C until evaluation for caudal sperm count. Each epididymis was thawed and the caudal portion removed and weighed. A homogenized sample of the caudal epididymis was stained and then examined using the Hamilton Thorne IVOS sperm analyzer. For each stained preparation, 20 fields were counted. The total number of sperm in the caudal epididymis was calculated and adjusted for the caudal epididymal weight. Additionally, for each male, two sperm morphology slides were prepared, stained with Eosin and evaluated for morphological development.

The left vas deferens was excised and placed in a prewarmed solution of phosphate buffered saline and 1% Bovine Serum Albumin. After a minimum three minute "swimout" period, a sample was placed in a Hamilton Thorne IVOS sperm analyzer. Five fields were selected and stored as digital images. The images were analyzed for percent motility and transferred to optical media for permanent storage.

The left testis was removed and frozen on dry ice for transport to PAI. The testes were stored frozen at -20 °C until processed for counting of homogenization-resistant sperm.

(See Appendix AA for details and methodology.)

Tissues retained from these evaluations will be discarded following issuance of the final report following consultation with the Sponsor.

2.16. STATISTICAL ANALYSIS

2.16.1. CONTINUOUS DATA

The following parameters were analyzed statistically:

Body weights
Body weight change
Feed consumption values
Estrus cycle data

Organ weight data
Gestation length
Pup body weights
Number of pups (live, dead, total)

Method of Analysis

Mean values of all exposure groups were compared to the mean value for the control group at each time interval.

Evaluation of equality of group means was made by the appropriate statistical method, followed by a multiple comparison test if needed. The parametric method was the standard one-way analysis of variance (ANOVA) using the F ratio to assess significance (Dunlap and Duffy, 1975). If significant differences among the means were indicated, Dunnett's t-test (Dunlap et al., 1981) was used to determine which means were significantly different from the control. All statistical t tests were conducted at the 5% and 1% significance levels.

Exceptions

Statistical evaluations were not performed when the standard deviation for the control group was 0 and/or N (number of animals) in the control group was less than or equal to two.

Exposure groups were eliminated from statistical analysis if their standard deviation was 0 and/or N (number of animals) in the group was less than or equal to two.

2.16.2. SPERM AND MOTILITY ANALYSIS

The following parameters were analyzed statistically:

Mean sperm count (homogenization-resistant testicular sperm count and caudal epididymal sperm count) and motility data.

A Kruskal-Wallis non-parametric ANOVA test was performed to assess significance (Kruskal and Wallis, 1952, 1953). If a significant difference occurred (p<0.05), the Wilcoxon (Mann-Whitney U) test (Kruskal, 1957) was used for pair-wise comparisons of each treated group to the vehicle control group.

Page 30

Animals with fewer than 25 sperm cells present in the motility analysis were excluded. Animals with at least 25 sperm cells were included in statistical analysis; however, animals with fewer than 50 cells were identified to have a low count. The mean caudal epididymus weight was compared using one-way analysis of variance (ANOVA) technique. If ANOVA was significant, Dunnett's test (Dunnett, 1955, 1964) was used for pair-wise comparisons of each treated group to the control group at the 5% and 1% risk levels. Statistics were performed using an IBM compatible computer with SAS computer programs (SAS/STAT User's Guide, 1989).

2.16.3. INCIDENCE DATA

The following parameters were analyzed statistically:

Mortality rates
Mating indices (male and female)
Pregnancy rates
Male fertility indices
Live birth indices
Pup viability indices (Days 0-4) and lactation indices
(Days 4-21) per litter

Incidence Data Analysis

A Fisher Exact Test with Bonferonni correction was performed to identify differences between the groups (Seigel, 1956).

2.17. DATA STORAGE

All raw data, preserved specimens, and retained samples, as well as the original study protocol and the original final report are to be maintained in the Archives of the Testing Facility upon completion of the study. The Sponsor will determine the final disposition of these materials.

All raw data and all reports generated by Pathology Associates International (PAI), Frederick, MD were maintained by PAI. After submission of the final report, all of the above will be shipped to Huntingdon Life Sciences to be archived.

2.18. REGULATORY REFERENCES

2.18.1. TEST GUIDELINE

This study was designed to meet or exceed the pertinent requirements of:

US EPA Vehicle Emissions Inhalation Exposure Guideline 79.61, CFR Vol. 59, No. 122, 27 June 1994.

US EPA (Environmental Protection Agency) Health Effects Test Guidelines, OPPTS 870.3800, Reproduction and Fertility Effects (August 1998) except this study continued only through the 1st generation of offspring until weaning.

2.18.2. GOOD LABORATORY PRACTICES

This study was conducted in accordance with US EPA 79.60, CFR Vol. 59, No. 122, 27 June 1994 and was performed according to the protocol and Huntingdon Life Sciences' Standard Operating Procedures.

2.18.3. ANIMAL WELFARE ACT COMPLIANCE

The Institutional Animal Care and Use Committee Protocol Review Subcommittee had reviewed this protocol and found it to be in compliance with all appropriate regulations.

This study complied with all appropriate parts of the Animal Welfare Act regulations: 9 CFR Parts 1 and 2 Final Rules, Federal Register, Volume 54, No. 168, August 31, 1989, pp. 36112-36163 effective October 30, 1989 and 9 CFR Part 3 Animal Welfare Standards; Final Rule, Federal Register, Volume 56, No. 32, February 15, 1991, pp. 6426-6505 effective March 18, 1991.

2.19. PROTOCOL DEVIATIONS

The following protocol deviations occurred during the study but were not considered to have compromised the validity or integrity of the study:

1. Due to technician error, all Group I males were placed into the Group I female cages and all Group I females were placed into Group I male cages after the six-hour exposure on 29 October 2001. This error was

discovered during body and feeder weights collection on 30 October 2001.

- 2. Due to equipment malfunction, temperature and humidity chamber readings for Group II chamber on 14 October 2001, and Group III chamber on 25 October 2001 were not recorded during exposures.
- 3. Due to technician error, in-chamber observations were not performed or recorded during exposures on Days 60 and 91 (21 October 2001 and 21 November 2001, respectively).
- 4. Due to technician oversight, organ weights were collected from animal number 3602-11 instead of animal number 3602-9, the randomly selected pup, as per protocol. Organ weights were also taken from animal number 3615-5 and 3615-6 instead of the randomly selected animal numbers 3615-4 and 3615-13, respectively.
- 5. Due to technician error, Groups III and IV males were without water on 18 November 2001.
- 6. Due to technician error, the brain, kidneys, liver and spleen were unintentionally evaluated microscopically for selected Groups I and IV animals.
- 7. Due to technician error, the spleen weight for animal number 4618 and the pituitary gland and adrenal gland weights for animal number 1612 were obtained post-fixation.

3. RESULTS AND DISCUSSION

3.1. CHAMBER MONITORING

(Appendices A and B)

Chamber distribution analyses (see Table IV in Appendix A) showed that the test substance was evenly distributed within each chamber. Chamber monitoring (see Table VI in Appendix A) showed that the chamber oxygen levels were 20%. Chamber room monitoring (see Table VI in Appendix A) showed that no test substance was present in the room and that the sound and light levels were acceptable.

The target and mean (± standard deviation) analytical (IR) and nominal concentrations are summarized as follows:

Group	Test Substance	Target Concentration (mg/m³)	Analytical Concentration (mg/m³)	Nominal Concentration (mg/m³)
I	Air Control	0	0 ± 0	0 ± 0
II	Gasoline TAME Vapor Condensate	2000	2060 ± 240	2213 ± 264
III	Gasoline TAME Vapor Condensate	10000	10500 ± 516	10600 ± 541
IV	Gasoline TAME Vapor Condensate	20000	20500 ± 1184	19430 ± 859

The analytically measured exposure levels of the airborne test substance were reasonably close to the targeted exposure levels. The measured and nominal concentrations varied somewhat (less than 8%), but reasonably, from the expected 1:1 ratio for this type of vapor exposure. Chamber environmental conditions averaged 24°C and 44% relative humidity.

Mean particle size distribution measurements for the exposures are summarized as follows:

Group	Test Substance	Mass Median Aerodynamic Diameter (µm)	Geometric Standard Deviation	Total Mass Concentration (mg/m³)
I	Air Control	2.921	1.992	4.33 x 10 ⁻³
II	Gasoline TAME Vapor Condensate	3.329	2.112	5.31 x 10 ⁻³
III	Gasoline TAME Vapor Condensate	4.617	2.102	4.79 x 10 ⁻³
IV	Gasoline TAME Vapor Condensate	2.719	2.178	3.40 x 10 ⁻³

These results indicated that the atmospheres were essentially vapor only as expected since there was no substantial difference between the particulate levels in the test substance chambers and the Air Control chambers. Some particles are invariably present in chamber atmospheres, representing background air. It is unlikely that gasoline vapor condensed on these particles given the volatility of these light end vapor components and the high level of consistency in constituent proportions demonstrated analytically from week to week as next discussed.

Analysis of the major components in the neat test substance and the test atmospheres (see Appendix B) showed an acceptably close comparison between the neat test substance and the vaporized test substance. This data demonstrated that the test animals were exposed, as expected, to all of the major components of the test substance in their reasonably proper proportion. The data was consistent from week-to-week during the study indicating stability of the test substance and the atmosphere generation techniques.

3.2. PARENTAL DATA (P₀ GENERATION)

3.2.1. MORTALITY

(Table 1; Appendix C)

There was no effect of treatment on survival. One female rat (#4602) in the 20000 mg/m³ group was accidentally killed on Day 66 during handling for vaginal smearing. One female rat (#1606) in the Air Control group was found dead on Day 94, one day following parturition. A second female rat (#1611) in the Air Control group had total litter loss on Lactation Day 4. No males died prior to scheduled sacrifice.

3.2.2. PHYSICAL OBSERVATION DATA

(Tables 2, 3 and 4; Appendices A, D, E and F)

The test animals were unremarkable in-chamber during the exposure periods.

The test animals were generally unremarkable during the non-exposure periods during the premating period in both sexes, the mating/postmating period in the male rats, and the gestation and lactation periods in the female rats. Scattered observations such as chromodacryorrhea, lacrimation and alopecia were noted but were not considered treatment-related.

3.2.3. BODY WEIGHTS – PREMATING PERIOD

(Tables 5 and 6; Appendices G and H)

There were no exposure-related differences in body weights or weight changes in the test substance exposed animals compared to the Air Control animals. A few statistically significant differences in body weights or weight changes were noted at several intervals for some exposed groups. However, these were not in a treatment-related pattern and were not attributed to the test substance.

3.2.4. MATERNAL BODY WEIGHTS - GESTATION AND LACTATION PERIODS

(Tables 7, 8, 9 and 10; Appendices I, J, K and L)

There were no exposure-related differences in body weights or weight changes in the test substance exposed animals compared to the Air Control animals.

3.2.5. FEED CONSUMPTION – PREMATING PERIOD

(Table 11; Appendix M)

There were no exposure-related differences in feed consumption in the test substance exposed animals compared to the Air Control animals. A few statistically significant differences (mostly decreases relative to control values) were noted at several intervals and mostly in the 10000 and 20000 mg/m³ exposed animals. However, these were very scattered and not in a treatment-related pattern.

3.2.6. MATERNAL FEED CONSUMPTION - GESTATION AND LACTATION PERIODS

(Tables 12 and 13; Appendices N and O)

There were no exposure-related differences in feed consumption during the gestation period in the test substance exposed animals compared to the Air Control animals. Exposure-related statistically significant decreases (although generally less than 15%) in feed consumption were seen during the lactation period (especially during the mid-lactation period) in the test animals at all exposure levels compared to the Air Control animals and seemed to correlate with the decreases in pup body weight gains noted at the same time (see section 3.3.2.).

3.2.7. ESTROUS CYCLE DATA – PREMATING PERIOD

(Table 14; Appendix P)

There were no exposure-related differences in estrous cycle data (as measured by cycle length and number of estrous cycles) in the test substance exposed animals compared to the Air Control animals. A statistically significant decrease in the number of estrous cycles relative to control values was noted in the 2000 mg/m³ group. However, this was not in a treatment-related pattern. At least 2 (and up to 9) animals in each test group had extended periods of diestrus or estrus indicative of pseudopregnancy. However, all of these animals (except #3618) eventually were confirmed mated during the mating period.

3.2.8. MATING, FERTILITY AND GESTATION INDICES

(Tables 15 and 16; Appendices Q and R)

Mating indices for the male rats treated with the test substance were comparable to the Air Control group. Mating, fertility and gestation indices for the female rats treated with the test substance were comparable to the Air Control group. There were also no treatment-related differences in the other reproductive parameters up to the time of parturition including the percent of females completing delivery and the duration of gestation, when compared to the Air Control group.

3.2.9. PARTURITION AND LITTER SURVIVAL DATA

(Table 16; Appendices R and S)

Parturition data for the female rats treated with the test substance were comparable to the Air Control group. There were also no treatment-related differences in all parturition parameters including the total number of pups delivered, the number of pups dying, the viability (4 day survival) and lactation (21 day survival) indices, the number of implantation sites per litter, the pup sex ratio and the number of live pups/litter, when compared to the Air Control group. Note that due to software limitations that only data through Lactation Day 21 was calculable.

3.3. PUP DATA (F_1 GENERATION)

3.3.1. OBSERVATION DATA

(Table 17, Appendix T)

The pups were unremarkable during the lactation period. Scattered observations were noted but were not treatment-related.

3.3.2. BODY WEIGHT DATA

(Table 18; Appendix U)

There were exposure-related decreases in body weight gains in the pups feeding from test substance exposed animals for all of the exposed groups compared to the pups feeding from Air Control animals. These statistically significant differences (although generally less than 10%) in body weights and weight changes were noted at several intervals (especially during the mid-lactation period) and seemed to correlate with the decreases in maternal feed consumption noted at the same time (see section 3.2.6). These differences were not significantly different at weaning on Lactation Day 28.

3.4. POSTMORTEM DATA

3.4.1. MACROSCOPIC POSTMORTEM EVALUATIONS - PARENTAL GENERATION

(Table 19; Appendices V and Z)

There were no exposure-related differences in macroscopic postmortem evaluations in the test substance exposed animals compared to the Air Control animals. Scattered observations were noted but were not treatment-related. There were no abnormal findings in female rat #1606 in the Air Control group that was found dead on Day 94, one day following parturition.

3.4.2. ORGAN WEIGHTS - PARENTAL GENERATION

(Table 21; Appendix X)

Exposure-related effects on organ weights included statistically significant increases in kidney weights (absolute and/or relative to body and brain weight) at all exposure levels in the males and at the highest exposure level in the females. These differences for the males (but not the females) were consistent with the microscopic findings discussed in the following section. (Note: Only the high exposure level and control animals were examined microscopically). Exposure-related effects on organ weights also included statistically significant increases in liver weights (absolute and/or relative to body and brain weight) at the 10000 and 20000 mg/m³ exposure levels in the males. These differences for the males were not consistent with any corresponding histopathology findings but may represent a metabolic response. There was also an apparent small increase in adrenal weight in the 20000 mg/m³ males, with a very similar difference from control occurring in the 10000 mg/m³ males; this only achieved statistical significance at the highest exposure level, for the organ weight to body weight ratio only, and was not accompanied by any histopathological findings. There were no other exposure-related differences in organ weights in the test substance exposed animals, compared to the Air Control animals.

3.4.3. SPERM EVALUATIONS – PARENTAL GENERATION (Appendix AA)

Mean percent motility, epididymal sperm count, homogenization-resistant testicular sperm count and sperm morphology were not affected by treatment with the test substance at an exposure level of 20000 mg/m³. No biologically meaningful differences were observed between the test substance exposed group and the Air Control group.

3.4.4. MACROSCOPIC POSTMORTEM EVALUATIONS - PUPS

(Table 20; Appendix W)

There were no exposure-related differences in macroscopic postmortem evaluations in the pups feeding from test substance exposed animals compared to the pups feeding from Air Control animals. Scattered observations were noted but were not treatment-related.

3.4.5. ORGAN WEIGHTS - PUPS

(Table 22; Appendix Y)

There were no exposure-related differences in organ weights in the pups feeding from test substance exposed animals compared to the pups feeding from Air Control animals. A few statistically significant differences were noted. However, these were not in a treatment-related pattern.

3.4.6. HISTOPATHOLOGICAL EVALUATIONS - PARENTAL GENERATION

(Table 23; Appendix Z)

Microscopic findings that were considered exposure-related were found only in the kidneys of male animals:

Kidneys

Male rats exposed to 20000 mg/m³ of test substance had eosinophilic hyaline granules within the cytoplasm of renal proximal tubular epithelial cells. This lesion was not noted in Air Control animals or females exposed to the test substance. All high exposure males also had evidence of tubular regeneration (basophilic tubules). This lesion was rare among control males and present in only one high exposure female. Additionally, several 20000 mg/m³ males had corticomedullary tubular intralumenal granular casts. Within this study, this observation was unique to males exposed to the test substance. High exposure males also had increased incidence of renal cortical interstitial

mononuclear cell infiltrates and medullary tubular intralumenal eosinophilic material compared to exposed females and control animals of both sexes.

These renal histopathologic changes were consistent with hyaline droplet nephropathy, attributable to accumulation of alpha-2 microglobulin within renal tubular epithelial cells. This species and gender-specific change has been well documented in male rats exposed to a variety of hydrocarbon compounds (Alden, CL, 1986) and is not considered relevant to humans.

Histologic Findings in Kidneys of P_0 Rats Exposed to Gasoline TAME Vapor Condensate

	Affe	ected A	Anima	ls
	Mal	es	Fem	ales
Exposure level (mg/m ³ x10 ³)	0	20	0	20
n=	10	10	10	10
Eosinophilic/hyaline granules,	0	10	0	0
proximal tubular epithelium				
Basophilic cortical tubules	2	10	0	1
Corticomedullary tubular granular casts	0	2	0	0
Mononuclear cell infiltrate	3	8	1	2
Medullary eosinophilic intralumenal material	0	5	0	1

Reproductive organs

No test substance related microscopic changes were noted in reproductive organs of males and females in this study. High exposure males had sporadic occurrence of lesions affecting the genital system. Two 20000 mg/m³ males had slightly decreased coagulating gland secretory product, whereas one control male had minimally decreased secretory product. A single high exposure male had focal epididymal mononuclear cell infiltrate and another had an epididymal sperm granuloma with concurrent decreased seminal vesicular secretory product. Similar lesions were not present among control males in this study but are commonly seen as background pathology in rats of this age and strain (see Appendix BB). Therefore, the low incidence of these findings

made their relationship to test substance exposure doubtful and these changes were considered incidental to this study.

Other tissues

No test substance related histopathologic changes were noted in other protocol-specified tissues. The remaining microscopic findings were similar to those routinely observed in animals of this age and species and were considered incidental.

4. CONCLUSION

Exposure of rats to 2000, 10000 and 20000 mg/m³ of vapor of Gasoline TAME Vapor Condensate resulted in decreased feed consumption in the dams during lactation at all exposure levels. There were also increases in liver weights in the parental male animals in the 10000 and/or 20000 mg/m³ exposed groups. Increases in relative kidney weights were observed in parental male animals in all exposure groups and in the parental female animals in the 20000 mg/m³ exposed group. Therefore, with respect to general toxicity, a no observable adverse effect level (NOAEL) was not clearly determined. Microscopic findings in high exposure male kidneys (only control and high exposure groups were examined microscopically) were consistent with hydrocarbon nephropathy. However, this finding has been generally accepted (US EPA 1991. Alpha 2 microglobulin: association with chemically induced renal toxicity and neoplasia in male rat. In Risk Assessment Forum, p.85. US Govt. Printing Office, Washington, DC.) not to be relevant to human risk assessment. There was no effect on reproductive performance in the study, including mating, fertility, parturition, lactation and offspring survival except decreases in pup body weight gains were seen at all exposure levels. Therefore, with respect to reproductive performance, a no observable adverse effect level (NOAEL) of Gasoline TAME Vapor Condensate was also not clearly determined. A low observable adverse effect level (LOAEL) of 2000 mg/m³ of Gasoline TAME Vapor Condensate was determined with respect to general toxicity and reproductive performance.

REFERENCES

- Alden, C.L. 1986. A review of unique rat hydrocarbon nephropathy. *Toxicol. Pathol.* 14(1): 109-11.
- Dunlap, W.P. and Duffy, J.A. 1975. Fortran IV functions for calculating exact probabilities associated with z, chi-square, t and f values. *Behav. Res. Methods and Instrumentations* 7: 59-60.
- Dunlap, W.P., Marx, M.S. and Agamy, G.G. 1981. Fortran IV functions for calculating probabilities associated with Dunnett's test. *Behav. Res. Methods and Instrumentation* 13: 363-366.
- Dunnett, C.W. 1955. A multiple comparison procedure for comparing several treatments with a control. *Journal of the American Statistical Association* 50: 1096-1121.
- Dunnett, C.W. 1964. New tables for multiple comparisons with a control. *Biometrics* 20-3: 482-491.
- Kruskal, W.H. 1957. Historical Notes on the Wilcoxon Unpaired Two-Sample Test. *Journal of the American Statistical Association* 52: 356-360.
- Kruskal, W.H. and Wallis, W.A. 1952. Use of Ranks in One-Criterion Variance Analysis. *Journal of the American Statistical Association* 47: 583-621.
- Kruskal, W.H. and Wallis, W.A. 1953. Errata for Kruskal-Wallis (1952). *Journal of the American Statistical Association* 48: 907-911.
- SAS Institute. 1989. SAS/STAT User's Guide 1989a. Version 6, Fourth Edition. Cary, NC: SAS Institute.
- Seigel, S. 1956. Nonparametric *Statistics for the Behavioral Sciences*. New York: McGraw-Hill.
- Wilcoxon, F. 1945. Individual comparisons by ranking methods. *Biometrics Bulletin* 1: 80-83.

CALCULATIONS

Female Mating Index:

no. of females with confirmed mating (sperm and/or vaginal plug) plus no. of pregnant females without evidence of mating (no sperm or vaginal plug)/no. of females placed with males

Female Fertility Index:

no. of females pregnant/no. of females confirmed mating or pregnancy for females without evidence of mating

Pregnancy Index:

no. of females pregnant/no. of females inseminated × 100

Male Mating Index:

no. of males with confirmed mating with a female or pregnancy for females without evidence of mating/no. of males placed with females

Male Fertility Index:

no. of males mating and impregnating a female plus the no. of males with a pregnant female without evidence of mating/no. of males with confirmed mating plus no. of males with a pregnant female without evidence of mating

Gestation Index:

no. of females with liveborn/no. of females with confirmed pregnancy

Viability Index:

no. of pups alive Day 4 precull/no. of liveborn pups

Lactation Index:

no. of pups alive Day 21/no. of pups Day 4 postcull

Live Birth Index:

total no. of liveborn pups/total no. of pups born

General Preface	

General Notes

Individual animal data values presented in this report may be rounded. Unrounded individual animal data values are used to calculate the reported mean and standard deviation values. Therefore, use of the reported individual values to reproduce means, standard deviations and/or to perform any subsequent calculations may produce minor discrepancies between the calculated values and those presented in this report.

Key to Abbreviations

M = Male F = Female Gen. = General PG = Pregnant

Group	Group Designation	Exposure Levels (mg/m³)
I	Control	0 (air only)
II	Low	2000
III	Middle	10000
IV	High	20000

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G PAGE 46

TABLE 1

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY
INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF SURVIVAL AND PREGNANCY

GROUI	P	I	II	III	IV	
DOSE LEVEL (MG/M3))	0	2000	10000	20000	
No. of males at start Premating	N	26	26	26	26	
- Died/sacrificed	N	0	0	0	0	
Postmating						
- Died/sacrificed	N	0	0	0	0	
No. of females at start	N	26	26	26	26	
Died/sacrificed premating	N	0	0	0	1	
No. of females cohabitated	N	26	26	26	25	
- Without evidence of mating	N	0	0	1	0	
Pregnant	N	0	0	0	0	
Nonpregnant	N	0	0	1	0	
Pregnant	N	24	25	24	23	
- Died/sacrificed	N	0	0	0	0	
- Died delivering	N	. 0	0	0	0	
 Died/sacrificed post partum 	N	2 ^a	0	0	0	
- Aborted died/sacrificed	N	0	0	0	0	
Nonpregnant	N	2	1	2	2	
- Died/sacrificed	N	0	0	0	0	
Total females died/sacrificed	N	2	0	0	1	
	ક	7.7	0.0	0.0	3.8	
Dams delivering	N	24	25	24	23	
- With liveborn pups	N	24	25	24	23	
	용	100.0	100.0	100.0	100.0	
- With all pups stillborn	N	0	0	0	0	
	용	0.0	0.0	0.0	0.0	

a Includes animal #1606 (Died Day 94, one day after parturition) and animal #1611 (with total litter loss on Lactation Day 4).

00-4202 211-TAME-1G

Page 47 Final Report

Summary of Weekly Clinical Observations	Table 2

Total represents a cumulative total of all animals with the indicated observation one or more times during the study.

Corresponding exposure levels for each group were as follows:

Group I - 0 mg/m³ Group II - 2000 mg/m³ Group IV - 10000 mg/m³ Group IV - 20000 mg/m³

TABLE 2

PAGE 48

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

MALES					SU	MMAF	Y OF	WEE	KLY	CLIN	ICAL	OBS	ERVA	TION	S						
		DA	Y C	F ST	UDY														,		
	GROUP#	-7	0	7	14	21	28	35	42	49	56	63	70	77	84	91	98	105	112	TOTAL	
# OF ANIMALS EXAMINED	I	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26		
	II	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26		
	III	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26		
	IV	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26		
Normal																					
WITHIN NORMAL LIMITS	I	26	26	24	23	21	20	21	20	20	20	20	20	21	21	23	22	22	0	26	
	ΙΙ	24	24	23	23	20	20	20	20	19	19	20	19	19	18	19	20	19	0	25	
	III	26	26	24	22	20	20	20	19	18	18	20	20	19	22	22	21	21	0	26	
	IV	26	26	23	21	21	17	17	17	17	17	17	17	17	17	16	18	18	0	26	
Dead																				·	
TERMINAL SACRIFICE	I	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	26	26	
	II	0	0	0	0	0	0	0				0	0	0	0	0	0	0	26	26	
	III	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	26	26	
	IV	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	26	26	
Gen. Appearance																					
SWOLLEN PAW(S)	ı	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	ΙΙ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	III	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	
	IV	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Dermal-General																					
ALOPECIA -	I	0	0	1	2	4	5	4	5	5	4	4	4	4	4	2	2	2	0	6	
EXTREMITIES/SNOUT	II	2	2	2	2	6	5		5	6	6	5	5	5	5	4	4	4	0	6	
	III	0	0	2	3	4	5	5	6	7	7	5	5	6	3	3	3	3	0	7	
	IV	0	0	1	3	3	6	6	6	6	6	6	6	6	6	7	5	5	0	7	

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 2 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

MALES SUMMARY OF WEEKLY CLINICAL OBSERVATIONS _______ DAY OF STUDY GROUP# -7 0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 TOTAL # OF ANIMALS EXAMINED II 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 SCABS I O 1 1 ΙI III ΙV BLACK STAINS SNOUT Ι O Ω ΙI III ΙV ALOPECIA - GENERAL Ι ΙI III ΙV ULCERATION Ι III ΙV Ocular CHROMODACRYORRHEA -I UNILATERAL ΙI III O LACRIMATION - UNILATERAL Ι ΙI III IV

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 2 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

MALES SUMMARY OF WEEKLY CLINICAL OBSERVATIONS DAY OF STUDY GROUP# -7 0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 TOTAL # OF ANIMALS EXAMINED II 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 EYE(S) - APPEAR DAMAGED I 0 0 n Ω 0 0 ΙI III ΙV Oral/Buccal INCISORS MALOCCLUDED ΙI III ORAL SORE ΙI III INCISORS BROKEN/MISSING Ι ΙI III ΙV Palpable masses MASS T

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 2

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

FEMALES					st	JMMAF	Y OF	WEE	KLY	CLIN	IICAL	OBS	ERVA	TION						
		DA	Y C	F SI										-						
	GROUP#						28	35	42	49	56	63	70	77	84	91	98	105	112	TOTAL
OF ANIMALS EXAMINED		26		26	26	26	26	26	26	26	26	26	23	0	0	0	0	0	0	
	ΙΙ	26	26	26	26	26	26	26	26	26	26	26	18	0	0	0	0	0	0	
	III	26	26	26	26	26	26	26	26	26	26	26	15	1	1	1	1	1	1	
	IV	26	26	26	26	26	26	26	26	26	26	26	22	0	0	0	0	0	0	
Normal																				
HIN NORMAL LIMITS	ı	26	24	26	24	24	21	20	20	20	19	19	17	0	0	0	0	0	0	26
	ΙΙ	26	26	26	25	24	24	23	23	21	21	21	15	0	0	0	0	0	0	26
	III	26	26	24		24	25	25	25	25	23	24	15	1	1	1	1	1	0	26
	IV	26	26	26	26	26	26	26	26	26	26	26	21	0	0	0	0	0	0	26
Dead																				
CIDENTAL	I	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ΙΙ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	III	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	IV	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
MINAL SACRIFICE	I	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	II	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
	III	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	IV	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gen. Appearance																				
LLEN PAW(S)	I	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	1
	II	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	III	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	IV	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dermal-General																				
PECIA -	I	0	2	0	1	1	5	6	6	5	4	5	5	0	0	0	0	0	0	6
REMITIES/SNOUT	II	0	0	0	1	2	2	3	3	4	4	3	2	0	0	0	0	0	0	
	III	0	0	0	1	1	1	1	1	1	2	2	0	0	0	0	0	0	0	2
	IV	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 2 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

FEMALES					st	JMMAF	Y OF	WEE	KLY	CLIN	ICAL	OBS	ERVA	TION	IS							
		D <i>P</i>	Y ()F SI	UDY																-	
	GROUP#	-7	0			21	28	35	42	49	56	63	70	77	84	91	98	105	112	TOTAL		
# OF ANIMALS EXAMINED	I	26	26	26	26	26	26	26	26	26	26	26	23	0	0	0	0	0	0			
	II	26	26	26	26	26	26	26	26	26	26	26	18	0	0	0	0	0	0			
	III	26	26	26	26	26	26	26	26	26	26	26	15	1	1	1	1	1	1			
	IV	26	26	26	26	26	26	26	26	26	26	26	22	0	0	0	0	0	0			
SCABS	I	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1		
	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0		
	III	0	0	2	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2		
	IV	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
ALOPECIA - GENERAL	I	0	0	0	0	0	1	1	0	0	2	2	1	0	0	0	0	0	0	3		
	ΙΙ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	III	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	IV	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Ocular																						
CHROMODACRYORRHEA -	I	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
UNILATERAL	ΙΙ	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1		
	III	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	IV	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Oral/Buccal																						
INCISORS MALOCCLUDED	I	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	II	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1		
	III	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	IV	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
INCISORS BROKEN/MISSING		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	ΙΙ	0	0	0	0	0	0	0	0	1	1	2	1	0	0	0	0	0	0	2		
	III	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1		
	IV	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

Sponsor Study No: 211-TAME-1G

TABLE 3 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF CLINICAL OBSERVATIONS DURING GESTATION - (frequency/animals) GROUP I IV III DOSE LEVEL (MG/M3) 0 10000 20000 DAY 0 to 25 Normal WITHIN NORMAL LIMITS 71/19 87/22 96/25 92/23 1/ 1 TERMINAL SACRIFICE 2/2 1/ 1 2/2 Gen. Appearance _____ SWOLLEN PAW(S) 1/ 1 0/0 0/0 0/0 Dermal-General ALOPECIA - EXTREMITIES/SNOUT 22/6 12/ 3 8/2 2/1 ALOPECIA - GENERAL 8/ 2 0/0 0/0 0/0 Ocular CHROMODACRYORRHEA - UNILATERAL 0/0 0/0 0/0 2/1 Oral/Buccal INCISORS MALOCCLUDED 6/2 4/ 1 0/0 2/ 1 ORAL SORE 0/0 0/0 0/0 2/ 1 INCISORS BROKEN/MISSING 0/0 7/3 0/0 0/0

Sponsor Study No: 211-TAME-1G

TABLE 4

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY
INHALATION REPRODUCTION TOXICITY STUDY IN RATS

	RNAL CLINICAL OBSERVATI)
GROUP DOSE LEVEL(MG/M3)	I O	II 2000	III 10000	
DAY 1 to 28				
Normal				
WITHIN NORMAL LIMITS	102/17	119/21	132/22	126/22
FOUND DEAD TERMINAL SACRIFICE	1/ 1 23/23 ^a	0/ 0 25/25	0/ 0 24/24	0/ 0 23/23
Gen. Appearance				
RED EXUDATE (GENERAL)	0/ 0	2/ 2	0/0	0/ 0
Dermal-General				
ALOPECIA - EXTREMITIES/SNOUT	18/ 3	16/ 3	12/ 2	4/ 2
ALOPECIA - GENERAL	12/ 2	0/ 0	0/ 0	1/ 1
RED ANO-GENITAL STAINING	0/ 0	0/0	0/ 0	1/ 1
ALOPECIA - GENERAL YELLOW ANO-GENITAL STAINING	0/ 0 0/ 0	0/ 0 1/ 1	5/ 1 0/ 0	0/ 0 0/ 0
Ocular				
CHROMODACRYORRHEA - UNILATERAL	0/ 0	2/ 1	0/ 0	3/ 1
LACRIMATION - UNILATERAL	0/ 0	1/ 1	0/ 0	3/ 1
Oral/Buccal				
INCISORS MALOCCLUDED	12/ 2	8/ 2	0/ 0	6/ 1
ORAL SORE	0/ 0	0/ 0	0/ 0	1/ 1
INCISORS BROKEN/MISSING	4/ 2	9/3	0/ 0	0/ 0

 $^{^{\}rm a}$ Includes animal #1611 with total litter loss on Lactation Day 4.

TABLE 4

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUN	MARY OF MATERNAL C	LINICAL OBSERVATIONS	DURING LACTATION -	(frequency/animals)	
DOSE LEVEL (MC	GROUP G/M3)	I 0	II 2000	III 10000	IV 20000
Palpable masses		·			
MASS		0/ 0	4/ 1	0/ 0	0/ 0

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 5

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY
INHALATION REPRODUCTION TOXICITY STUDY IN RATS

LES			IGHT VALUES (GRAMS)		
DOSE	GROUP LEVEL (MG/M3)	I 0	II 2000	III 10000	IV 20000
DAY -14	MEAN	150	149	149	149
	S.D.	10.3	10.4	10.8	10.6
	N	26	26	26	26
DAY -7	MEAN	211	210	210	210
	S.D.	13.5	13.6	12.8	13.6
	N	26	26	26	26
DAY 0	MEAN	274	274	274	274
	S.D.	17.0	17.7	14.2	17.4
	N	26	26	26	26
DAY 7	MEAN	317	315	318	311
	S.D.	20.9	22.2	19.1	22.8
	N	26	26	26	26
DAY 14	MEAN	354	351	355	345
DIII 11	S.D.	23.7	25.6	24.8	27.0
	N N	26	26	26	26
DAY 21	MEAN	386	384	384	372
21	S.D.	27.8	28.5	28.1	30.7
	N N	26	26	26	26
DAY 28	MEAN	405	405	406	394
	S.D.	30.0	31.0	31.7	34.0
	N	26	26	26	26
DAY 35	MEAN	424	425	424	410
	S.D.	31.9	32.2	35.1	38.0
	N	26	26	26	26
DAY 42	MEAN	443	445	439	427
	S.D.	32.8	34.1	39.2	41.0
	N	26	26	26	26

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 5

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY
INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ALES		MEAN BODY WEIGHT VALUES (GRAMS)					
	GROUP	I	II	III	IV		
DOS	SE LEVEL(MG/M3)	0 	2000	10000	20000		
DAY 49	MEAN	456	459	454	442		
	S.D.	34.5	36.6	42.9	40.7		
	N	26	26	26	26		
DAY 56	MEAN	474	474	474	463		
	S.D.	36.1	34.9	45.4	43.8		
	N	26	26	26	26		
DAY 63	MEAN	487	486	487	477		
	S.D.	38.7	38.6	49.8	46.5		
	N	26	26	26	26		
DAY 69	MEAN	500	495	499	487		
	S.D.	38.4	40.1	50.5	47.8		
	N	26	26	26	26		
DAY 77	MEAN	508	503	505	495		
	S.D.	39.6	42.7	52.8	47.8		
	N	26	26	26	26		
DAY 84	MEAN	525	516	517	504		
	S.D.	41.4	46.3	55.1	50.2		
	N	26	26	26	26		
DAY 91	MEAN	529	522	519	508		
	S.D.	40.5	47.4	55.0	50.6		
	N	26	26	26	26		
DAY 98	MEAN	538	530	525	520		
	S.D.	42.7	46.1	58.6	51.9		
	N	26	26	26	26		
DAY 105	MEAN	543	539	536	528		
	S.D.	42.0	47.3	62.8	52.2		
	N	26	26	26	26		

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 5

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY
INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ALES		MEAN BODY WE	MEAN BODY WEIGHT VALUES (GRAMS)					
DOSE	GROUP LEVEL (MG/M3)	I 0	II 2000	III 10000	IV 20000			
DAY -14	MEAN	110	110	110	110			
	S.D.	8.2	8.4	8.3	8.1			
	N	26	26	26	26			
DAY -7	MEAN	151	154	152	154			
	S.D.	11.1	12.0	10.6	10.9			
	N	26	26	26	26			
DAY 0	MEAN	182	188	183	188			
	S.D.	13.5	15.5	13.5	12.8			
	N	26	26	26	26			
DAY 7	MEAN	205	211	203	207			
	S.D.	15.4	16.6	16.5	13.5			
	N	26	26	26	26			
DAY 14	MEAN	226	233	222	225			
	S.D.	15.7	20.8	18.0	14.8			
	N	26	26	26	26			
DAY 21	MEAN	242	250	236	240			
	S.D.	16.6	22.5	19.3	14.8			
	N	26	26	26	26			
DAY 28	MEAN	256	264	252	255			
	S.D.	16.9	22.1	19.7	16.0			
	N	26	26	26	26			
DAY 35	MEAN	263	274	258	262			
-	S.D.	17.6	24.7	20.9	14.0			
	N	26	26	26	26			
DAY 42	MEAN	272	282	265	269			
	S.D.	16.3	24.2	21.4	16.4			
	N	26	26	26	26			

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 5

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY
INHALATION REPRODUCTION TOXICITY STUDY IN RATS

EMALES			MEAN BODY WE	MEAN BODY WEIGHT VALUES (GRAMS)				
	GROUP DOSE LEVEL(MG/M3)		0 0	11 2000	111 10000	IV 20000		
·				·				
DAY	49	MEAN	274	285	272	273		
		S.D.	16.2	24.5	22.3	15.3		
		N	26	26	26	26		
DAY	DAY 56	MEAN	284	294	280	283		
		S.D.	18.0	25.9	20.9	18.6		
		И	26	26	26	26		
DAY	63	MEAN	289	305*	284	287		
		s.D.	19.8	27.4	22.9	18.5		
		N	26	26	26	26		
DAY	DAY 69	MEAN	291	305	286	292		
		s.D.	18.8	28.7	24.7	19.4		
		N	26	26	26	25		

Statistical key: * = p < 0.05

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 6

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY
INHALATION REPRODUCTION TOXICITY STUDY IN RATS

LES		MEAN BODY WEIGHT GAIN (GRAMS)							
		GROUP		I	II	III	IV		
	DOSE LEV	DOSE LEVE	EL(MG/M3)	0	2000	10000	20000		
עעע	-14 TO	-7	MEAN	62	60				
DIXX	11 10	,	S.D.	5.9	6.8	61	61		
			N	26	26	5.2	6.4		
				20	20	26	26		
DAY	-7 T O	0	MEAN	63	64	64	64		
			S.D.	6.1	5.8	5.8	5.3		
			N	26	26	26	26		
DAY	0 TO	7	MEAN	43	41	43	38		
			S.D.	6.3	7.7	8.8	8.7		
			N	26	26	26	26		
DAY	7 T O	14	MEAN	36	36	37	34		
			S.D.	6.0	6.5	8.4	6.7		
			N	26	26	26	26		
DAY	14 TO	21	MEAN	33	32	29	27**		
			S.D.	6.7	6.1	6.5	7.1		
			N	26	26	26	26		
DAY	21 TO	28	MEAN	18	21	22	22		
			S.D.	10.1	10.0	6.4	7.4		
			N	26	26	26	26		
DAY	28 TO	35	MEAN	19	20	17	16		
			S.D.	6.1	5.3	5.9	5.8		
			N	26	26	26	26		

Statistical key: ** = p<0.01

Sponsor Study No: 211-TAME-1G

TABLE 6

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY
INHALATION REPRODUCTION TOXICITY STUDY IN RATS

			GROUP	I	II	III	IV
	DOSE LEVEL (MG/M3)		0	2000	10000	20000	
D 3 12	35 TO	40	MEAN	19	20	15	17
DAY	35 10	42	MEAN S.D.	5.9	4.5	7.9	6.7
			N	26	26	26	26
			1/4	26	20	26	26
DAY	42 TO	49	MEAN	13	14	15	16
			S.D.	6.8	5.8	7.0	8.9
			N	26	26	26	26
DAY	49 TO	56	MEAN	18	15	20	20
			S.D.	9.2	9.6	6.4	7.3
			N	26	26	26	26
DAY	56 TO	63	MEAN	13	12	13	14
			S.D.	8.5	9.1	7.4	8.0
			N	26	26	26	26
D 2 11	62 m o	60	1477.3.17	1.2	0	10	• •
DAY	63 T O	69	MEAN	13	9	12	10
			S.D. N	7.8 26	5.8 26	5.8 26	6.6
			N	26	20	26	26
DAY	69 TO	77	MEAN	8	8	6	8
			S.D.	7.9	8.6	9.1	6.4
			N	26	26	26	26
DAY	77 TO	84	MEAN	17	14	13	10**
	10		S.D.	6.8	7.3	8.7	5.9
			N N	26	26	26	26

Statistical key: ** = p<0.01

Huntingdon Life Sciences 00-4202 PAGE 62
Sponsor Study No: 211-TAME-1G

TABLE 6

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY
INHALATION REPRODUCTION TOXICITY STUDY IN RATS

MALES		MEAN BODY WEIGHT GAIN (GRAMS)						
	DOSE LEVE	GROUP EL (MG/M3)	I 0	II 2000	III 10000	IV 20000		
DAY	84 TO 91	MEAN	4	6	1	3		
		S.D.	5.9	8.0	8.5	9.7		
		N	26	26	26	26		
DAY	DAY 91 TO 98	MEAN	9	8	7	12		
		S.D.	6.2	6.8	20.2	6.1		
		N	26	26	26	26		
DAY	98 TO 105	MEAN	6	9	10	9		
		S.D.	7.0	5.8	8.5	5.9		
		N	26	26	26	26		
DAY	0 TO 69	MEAN	225	221	224	213		
		s.D.	27.8	31.6	45.1	35.4		
		N	26	26	26	26		
DAY	0 TO 105	MEAN	269	265	261	255		
		S.D.	32.7	38.4	57.5	40.2		
		N	26	26	26	26		

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 6

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

			GROUP	ĭ	II	III	IV	
		DOSE LEVE		0	2000	10000	20000	
							20000	
DAY	-14 TO	-7	MEAN	41	44	42	44	
			S.D.	5.7	5.9	4.1	5.2	
			N	26	26	26	26	
DAY	-7 TO	0	MEAN	31	34	31	34	
			S.D.	5.5	6.3	5.4	4.9	
			N	26	26	26	26	
DAY	0 TO	7	MEAN	22	23	20	19	
			S.D.	5.1	5.2	6.9	5.9	
			N	26	26	26	26	
DAY	7 TO	14	MEAN	21	22	19	18	
			S.D.	5.1	7.3	7.7	7.0	
			N	26	26	26	26	
DAY	14 TO	21	MEAN	16	16	14	16	
			S.D.	6.3	6.5	6.7	7.2	
			N	26	26	26	26	
DAY	21 TO	28	MEAN	14	14	15	14	
			S.D.	7.3	7.8	7.3	4.7	
			N	26	26	26	26	
DAY	28 TO	35	MEAN	7	10	6	7	
			S.D.	7.4	7.3	6.9	6.3	
			N	26	26	26	26	

Sponsor Study No: 211-TAME-1G

TABLE 6

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY
INHALATION REPRODUCTION TOXICITY STUDY IN RATS

EMALES				MEAN BODY WE	IGHT GAIN (GRAMS)	HT GAIN (GRAMS)				
			GROUP	I	II	III	IV			
		DOSE LEVE	L(MG/M3)	0	2000	10000	20000			
DAY	35 TO	42	MEAN	9	8	8	7			
2111	55 10		S.D.	5.7	6.3	4.9	7.1			
			N	26	26	26	26			
DAY	42 TO	49	MEAN	2	3	6	5			
			S.D.	7.1	8.2	6.1	5.9			
			N	26	26	26	26			
DAY	49 T O	56	MEAN	10	9	9	10			
			S.D.	9.4	7.9	6.5	9.7			
			N	26	26	26	26			
DAY	56 TO	63	MEAN	5	11	3	4			
			S.D.	8.3	12.7	5.7	8.3			
			N	26	26	26	26			
DAY	63 TO	69	MEAN	2	0	3	3			
			S.D.	6.8	11.3	6.2	5.2			
			N	26	26	26	25			
DAY	69 TO	77	MEAN			-5				
			S.D.			0.0				
			N			1				
DAY	77 TO	84	MEAN			21				
			S.D.			0.0				
			N			1				

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 6

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

'EMALES			MEAN BODY WE	MEAN BODY WEIGHT GAIN (GRAMS)					
	DOSE LEV	GROUP EL (MG/M3)	I 0	11 2000	III 10000	IV 20000			
DAY	84 TO 91	MEAN							
13711	04 10 91	S.D.			17				
		N N			0.0				
		14			1				
DAY	91 TO 98	MEAN			14				
		S.D.			0.0				
		N			1				
DAY	98 TO 105	MEAN	300		A				
	77 -7 200	S.D.	0.0		-4 0.0				
		N	1		1				
DAY	0 TO 69	MEAN	108	117	103	103			
		S.D.	11.8	20.2	15.7	11.4			
		N	26	26	26	25			
DAY	0 TO 105	MEAN	129		170				
		S.D.	0.0		0.0				
		N	1		1				

Sponsor Study No: 211-TAME-1G

. TABLE 7

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF GESTATION BODY WEIGHTS (GRAMS)

	GROUP	I	ΙΙ	III	IV
DOSE LE	EVEL (MG/M3)	0 	2000	10000	20000
DAY 0	MEAN	288	302	283	291
2111	S.D.	14.6	26.4	23.0	21.0
	N	24	25	24	23
DAY 4	MEAN	310	324	307	314
	S.D.	16.8	29.2	24.3	23.1
	N	24	25	24	23
DAY 7	MEAN	320	334	317	325
	S.D.	17.7	29.8	25.3	23.9
	N	24	25	24	23
DAY 14	MEAN	350	362	346	352
	S.D.	21.5	30.6	26.8	26.1
	N	24	25	24	23
DAY 20	MEAN	414	429	414	419
	S.D.	33.2	34.4	36.2	26.6
	N	24	25	24	23

Sponsor Study No: 211-TAME-1G

TABLE 8 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

	GROUP	I	II	III	IV
DOSE LEVEL(MG/M3)		0 	2000	10000	20000
DAYS 0 TO 4	MEAN	22	22	22	0.0
M18 0 10 4	S.D.	8.6	7.1	23	23
				5.7	4.7
	N	24	25	24	23
DAYS 4 TO 7	MEAN	10	10	10	11
	s.D.	3.7	5.2	5.3	4.3
	N	24	25	24	23
DAYS 7 TO 14	MEAN	30	28	30	27
	S.D.	7.3	6.5	5.7	11.0
	N	24	25	24	23
DAYS 14 TO 20	MEAN	64	67	67	68
	S.D.	18.4	15.4	15.8	13.8
	N	24	25	24	23
DAYS 0 TO 20	MEAN	126	127	130	129
	S.D.	24.8	15.8	19.4	15.9
	N	24	25	24	23

Huntingdon Life Sciences 00-4202

Sponsor Study No: 211-TAME-1G

TABLE 9

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY

INHALATION REPRODUCTION TOXICITY STUDY IN RATS SUMMARY OF MATERNAL LACTATION BODY WEIGHTS (GRAMS)

	GROUP	I	rr	III	VI
DOSE LEV	EL(MG/M3)	0	2000	10000	20000
					· •
DAY 1	MEAN	313	323	306	315
	S.D.	21.1	27.1	23.6	26.2
	N	23	25	24	23
DAY 4	MEAN	330	330	322	328
	S.D.	23.3	27.6	23.3	25.8
	N	23	25	24	23
DAY 7	MEAN	346	348	341 .	343
	S.D.	22.1	24.4	22.3	33.0
	N	22	25	24	23
DAY 14	MEAN	365	362	363	364
	S.D.	24.5	28.8	25.3	25.5
	N	22	25	24	23
DAY 21	MEAN	359	358	359	366
	S.D.	21.8	33.8	25.3	23.5
	N	22	25	24	23
DAY 28	MEAN	330	333	326	332
	S.D.	23.2	25.5	25.5	22.1
	N	22	25	2,4	23

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 10 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF MATERNAL LACTATION BODY WEIGHT GAIN (GRAMS)

	GROUP	I	II	III	IV
DOSE LEVEL(MG/M3)		0	2000	10000	20000
DAYS 1 TO 4	MEAN	17	7**	16	12
	S.D.	10.5	8.8	8.4	10.3
	N	23	25	24	23
DAYS 4 TO 7	MEAN	15	18	18	15
	S.D.	10.5	13.3	9.3	14.8
	N	22	25	24	23
DAYS 7 TO 14	MEAN	19	14	22	21
	S.D.	8.4	22.9	9.2	12.7
	N	22	25	24	23
DAYS 14 TO 21	MEAN	-7	-3	-3	2
	s.D.	18.1	31.6	10.7	9.7
	N	22	25	24	23
DAYS 21 TO 28	MEAN	-28	-25	-33	-33
	S.D.	16.8	22.3	14.1	15.0
	N	22	25	24	23
DAYS 1 TO 28	MEAN	17	10	20	17
	S.D.	19.5	21.3	12.0	18.3
	N	22	25	24	23

Statistical key: ** = p<0.01

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 11

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

	2002	GROUP	I	II 2000	III 10000	30000 IV
 .	DOSE 1	LEVEL (MG/M3) 	0 - 		10000	20000
DAY	-7	MEAN	130	129	133	129
		S.D.	5.3	6.3	5.6	6.5
		N	26	26	26	24
DAY	0	MEAN	107	105	114**	109
		S.D.	6.0	4.9	5.5	6.4
		N	26	25	26	26
DAY	7	MEAN	94	91	90**	88**
		S.D.	5.3	4.0	4.8	5.1
		N	26	26	26	26
YAG	14	MEAN	85	81*	81*	80**
		S.D.	4.1	4.3	4.0	6.0
		N	25	26	26	26
DAY	21	MEAN	80	76**	75**	75**
		S.D.	4.1	3.8	3.6	3.9
		N	26	26	26	26
DAY	28	MEAN	71	69	68**	68*
		S.D.	4.5	4.8	3.3	4.8
		N	26	26	26	26
DAY	35	MEAN	69	66**	65**	67
		S.D.	3.4	3.2	2.6	3.8
		N	26	26	25	25
DAY	42	MEAN	68	65	69	66
		S.D.	3.9	3.1	10.3	4.5
		N	26	26	26	26
DAY	49	MEAN	64	62	59*	63
		S.D.	4.7	6.0	8.2	6.0
		N	26	26	26	26

Statistical key: * = p<0.05 ** = p<0.01

Sponsor Study No: 211-TAME-1G

TABLE 11

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY
INHALATION REPRODUCTION TOXICITY STUDY IN RATS

	GROUP	I	II	III	IV
	DOSE LEVEL(MG/M3)	0	2000	10000	20000
DAY 56	MEAN	62	60	60	63
	S.D.	5.9	3.6	3.5	3.9
	И	26	26	26	25
DAY 63	MEAN	60	58*	58	62
	S.D.	3.7	3.3	3.5	3.7
	N	26	26	26	26
DAY 69	MEAN	57	58	59	61**
	S.D.	2.9	3.3	3.2	4.1
	N	26	26	26	26
DAY 91	MEAN	52	51	49**	49*
	S.D.	2.5	2.4	4.5	4.6
	N	26	26	26	26
DAY 98	MEAN	52	50	52	54
	S.D.	2.4	4.8	5.5	3.0
	N	26	26	26	26
DAY 105	MEAN	48	48	47	51
	S.D.	3.2	2.3	7.2	2.3
	N	26	26	26	26

Statistical key: * = p<0.05 ** = p<0.01

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 11

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY
INHALATION REPRODUCTION TOXICITY STUDY IN RATS

EMALES		MEAN FEED CONSUMPTION (GRAMS/KG/DAY)						
		GROUP	I	II	III	IV		
		LEVEL (MG/M3)	0 	2000	10000	20000 		
DAY	-7	MEAN	137	139	136	144**		
		S.D.	6.2	6.5	5.6	7.1		
		N	26	26	24	26		
DAY	0	MEAN	113	117	114	124**		
		S.D.	5.6	6.9	5.5	6.4		
		N	24	26	21	26		
DAY	7	MEAN	101	97*	95**	98		
		S.D.	5.8	5.7	5.7	5.3		
		N	26	26	24	26		
DAY	14	MEAN	97	94	91**	94		
		S.D.	6.0	5.4	5.4	5.7		
		N	26	26	25	25		
DAY	21	MEAN	92	89	86**	89		
		S.D.	6.0	4.8	4.0	6.1		
		N	26	26	26	26		
DAY	28	MEAN	89	85**	83**	86		
		S.D.	5.6	3.7	4.5	5.5		
		N	26	26	22	26		
DAY	35	MEAN	84	81*	78**	81*		
		S.D.	5.0	3.9	3.7	5.3		
		N	26	25	24	25		
DAY	42	MEAN	82	78*	78*	80 .		
		S.D.	5.4	4.8	5.8	6.9		
		N	26	26	26	25		
DAY	49	MEAN	77	73*	75	79		
		S.D.	5.3	7.6	3.9	8.3		
		N	26	26	26	26		

Statistical key: * = p < 0.05 ** = p < 0.01

Sponsor Study No: 211-TAME-1G

TABLE 11

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

MALES			THE CONS	MPTION (GRAMS/KG/DAY	,	
		GROUP	I	II	III	IV
-	DOSE L	EVEL(MG/M3)	0	2000	10000	20000
DAY	56	MEAN	73	71	72	73
		S.D.	4.4	4.7	4.7	8.2
		N	26	26	26	26
DAY	63	MEAN	74	74	68**	73
		S.D.	5.1	6.0	4.5	5.6
		N	26	26	25	26
DAY	69	MEAN	79	72**	71**	72**
		S.D.	4.6	4.9	5.3	4.9
		N	26	26	26	25

Statistical key: ** = p<0.01

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 12

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF GESTATION FEED CONSUMPTION (GRAMS/KG/DAY)

	GROUP	I	II	III	IV
DOSE LEV	EL(MG/M3) 	0	2000	10000 	20000
DAYS 0 TO 4	MEAN	79	76	80	78
	S.D.	6.8	6.4	10.8	5.4
	N	24	25	24	22
DAYS 4 TO 7	MEAN	80	77	76	78
	S.D.	5.7	5.3	6.4	5.5
	N	24	25	24	22
DAYS 7 TO 14	MEAN	77	74	74	75
	S.D.	5.2	4.7	5.1	5.3
	N	24	25	24	22
DAYS 14 TO 20	MEAN	67	64	65	66
	S.D.	3.8	4.2	5.0	, 5.2
	N	24	25	24	22

Sponsor Study No: 211-TAME-1G

TABLE 13 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF LACTATION FEED CONSUMPTION (GRAMS/KG/DAY)

	GROUP	I	II	III	IV
DOSE LEVE	L(MG/M3)	0	2000	10000	20000
DAYS 1 TO 4	MEAN	105	89**	97	99
	S.D.	14.2	16.9	14.9	18.1
	N	22	24	24	22
DAYS 4 TO 7	MEAN	118	108*	112	110
	s.D.	10.6	13.2	9.9	11.3
	N	22	25	24	22
DAYS 7 TO 14	MEAN	147	137**	141	135**
	S.D.	10.8	15.7	7.9	11.1
	N	22	25	24	22
DAYS 14 TO 21	MEAN	186	175*	175*	170**
	S.D.	13.4	15.2	12.6	15.6
	N	22	25	24	22
DAYS 21 TO 28	MEAN	333	324	318	304**
	S.D.	27.3	32.9	26.8	27.2
	N	19	21	19	19

Statistical key: * = p<0.05 ** = p<0.01

Huntingdon Life Scienc	es 00-4202	Page 76
	211-TAME-1	Final Report
	Summary of Estrous Stages	
	Preface	Table 14

Notes:

Estrous cycles were evaluated for at least 21 days (during the pre-mating period) and up to the day when successful mating occurred. Any periods of pseudopregnancy were excluded from these calculations.

Huntingdon Life Sciences 00-4202 Sponsor Study No. 211-TAME-1G

TABLE 14

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF ESTROUS STAGES

 GROUP DOSE LEVEL (mg/m³)		I 0	II 2000	III 10000	IV 20000
FEMALES EXAMINED	N	26	26	26	26
PRE-MATING					
CYCLE LENGTH (days)	MEAN S.D. N	4.2 0.6 25	4.6 1.1 23	4.2 0.5 25	4.4 0.8 24
MATING					
NUMBER PASSING > 1 ESTRUS WITH	OUT MATING	0	0	0	1
NUMBER OF ANIMALS PREGNANT		24	25	24	23

^aEstrous cycles were evaluated for at least 21 days (during premating) and up to the day when successful mating occurred. Any periods of pseudopreganancy were excluded from these calculations (see also Appendix P).

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 15

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

GROUP III 0 2000 10000 20000 DOSE LEVEL (MG/M3) _____ Females paired with males 26 25 Total number mated 26 100.0 100.0 96.2 100.0 female mating index 용 24 25 24 23 pregnant 96.0 92.0 92.3 96.2 female fertility index 100.0 100.0 100.0 100.0 pregnancy index Males placed with females 26 26 25 25 Total number mated 26 26 25 100.0 96.2 100.0 male mating index 100.0 23 24 with females pregnant male fertility index 92.3 96.2 96.0 92.0 Females with defined day 0 of Gestation N 26 26 25 25 2.2 2.0 2.9 2.7 No. of days until Mating MEAN S.D. 1.31 1.06 1.21 1.42 24 26 24 23 Day 1 to 4 92.0 92.3 100.0 96.0 2 Day 5 to 8 7.7 0.0 4.0 8.0 0 0 0 0 Day 9 to 14 0.0 0.0 0.0 0.0

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 16

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF DELIVERY AND LITTER DATA							
DOSE LEVEL(MG	ROUP /M3)	I 0	11 2000	III 10000	IV 20000		
Females on Study	N	26	26	26	25		
Females Mated Mating Index	N %	26 100.0	26 100.0	25 96.2	25 100.0		
Females Pregnant Female Fertility Index	N %	24 92.3	25 96.2	24 96.0	23 92.0		
Females with Liveborn Gestation Index	N %	24 100.0	25 100.0	24 100.0	23 100.0		
Females Completing Delivery	N %	24 100.0	25 100.0	24 100.0	23 100.0		
with Stillborn Pups	N %	14.2	14.0	4 16.7	1 4.3		
with all Stillborn	N %	0.0	0	0.0	0.0		
Litters with Liveborn, but no Pups Alive							
day 4	N %	1 4.3	0	0.0	0.0		
day 21	N %	1 4.3	0	0.0	0.0		
Duration of Gestation	MEAN S.D. N	22.1 0.41 24	21.9 0.33 25	21.8 0.48 24	22.0 0.47 23		

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 16

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF DELIVERY AND LITTER DATA							
GROU DOSE LEVEL(MG/M:	3)	I 0	11 2000	III 10000	IV 20000		
Litters with Liveborn Pups	N	23	25	24	23		
Pups Delivered (total)	N MEAN S.D.	322 14.0 3.30	361 14.4 2.16	319 13.3 3.00	328 14.3 3.28		
Liveborn Live Birth Index	N %	321 99.7	360 99.7	316 99.1	327 99.7		
Stillborn	N %	10.3	0.3	4 1.3	0.3		
Culled day 4		93	102	75	99		
Liveborn, not culled prior to day 4	N	228	258	241	228		
Pups Dying, Missing, and/or Carday 0	nnibalized N %	0.0	1 0.3	2 0.6	4 1.2		
days 1-4	N %	8 2.5	7 1.9	3 1.0	7 2.1		
days 5-21	N %	1 0.3	2 0.6	1	0.3		
days 0-4	N %	8 2.5	8 2.2	5 1.6	11 3.4		
days 0-21	N %	9 2.8	10 2.8	6 1.9	12 3.7		
Pups Surviving 4 days Viability Index (Litter Mean)	N %	313 97.5	352 98.1	310 98.3	316 96.2		
Pups Surviving 21 days Lactation Index (Litter Mean)	N %	219 99.5	248 99.2	234 99.6	216 99.6		

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 16

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF DELIVERY AND LITTER DATA GROUP I II III IV DOSE LEVEL(MG/M3) 0 2000 10000 20000							
per Litter	MEAN	14.7	15.9	15.6	15.8		
	S.D.	3.09	1.75	2.19	2.53		
Sex Ratio - Male Pups:Tota	ıl Pups						
day 0	N	155	173	154	165		
	%	48.3	48.1	48.9	50.5		
day 21	N	111	122	118	107		
	%	50.7	49.2	50.4	49.5		
Live Pups/Litter							
day 1	MEAN	13.8	14.2	13.0	13.9		
	S.D.	3.46	2.03	2.79	3.60		
	N	23	25	24	23		
day 4 preculling	MEAN	14.2	14.1	12.9	13.7		
	S.D.	2.07	1.96	2.87	3.57		
	И	22	25	24	23		
day 4 postculling	MEAN	10.0	10.0	9.8	9.4*		
	S.D.	0.00	0.00	0.66	1.34		
	N	22	25	24	23		
day 7	MEAN	10.0	10.0	9.8	9.4		
	S.D.	0.21	0.00	0.66	1.34		
	N	22	25	24	23		
day 14	MEAN	10.0	10.0	9.8	9.4*		
	S.D.	0.21	0.20	0.66	1.34		
	N.	22	25	24	23		
day 21	MEAN	10.0	9.9	9.8	9.4		
	S.D.	0.21	0.28	0.68	1.34		
	N	22	25	24	23		
day 28	MEAN	10.0	9.9	9.8	9.4		
	S.D.	0.21	0.44	0.68	1.34		
	N	22	25	24	23		

Statistical key: * = p < 0.05

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 17 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF PUP CLINICAL OBSERVATIONS DURING LACTATION - (frequency/animals) ______ GROUP 2000 10000 20000 0 DOSE LEVEL (MG/M3) ______ DAY 0 to 28 Normal 1524/24 1702/25 1560/24 1500/23 WITHIN NORMAL LIMITS 0/0 0/0 2/2 4/3 FOUND DEAD Gen. Appearance SOFT PROTRUSION - MID ABDOMEN 0/0 1/ 1 0/0 0/0 Dermal-General ______ 0/0 0/0 1/ 1 0/0 LACERATION - RIGHT LOWER DORSAL 0/0 1/1 0/0 0/0 Ocular -----0/0 0/0 3/1 0/0 EYE(S) - APPEAR DAMAGED ENOPHTHALMOS - UNILATERAL 0/0 0/0 0/0 1/ 1 Miscellaneous _____ 1/ 1 0/0 0/0 0/0 TIP OF TAIL MISSING

Sponsor Study No: 211-TAME-1G

TABLE 18

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY

INHALATION REPRODUCTION TOXICITY STUDY IN RATS SUMMARY OF MEAN PUP BODY WEIGHTS (GRAMS)

GROUP DOSE LEVEL(MG/M3)		I O	II 2000	III 10000	IV 20000	
	DOSE TEATT (M	G/M3) 		2000		
lay 1	males	MEAN	7.4	7.3	7.3	7.1
		S.D.	0.54	0.44	0.77	1.00
		N	23	25	24	23
1	females	MEAN	7.1	6.9	7.0	6.7
		S.D.	0.49	0 - 4 4	0.74	1.01
		N	22	25	24	23
1	males+females	MEAN	7.2	7.1	7.2	6.9
		S.D.	0.52	0.45	0.78	0.96
		N	23	25	24	23
day 4	males	MEAN	10.6	10.2	10.4	9.8
	preculling	S.D.	1.05	1.03	1.52	1.59
		N	22	25	24	23
4	females	MEAN	10.1	9.8	10.0	9.3
	preculling	S.D.	0.92	1.00	1.39	1.72
		N	22	25	24	23
4	males+females	MEAN	10.4	10.0	10.2	9.6
	preculling	S.D.	1.03	1.02	1.49	1.62
		N	22	25	24	23
lay 4	males	MEAN	10.6	10.2	10.4	9.8
•	postculling	S.D.	1.09	1.06	1.52	1.56
	_	N	22	25	24	23
4	females	MEAN	10.1	9.8	10.0	9.3
	postculling	S.D.	0.93	1.00	1.41	1.78
		N	22	25	24	23
4	males+females	MEAN	10.4	10.0	10.2	9.6
	postculling	S.D.	1.00	1.02	1.49	1.63
		N	22	25	24	23

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 18 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF MEAN PUP BODY WEIGHTS (GRAMS) III IV GROUP 0 2000 DOSE LEVEL (MG/M3) 10000 20000 day 7 males MEAN 14.9 14.0 14.3 13.9 S.D. 1.33 1.33 1.55 1.92 22 25 24 23 7 females MEAN 14.1 13.4 13.7 13.2 S.D. 1.15 1.41 1.41 2.01 N 22 25 23 24 7 males+females MEAN 14.5 13.7 14.0 13.5 S.D. 1.23 1.35 1.48 1.91 N 22 25 24 23 day 14 males MEAN 26.5 24.9 24.6* 24.2** S.D. 1.82 2.48 2.32 2.82 N 22 25 24 23 14 females MEAN 25.6 24.2 23.9* 23.1** 1.67 2.46 2.19 2.93 S.D. N 22 25 24 `23 23.7** 14 males+females MEAN 26.0 24.6 24.3* 1.68 S.D. 2.42 2.22 2.81 22 25 24 23 N day 21 males MEAN 43.3 39.3* 39.3* 40.1 S.D. 4.21 4.36 4.75 6.11 N 22 25 24 23 21 females MEAN 41.5 38.7 39.1 37.8 S.D. 3.72 4.64 4.84 6.16 22 25 24 23 42.5 39.0* 21 males+females MEAN 39.7 38.5* S.D. 3.87 4.38 4.65 6.02

25

24

23

Statistical key: * = p < 0.05 ** = p < 0.01

N

22

Huntingdon Life Sciences 00-4202

Sponsor Study No: 211-TAME-1G

TABLE 18 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

PAGE 85

			SUMMARY OF MEAN F	PUP BODY WEIGHTS (GRAM	AS)		
	DOSE LEVEL(M	GROUP G/M3)	I 0	II 2000	111 10000	IV 20000	
day 28	males	MEAN S.D.	81.6 5.90	78.0 7.07	77.6 8.25	76.6 10.53	
28	females	N MEAN	22	25	24	23	
20	remares	MEAN S.D. N	75.8 4.63 22	73.3 6.68 25	72.3 7.68 24	70.8 9.04 23	
28	males+females	MEAN	78.8	75.6	75.1	73.6	
		S.D. N	5.12 22	6.60 25	7.66 24	9.36	

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 18

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY
INHALATION REPRODUCTION TOXICITY STUDY IN RATS

GROUP 1 1 11 111 111 1V DOSE LEVEL(MG/M3) 0 2000 2000 day 1- 4 males MEAN 3.2 2.9 3.0 2.7 S.D. 0.77 0.80 1.01 1.08 N 22 25 24 23 females MEAN 3.0 2.9 3.0 2.6 S.D. 0.63 0.73 0.92 1.13 N 22 25 24 23 males+females MEAN 3.1 2.9 3.0 2.7 S.D. 0.70 0.75 0.96 1.10 N 22 25 24 23 day 4- 7 males MEAN 4.2 3.8 3.9 4.1 S.D. 0.63 0.77 0.76 1.01 N 22 25 24 23 females MEAN 4.1 3.6 3.8 3.9 4.1 S.D. 0.63 0.77 0.76 1.01 N 22 25 24 23 females MEAN 4.1 3.6 3.8 3.9 S.D. 0.59 0.77 0.76 0.96 S.D. 0.59 0.77 0.76 0.96 MEAN 4.1 3.6 3.8 3.9 males+females MEAN 4.1 3.6 3.8 3.9 S.D. 0.59 0.77 0.74 0.97 N 22 25 24 23 males+females MEAN 4.1 3.6 3.8 3.9 females MEAN 4.1 3.6 3.8 3.9 S.D. 0.59 0.77 0.74 0.97 N 22 25 24 23 males+females MEAN 4.1 3.7 3.8 4.0 S.D. 0.59 0.76 0.73 0.97 N 22 25 24 23 day 4-21 males MEAN 3.7 29.0* 29.8 29.5* S.D. 3.59 3.85 4.14 5.10 N 22 25 24 23 females MEAN 32.7 29.0* 29.8 29.5* S.D. 3.59 3.85 4.14 5.10 N 22 25 24 23 males+females MEAN 31.4 28.9 29.1 28.5 S.D. 3.41 4.06 4.34 5.02 males+females MEAN 31.4 28.9 29.1 28.5 S.D. 3.41 3.44 4.06 4.34 5.02 males+females MEAN 32.1 28.9* 29.5 29.0* S.D. 3.41 3.84 4.09 4.96			SUMMARY OF PUP BO	DY WEIGHT GAIN GRA	MS	,
S.D. 0.77 0.80 1.01 1.08	DOSE LEVEL (N					
S.D. 0.77 0.80 1.01 1.08						
females	lay 1- 4 males	MEAN	3.2	2.9	3.0	2.7
females		S.D.	0.77	0.80	1.01	1.08
S.D. 0.63 0.73 0.92 1.13 23 25 24 23 23 24 23 25 25 24 23 25 25 24 23 25 25 24 23 25 25 24 23 25 25 24 23 25 25 24 23 25 25 25 24 23 25 25 25 25 25 25 25		N	22	25	24	23
Main S.D. 0.63 0.73 0.92 1.13 2.5 24 23 23 25 24 23 23 25 24 23 23 25 24 23 23 25 24 23 23 25 24 23 23 25 24 23 23 25 24 23 23 25 24 23 23 25 24 23 25 25 24 23 25 25 24 23 25 25 25 25 25 25 25	females	MEAN	3.0	2.9	3.0	2.6
MEAN 3.1 2.9 3.0 2.7			0.63	0.73	0.92	1.13
S.D. 0.70 0.75 0.96 1.10 N						23
S.D. 0.70 0.75 0.96 1.10 N 22 25 24 23 And 4-7 males MEAN 4.2 3.8 3.9 4.1 S.D. 0.63 0.77 0.76 1.01 N 22 25 24 23 And 23 And 24-7 males MEAN 4.1 3.6 3.8 3.9 And 24-7 males MEAN 4.1 3.6 3.8 3.9 And 25	malectfemalec	MEAN	3.1	2.9	3.0	2.7
Mean 4-7 males Mean 4.2 3.8 3.9 4.1 5.0 0.63 0.77 0.76 1.01 N 22 25 25 24 23 Mean 4.1 3.6 3.8 3.9 Mean 6.5 D. 0.59 0.77 0.74 0.97 N 22 25 24 23 Mean 6.5 D. 0.59 0.77 0.74 0.97 N 22 25 24 23 Mean 6.5 D. 0.59 0.76 0.73 0.97 N 22 25 24 23 Mean 6.5 D. 0.59 0.76 0.73 0.97 N 22 25 24 23 Mean 6.5 D. 0.59 0.76 0.73 0.97 N 22 25 24 23 Mean 6.5 D. 0.59 0.76 0.73 0.97 N 22 25 24 23 Mean 6.5 D. 0.59 0.76 0.73 0.97 N 22 25 24 23 Mean 6.5 D. 0.59 0.76 0.73 0.97 Mean 6.5 D. 0.59 0.75 0.75 Mean 6.5 D. 0.59 0.75 0.75 0.75 0.75 Mean 6.5 D. 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.7	marcs+remarcs					
S.D. 0.63 0.77 0.76 1.01 N 22 25 24 23						
S.D. 0.63 0.77 0.76 1.01 N 22 25 24 23 females MEAN 4.1 3.6 3.8 3.9 S.D. 0.59 0.77 0.74 0.97 N 22 25 24 23 males+females MEAN 4.1 3.7 3.8 4.0 S.D. 0.59 0.76 0.73 0.97 N 22 25 24 23 day 4-21 males MEAN 32.7 29.0* 29.8 29.5* S.D. 3.59 3.85 4.14 5.10 N 22 25 24 23 females MEAN 31.4 28.9 29.1 28.5 S.D. N 22 25 24 23 males+females MEAN 31.4 28.9 29.1 28.5 S.D. N 22 25 24 23 males+females MEAN 31.4 4.06 4.34 5.02 N 22 25 24 23 males+females MEAN 32.1 28.9* 29.5 29.0* 3.41 4.06 4.34 5.02 N 22 25 24 23 males+females MEAN 32.1 28.9* 29.5 29.0* 4.96	day 4- 7 males	MEAN	4 2	3.8	3.9	4.1
females MEAN 4.1 3.6 3.8 3.9 S.D. 0.59 0.77 0.74 0.97 N 22 25 24 23 males+females MEAN 4.1 3.7 3.8 4.0 S.D. 0.59 0.76 0.73 0.97 N 22 25 24 23 day 4-21 males MEAN 32.7 29.0* 29.8 29.5* S.D. 3.59 3.85 4.14 5.10 N 22 25 24 23 females MEAN 31.4 28.9 29.1 28.5 S.D. 3.41 4.06 4.34 5.02 N 22 25 24 23 males+females MEAN 32.1 28.9* 29.5 29.0* S.D. 3.41 4.06 4.34 5.02 N 22 25 24 23 males+females MEAN 32.1 28.9* 29.5 29.0* S.D. 3.41 4.06 4.34 5.02 N 22 25 25 24 23 males+females MEAN 32.1 28.9* 29.5 29.0* S.D. 3.41 3.84 4.09 4.96	ay 4- / maies					
S.D. 0.59 0.77 0.74 0.97 N 22 25 25 24 23 males+females MEAN 4.1 3.7 3.8 4.0 S.D. 0.59 0.76 0.73 0.97 N 22 25 24 23 day 4-21 males MEAN 32.7 29.0* 29.8 29.5* S.D. 3.59 3.85 4.14 5.10 N 22 25 24 23 females MEAN 31.4 28.9 29.1 28.5 S.D. 3.41 4.06 4.34 5.02 N 22 25 24 23 males+females MEAN 32.1 28.9* 29.5 29.0* S.D. 3.41 3.84 4.09 4.96						
S.D. 0.59 0.77 0.74 0.97 N 22 25 25 24 23 males+females MEAN 4.1 3.7 3.8 4.0 S.D. 0.59 0.76 0.73 0.97 N 22 25 24 23 day 4-21 males MEAN 32.7 29.0* 29.8 29.5* S.D. 3.59 3.85 4.14 5.10 N 22 25 24 23 females MEAN 31.4 28.9 29.1 28.5 S.D. 3.41 4.06 4.34 5.02 N 22 25 24 23 males+females MEAN 32.1 28.9* 29.5 29.0* S.D. 3.41 3.84 4.09 4.96	females	MEAN	4 1	3 6	3.8	3.9
MEAN 4.1 3.7 3.8 4.0 9.97 N 22 25 25 24 23 MEAN 4.1 3.7 3.8 4.0 9.97 N 22 25 25 24 23 MEAN 4.21 males MEAN 32.7 29.0* 29.8 29.5* S.D. N 22 25 24 23 MEAN 31.4 28.9 29.1 28.5 9.0	remares					
S.D. 0.59 0.76 0.73 0.97 N 22 25 24 23 day 4-21 males MEAN 32.7 29.0* 29.8 29.5* S.D. 3.59 3.85 4.14 5.10 N 22 25 25 24 23 day 4-21 males MEAN 31.4 28.9 29.1 28.5 S.D. 3.41 4.06 4.34 5.02 N 22 25 25 24 23 day 4.06 4.34 5.02 N 22 25 25 24 23 day 4.06 4.34 5.02 N 22 25 25 24 23 day 4.06 day 4						
S.D. 0.59 0.76 0.73 0.97 N 22 25 24 23 day 4-21 males MEAN 32.7 29.0* 29.8 29.5* S.D. 3.59 3.85 4.14 5.10 N 22 25 24 23 females MEAN 31.4 28.9 29.1 28.5 S.D. 3.41 4.06 4.34 5.02 N 22 25 24 23 males+females MEAN 32.1 28.9* 29.5 29.0* S.D. 3.41 3.84 4.09 4.96	malectemalec	MEAN	4 1	3 7	3 8	4.0
N 22 25 24 23 day 4-21 males MEAN 32.7 29.0* 29.8 29.5* S.D. 3.59 3.85 4.14 5.10 N 22 25 24 23 females MEAN 31.4 28.9 29.1 28.5 S.D. 3.41 4.06 4.34 5.02 N 22 25 24 23 males+females MEAN 32.1 28.9* 29.5 29.0* S.D. 3.41 3.84 4.09 4.96	marestemares					
S.D. 3.59 3.85 4.14 5.10 N 22 25 24 23						
S.D. 3.59 3.85 4.14 5.10 N 22 25 24 23 females MEAN 31.4 28.9 29.1 28.5 S.D. 3.41 4.06 4.34 5.02 N 22 25 25 24 23 males+females MEAN 32.1 28.9* 29.5 29.0* S.D. 3.41 3.84 4.09 4.96	larr 4-21 maliae	MEAN	32 7	29 0*	29.8	29.5*
N 22 25 24 23 females MEAN 31.4 28.9 29.1 28.5 S.D. 3.41 4.06 4.34 5.02 N 22 25 24 23 males+females MEAN 32.1 28.9* 29.5 29.0* S.D. 3.41 3.84 4.09 4.96	ay 4-21 mares					
S.D. 3.41 4.06 4.34 5.02 N 22 25 24 23 males+females MEAN 32.1 28.9* 29.5 29.0* S.D. 3.41 3.84 4.09 4.96						
S.D. 3.41 4.06 4.34 5.02 N 22 25 24 23 males+females MEAN 32.1 28.9* 29.5 29.0* S.D. 3.41 3.84 4.09 4.96	females	MEAN	31 4	28 9	29.1	28.5
N 22 25 24 23 males+females MEAN 32.1 28.9* 29.5 29.0* S.D. 3.41 3.84 4.09 4.96	remares					
S.D. 3.41 3.84 4.09 4.96						
S.D. 3.41 3.84 4.09 4.96	malectfemalec	MEAN	32 1	28.9*	29.5	29.0*
	marestremales					
		N	22	25	24	23

Statistical key: * = p<0.05

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 18

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY
INHALATION REPRODUCTION TOXICITY STUDY IN RATS

		GROUP	I	II	III	IV
	DOSE LEVEL(MO	G/M3) 	0 - 	2000	10000 	20000
ay 4-28	males	MEAN	71.0	67.8	67.2	66.7
		S.D.	5.27	6.76	7.66	9.47
		N	22	25	24	23
	females	MEAN	65.7	63.6	62.3	61.5
		S.D.	4.36	6.30	7.26	7.84
		N	22	25	24	23
	males+females	MEAN	68.4	65.6	64.9	64.0
		S.D.	4.67	6.27	7.11	8.26
		N	22	25	24	23
ay 7-14	males	MEAN	11.6	10.9	10.3*	10.3*
		S.D.	1.16	1.81	1.33	1.63
		N	22	25	24	23
	females	MEAN	11.5	10.8	10.1**	9.9**
		S.D.	1.20	1.71	1.46	1.47
		N	22	25	24	23
	males+females	MEAN	11.5	10.9	10.2**	10.1**
		S.D.	1.14	1.73	1.36	1.49
		N	22	25	24	23
ay 7-28	males	MEAN	66.8	64.0	63.3	62.7
		S.D.	4.95	6.40	7.22	8.91
		N	22	25	24	23
	females	MEAN	61.6	60.0	58.6	57.6
		S.D.	3.95	5.96	6.85	7.37
		N	22	25	24	23
	males+females	MEAN	64.2	61.9	61.1	60.0
		S.D.	4.31	5.92	6.71	7.74
		N	22	25	24	23

Statistical key: * = p<0.05 ** = p<0.01

Sponsor Study No: 211-TAME-1G

TABLE 18 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF PUP BODY WEIGHT GAIN -- GRAMS GROUP I ΙV DOSE LEVEL (MG/M3) 0 2000 10000 day 14-21 males MEAN 16.9 14.3* 15.6 15.0 S.D. 2.74 2.23 2.91 3.75 N 22 25 24 23 females MEAN 15.8 14.5 15.2 14.7 S.D. 2.64 2.56 2.97 3.61 22 N 25 24 23 males+females MEAN 16.4 14.4 15.4 14.8 2.60 S.D. 2.30 2.85 3.62 N 22 25 24 23 day 14-28 males MEAN 55.2 53.1 53.0 52.3 S.D. 4.35 5.02 6.33 8.01 N 22 25 24 23 females MEAN 50.2 49.2 48.4 47.7 S.D. 3.27 4.70 5.79 6.44 N 22 25 24 23 males+females MEAN 52.7 51.1 50.8 49.9 S.D. 3.72 4.61 5.78 6.83 N 22 25 24 23 day 21-28 males MEAN 38.3 38.8 37.5 37.3 S.D. 2.79 3.90 3.93 5.13 N 22 25 24 23 females MEAN 34.3 34.7 33.2 33.0 S.D. 2.41 3.37 3.29 3.26 N 22 25 24 23 males+females MEAN 36.3 36.7 35.4 35.0 2.45 S.D. 3.44 3.44 3.81 25 24

Statistical key: * = p<0.05

Sponsor Study No: 211-TAME-1G

TABLE 19 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF PARENTAL NECROPSY OBSERVATIONS GROUP I ΙI III DOSE LEVEL (MG/M3) 2000 0 10000 N MALES 26 26 SKIN N ----ABSCESS N 1 0 0 0 3.8 0.0 0.0 0.0 SCAB 1 0 0 0 3.8 0.0 0.0 0.0 LUNGS DISCOLORED FOCI 4 2 1 1 15.4 7.7 3.8 3.8 KIDNEY N DILATED RENAL PELVIS 2 1 1 7.7 15.4 3.8 3.8 GONADS EPIDIDYMIDES - ABSCESS Ν 0 0 1 1 ક 0.0 0.0 3.8 3.8

Huntingdon Life Sciences 00-4202

Sponsor Study No: 211-TAME-1G

TABLE 19 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

PAGE 90

SUMMARY OF PARENTAL NECROPSY OBSERVATIONS GROUP 1 ΙI III DOSE LEVEL (MG/M3) 0 2000 10000 FEMALES N 26 26 THYMUS DISCOLORED FOCI 0 0 1 0.0 0.0 0.0 4.0 THORACIC CAVITY 0 0 -----FLUID FILLED 1 0.0 0.0 0.0 4.0 LUNGS 3 3 2 DISCOLORED FOCI 3 3 11.5 11.5 7.7 20.0 LIVER 0 1 ----ADHESION N 0 1 0 0.0 3.8 0.0 0.0

Huntingdon Life Sciences 00-4202

Sponsor Study No: 211-TAME-1G

TABLE 19 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

PAGE 91

SUMMARY OF PARENTAL NECROPSY OBSERVATIONS

	GROUP	I	II	III	IV	
DOSE LEVEL (M	G/M3)	0	2000	10000	20000	
FEMALES	N	26	26	26	25	
KIDNEY	N	0	3	0	1	
DILATED RENAL PELVIS	N	0	3	0	1	
DILATED RENAL PELVIS	N 용	0.0	11.5	0.0	4.0	
	6	0.0	11.5	0.0	4.0	
UTERUS	N	0	0	0	1	
CYST(S)	N	0	0	0	1	
	ક	0.0	0.0	0.0	4.0	
OVARY	N	0	0	1	0	
		-	-			
CYST(S)	N	0	0	1	0	
	8	0.0	0.0	3.8	0.0	

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 20 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF PUP NECROPSY OBSERVATIONS						
DOSE LEVEL(M	GROUP G/M3)	I 0	II 2000	III 10000	IV 20000	
Litters Evaluated	N	23	25	24	23	
Pups Evaluated	N	226	261	226	242	
Live	N	225	260	222	241	
Stillborn	N	1	1	4	1	
GROSS EXAM						
Litter Incidence	N	2	3	3	3	
Pup Incidence	N	2	4	3	5	
AUTOLYSIS						
Pup Incidence	N	2	1	1	4	
	용	0.9	0.4	0.4	1.7	
Litter Incidence	N	2	1	1	3	
	ક	8.7	4.0	4.2	13.0	
CANNIBALIZED						
Pup Incidence	N	1	3	2	3	
	8	0.4	1.1	0.9	1.2	
Litter Incidence	N	1	3	2	1	
	ક	4.3	12.0	8.3	4.3	
INTERNAL SEX UNDETERMINED						
Pup Incidence	N	1	2	1	3	
	ક	0.4	0.8	0.4	1.2	
Litter Incidence	N	1	2	1	2	
	ક	4.3 ·	8.0	4.2	8.7	
LUNGS						
Litter Incidence	N	1	3	3	4	
Pup Incidence	N	1	3	4	6	

Sponsor Study No: 211-TAME-1G

TABLE 20 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

		SUMMARY OF PUP	NECROPSY OBSERVATIONS	S		
DOSE LEVEL(N	GROUP MG/M3)	I 0	II 2000	III 10000	IV 20000	
Litters Evaluated	N	23	25	24	23	
Pups Evaluated	N	226	261	226	242	
Live	N	225	260	222	241	
Stillborn	N	1	1	4	1	
LUNG FLOTATION TEST - STII	LLBORN					
Pup Incidence	N	1	1	2	1	
_	ક	0.4	0.4	0.9	0.4	
Litter Incidence	N	1	1	2	1	
	%	4.3	4.0	8.3	4.3	
LUNG FLOTATION TEST - FOUR	ND DEAD					
Pup Incidence	N	0	2	2	5	
	왕	0.0	0.8	0.9	2.1	
Litter Incidence	N	0	2	2	3	
	8	0.0	8.0	8.3	13.0	
STOMACH						
Litter Incidence	N	2	5	8	6	
Pup Incidence	N	2	10	9	8	
		_		-	· ·	
NO MILK IN STOMACH						
Pup Incidence	N	0	3	3	3	
	ક	0.0	1.1	1.3	1.2	
Litter Incidence	N	0	3	3	3	
	왕	0.0	12.0	12.5	13.0	
MILK IN STOMACH						
Pup Incidence	N	1	5	3	2	
	४	0.4	1.9	1.3	0.8	
Litter Incidence	N	1	4	3	2	
	ક	4.3	16.0	12.5	8.7	

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 20

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF PUP NECROPSY OBSERVATIONS IV III 10000 20000 0 DOSE LEVEL (MG/M3) 23 24 23 Litters Evaluated 242 226 N N N 261 226 Pups Evaluated 225 260 241 222 Live 1 4 1 1 Stillborn MILK UNDETERMINED 3 3 2 1 Pup Incidence 1.2 1.3 0.8 0.4 3 2 2 1 N Litter Incidence 8.7 12.5 8.0 4.3 KIDNEY Litter Incidence Pup Incidence M CYSTIC KIDNEY 3 Pup Incidence 0.4 0.0 0.0 1.3 1 2 Litter Incidence

Sponsor Study No: 211-TAME-1G

TABLE 20 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF NECROPSY OBSERVATIONS FOR DEAD PUPS

DOSE LEVEL(GROUP	I 0	II 2000	III 10000	IV 20000
Litters Evaluated	N	2	4	5	5
Pups Evaluated	N	2	5	5	6
GROSS EXAM					
Litter Incidence	N	1	1	0	3
Pup Incidence	N	1	1	0	4
AUTOLYSIS					
Pup Incidence	N	1	1	0	4
	%	50.0	20.0	0.0	66.7
Litter Incidence	N	1	1	0	3
	ક	50.0	25.0	0.0	60.0
CANNIBALIZED					
Pup Incidence	N	0	0	0	2
	8	0.0	0.0	0.0	33.3
Litter Incidence	N	0	0	0	1
	%	0.0	0.0	0.0	20.0
INTERNAL SEX UNDETERMINED)				
Pup Incidence	N	0	1	0	3
	8	0.0	20.0	0.0	50.0
Litter Incidence	N	0	1	0	2
	8	0.0	25.0	0.0	40.0
LUNGS					
Litter Incidence	N	0	2	2	3
Pup Incidence	N	0	2	2	4
LUNG FLOTATION TEST - FOU	ND DEAD				
Pup Incidence	N	0	2	2	4
	8	0.0	40.0	40.0	66.7
Litter Incidence	N	0	2	2	3
	8	0.0	50.0	40.0	60.0

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 20

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF NECROPSY OBSERVATIONS FOR DEAD PUPS

DOSE LEVEL(GROUP MG/M3)	I II 0 2000	III 10000	IV 20000		
Litters Evaluated	N	2	4	5	 5	
Pups Evaluated	N	2	5	5	6	
STOMACH						
Litter Incidence	N	1	4	5	5	
Pup Incidence	N	ī	5	5	6	
NO MILK IN STOMACH						
Pup Incidence	N	0	2	2	2	
	용	0.0	40.0	40.0	33.3	
Litter Incidence	N	0	2	2	2	
	&	0.0	50.0	40.0	40.0	
MILK IN STOMACH						
Pup Incidence	N	1	3	3	1	
	ુ	50.0	60.0	60.0	16.7	
Litter Incidence	N	1	3	3	1	
	olo	50.0	75.0	60.0	20.0	
MILK UNDETERMINED						
Pup Incidence	N	0	0	0	3	
	8	0.0	0.0	0.0	50.0	
Litter Incidence	N	0	0	0	2	
	ક	0.0	0.0	0.0	40.0	

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 20 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF NECROPSY OBSERVATIONS FOR STILLBORN PUPS

	GROUP	I	II	III	IV	
DOSE LEVEL	(MG/M3)	0	2000	10000	20000	
Litters Evaluated	N	1 ^a	1	4	1	
Pups Evaluated	N	1	1	4	1	
<u>-</u> -			_	•	-	
GROSS EXAM						
Litter Incidence	N	1	0	3	0	
Pup Incidence	N	1	0	3	0	
AUTOLYSIS						
Pup Incidence	N	1	0	1	0	
-	용	100.0	0.0	25.0	0.0	
Litter Incidence	N	1	0	1	0	
	8	100.0	0.0	25.0	0.0	
CANNIBALIZED						
Pup Incidence	N	1	0	2	0	
	ક	100.0	0.0	50.0	0.0	
Litter Incidence	N	1	0	2	0	
	8	100.0	0.0	50.0	0.0	
INTERNAL SEX UNDETERMINE)					
Pup Incidence	N	1	0	1	0	
	ક	100.0	0.0	25.0	0.0	
Litter Incidence	N	1	0	1	0	
	8	100.0	0.0	25.0	0.0	
LUNGS						
Litter Incidence	N	-		_	_	
Pup Incidence	N N	1	1 1	2	1	
rup incidence	IN	1	ı	2	1	
LUNG FLOTATION TEST - STI						
Pup Incidence	N	1	1	2 ^b	1	
	ક	100.0	100.0	50.0	100.0	
Litter Incidence	N	1	1	2	ı	
	%	100.0	100.0	50.0	100.0	

^aNumber of litters evaluated does not include the litter from female #1606 due to postpartum death.

 $^{^{\}mathrm{b}}\mathrm{Lung}$ floatation test could not be performed on 2 pups because they were cannibalized.

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 20 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF NECROPSY OBSERVATIONS FOR STILLBORN PUPS

DOSE LEVEL(GROUP MG/M3)	I 0	II 2000	III 10000	IV 20000
Litters Evaluated	N	1	1	4	1
Pups Evaluated	N	1	ī	4	ı
STOMACH					
Litter Incidence	N	1	1	4	1
Pup Incidence	N	1	1	4	1
NO MILK IN STOMACH					
Pup Incidence	N	0	1	1	1
	%	0.0	100.0	25.0	100.0
Litter Incidence	N	0	1	1	1
	8	0.0	100.0	25.0	100.0
MILK UNDETERMINED					
Pup Incidence	N	1	0	3	0
	8	100.0	0.0	75.0	0.0
Litter Incidence	N	1	0	3	0
	용	100.0	0.0	75.0	0.0

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 20

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF NECROPSY OBSERVATIONS FOR CANNIBALIZED PUPS

	GROUP	I	II	 III	 IV	
DOSE LEVEL(0	2000	10000	20000	
Litters Evaluated	N	0	3	0	1	
Pups Evaluated	N N	0	3	o	1	
GROSS EXAM						
Litter Incidence	N	0	3	0	1	
Pup Incidence	N	0	3	0	1	
CANNIBALIZED						
Pup Incidence	N		3		1	
	% 		100.0		100.0	
Litter Incidence	N %		100.0		100.0	
INTERNAL SEX UNDETERMINED)					
Pup Incidence	N		1		0	
	१		33.3		0.0	
Litter Incidence	N		1		0	
	ફ		33.3		0.0	
LUNGS						
Litter Incidence	N	0	0	0	1	
Pup Incidence	N	0	0	0	1	
LUNG FLOTATION TEST - FOU	JND DEAD					
Pup Incidence	N		0		1	
	8		0.0		100.0	
Litter Incidence	N %		0		100.0	

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 20 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF NECROPSY OBSERVATIONS FOR CANNIBALIZED PUPS

DOSE LEVEL(GROUP	I	II 2000	III 10000	IV 20000	
) LAVAL ACOL	, PIG / PIS /		2000		20000	
Litters Evaluated	N	0	3	0	1	
Pups Evaluated	N	0	3	0	1	
STOMACH						
Litter Incidence	N	0	3	0	1	
Pup Incidence	N	0	3	0	1	
MILK IN STOMACH						
Pup Incidence	N		1		1	
	8		33.3		100.0	
Litter Incidence	N		1		1	
	%		33.3		100.0	
MILK UNDETERMINED						
Pup Incidence	N		2		0	
	ક		66,7		0.0	
Litter Incidence	N		2		0	
	ક		66.7		0.0	

Huntingdon Life Sciences 00-4202

Sponsor Study No: 211-TAME-1G

TABLE 20

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY
INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF NECROPSY OBSERVATIONS FOR CULLED PUPS

DOSE LEVEL	GROUP (MG/M3)	0 0	11 2000	III 10000	IV 20000
Litters Evaluated	N	22	23	18	19
Pups Evaluated	N	93	102	75	99
STOMACH					
Litter Incidence	N	0	1	0	0
Pup Incidence	N	0	1	0	0
MILK IN STOMACH					
Pup Incidence	N	0	1	0	0
	용	0.0	1.0	0.0	0.0
Litter Incidence	N	0	1	0	0
	8	0.0	4.3	0.0	0.0

Sponsor Study No: 211-TAME-1G

TABLE 20 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF NECROPSY OBSERVATIONS FOR WEANLING PUPS

DOSE LEVEL	GROUP MG/M3)	I 0	II 2000	10000	IV 20000
Litters Evaluated	N	22	25	24	23
Pups Evaluated	N	130	150	142	135
KIDNEY					
Litter Incidence	N	2	0	0	1
Pup Incidence	N	3	0	0	1
M CYSTIC KIDNEY					
Pup Incidence	N	3	0	0	1
-	ક	2.3	0.0	0.0	0.7
Litter Incidence	N	2	0	0	1
	ક	9.1	0.0	0.0	4.3

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 21 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF ABSOLUTE ORGAN WEIGHTS

Males			ORGAN WEIGHTS		
	GROUP	I	II	III	IV
DOSE LEVEL	(MG/M3)	0	2000	10000	20000
INAL BODY WEIGHT g	MEAN	549	547	546	536
	S.D.	41.8	46.3	61.6	53.4
	N	26	26	26	26
IVER g	MEAN	19.212	19.215	20.459	23.036**
	S.D.	2.2868	2.0246	2.5527	3.2028
	N	26	26	26	26
NGS g	MEAN	1.8639	1.8484	1.8924	1.8637
	S.D.	.19488	.16416	.21613	.17659
	N	26	26	26	26
RAIN g	MEAN	2.2095	2.1811	2.2580	2.1912
	S.D.	.11089	.11787	.13539	.10143
	N	26	26	26	26
PLEEN g	MEAN	0.8242	0.7759	0.8029	0.8357
	S.D.	.11078	.10606	.12719	.16116
	N	26	26	26	26
IDNEYS g	MEAN	4.1439	4.4490	4.8369**	5.0590**
	S.D.	.38270	.42572	. 52852	.58894
	N	26	26	26	26
ROSTATE g	MEAN	1.1776	1.2346	1.2936	1.2509
	S.D.	.21447	.23602	.32424	.23066
	N	26	26	26	26
EM.VES & CO.GL. g	MEAN	1.9053	2.1206	2.0182	2.0796
_	S.D.	.41974	.39892	.39788	.31370
	N	26	26	26	26

Statistical key: ** = p<0.01

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 21 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF ABSOLUTE ORGAN WEIGHTS

AALES					
	GROUP	I	11	III	IV
DOSE LEVEL(MG/M3)		0	2000	10000	20000
ADRENALS q	MEAN	0.0601	0.0607	0.0652	0.0653
3	S.D.	.00639	.01029	.01049	.01107
	N	26	26	26	26
PITUITARY g	MEAN	0.0129	0.0128	0.0123	0.0125
	S.D.	.00314	.00218	.00280	.00250
	N	26	26	26	26
TESTIS - LEFT g	MEAN	1.7202	1.7296	1.7010	1.7136
	S.D.	.12969	.12945	.14548	.14755
	N	26	26	26	26
TESTIS - RIGHT g	MEAN	1.7335	1.7373	1.7098	1.7338
	S.D.	.13481	.12689	.14464	.14980
	N	26	26	26	26
ESTES g	MEAN	3.4374	3.4607	3.4078	3.4366
	S.D.	.24845	.25209	. 27997	.29332
	N	26	26	26	26
EPIDIDYMIS LEFT g	MEAN	0.7376	0.7603	0.7543	0.7366
	S.D.	.06945	.07334	.09068	.10791
	N	26	26	26	26
EPIDIDYMIS RIGHT g	MEAN	0.7366	0.7580	0.7842	0.7287
	S.D.	.08158	.06256	.16662	.06452
	N	26	26	26	26
EPIDIDYMIDES g	MEAN	1.4696	1.5116	1.5249	1.4600
	S.D.	.15039	.12979	.21216	.12979
	N	26	26	26	26

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 21 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF ABSOLUTE ORGAN WEIGHTS FEMALES

	GROUP	ı	II	III	IV
DOSE LEVEL(MG/M3)		0	2000	10000	20000
INAL BODY WEIGHT q	MEAN	330	333		
TIMAL BODI WEIGHT 9	S.D.	23.2	25.5	326 25.5	332
	N	22	25.5	25.5 24	22.1 23
	**	22	25	24	23
IVER g	MEAN	14.783	14.573	14.434	15.496
	S.D.	1.8421	2.1092	2.0334	1.9595
	N	22	25	24	23
LUNGS g	MEAN	1.5005	1.5142	1.4820	1.5328
-	S.D.	.13579	.11407	.18384	.14834
	N	22	25	24	23
BRAIN g	MEAN	1.9710	1.9924	1.9847	1.9608
	S.D.	.09218	.07517	.10169	.09417
	N	22	25	24	23
SPLEEN g	MEAN	0.6030	0.6273	0.5793	0.5664
	S.D.	.06944	.10630	.07477	.05824
	N	22	25	24	23
KIDNEYS g	MEAN	2.7348	2.8034	2.7656	3.0152**
	S.D.	.24674	.24187	.16995	.31057
	N	22	25	24	23
TERUS/OVIDUCTS g	MEAN	0 6061	0.5010	0. 60.00	
JIEROS/OVIDUCTS G	MEAN S.D.	0.6061	0.5919	0.6399	0.5676
	N.D.	.15937 22	.17887	.20901	.12885
	IA	22	25	24	23
ADRENALS g	MEAN	0.0743	0.0738	0.0684	0.0739
	S.D.	.01065	.01056	.00704	.00783
	N	22	25	24	23

Statistical key: ** = p<0.01

OVARIES g

Huntingdon Life Sciences 00-4202 PAGE 106

Sponsor Study No: 211-TAME-1G

TABLE 21 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF ABSOLUTE ORGAN WEIGHTS FEMALES I IV GROUP ΙI III 0 2000 10000 DOSE LEVEL (MG/M3) 20000 0.0151 0.0153 0.0154 PITUITARY g MEAN 0.0154 S.D. .00261 .00233 .00284 .00203 N 25 0.0529 MEAN 0.0539 0.0484 0.0540 OVARY LEFT g S.D. .01067 .00998 .00976 .00848 N 22 25 24 23 OVARY RIGHT g MEAN 0.0562 0.0557 0.0850 0.0522

.00831

25

0.1090

.01207

.15888

0.1329

.16199

.00754

0.1043

.01556

.01079

0.1066

.01480

No statistically significant differences

S.D.

MEAN

S.D.

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 21 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF ORGAN WEIGHT TO BODY WEIGHT RATIO MALES

	GROUP	I	II	III	IV
DOSE LEVEL(MG/M3)		0	2000	10000	20000
INAL BODY WEIGHT q	MEAN	549	547	546	536
ū	S.D.	41.8	46.3	61.6	53.4
	N	26	26	26	26
LIVER Ratio	MEAN	0.0349	0.0351	0.0375*	0.0431**
	S.D.	.00259	.00223	.00254	.00452
	N	26	26	26	26
UNGS Ratio	MEAN	0.0034	0.0034	0.0035	0.0035
	S.D.	.00032	.00029	.00034	.00030
	N	26	26	26	26
BRAIN Ratio	MEAN	0.0040	0.0040	0.0042	0.0041
	S.D.	.00031	.00036	.00049	.00028
	N	26	26	26	26
PLEEN Ratio	MEAN	0.0015	0.0014	0.0015	0.0016
	S.D.	.00018	.00017	.00024	.00027
	N	26	26	26	26
KIDNEYS Ratio	MEAN	0.0075	0.0081*	0.0089**	0.0095**
	S.D.	.00052	.00059	.00095	.00101
	N	26	26	26	26
PROSTATE Ratio	MEAN	0.0022	0.0023	0.0024	0.0024
	S.D.	.00042	.00041	.00055	.00049
	N	26	26	26	26
SEM.VES & CO.GL. Ratio	MEAN	0.0035	0.0039	0.0037	0.0039
	S.D.	.00071	.00075	.00078	.00065
	N	26	26	26	26

Statistical key: * = p<0.05 ** = p<0.01

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 21 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF ORGAN WEIGHT TO BODY WEIGHT RATIO

	GROUP	I	II	III	IV
DOSE LEVEL(MG/M3)		0	2000	10000	20000
ADRENALS Ratio	MEAN	0.0001	0.0001	0.0001	0.0001*
	S.D.	.00001	.00002	.00002	.00001
	N	26	26	26	26
TTUITARY Ratio	MEAN	0.0000	0.0000	0.0000	0.0000
	S.D.	.00001	.00000	.00000	.00000
	N	26	26	26	26
TESTIS - LEFT Ratio	MEAN	0.0031	0.0032	0.0032	0.0032
	S.D.	.00026	.00023	.00046	.00036
	N	26	26	26	26
TESTIS - RIGHT Ratio	MEAN	0.0032	0.0032	0.0032	0.0033
	S.D.	.00028	.00026	.00043	.00038
	N	26	26	26	26
ESTES Ratio	MEAN	0.0063	0.0064	0.0063	0.0065
	S.D.	.00052	.00049	.00086	.00073
	N	26	26	26	26
EPIDIDYMIS LEFT Ratio	MEAN	0.0013	0.0014	0.0014	0.0014
	S.D.	.00012	.00017	.00019	.00025
	N	26	26	26	26
EPIDIDYMIS RIGHT Ratio	MEAN	0.0013	0.0014	0.0014	0.0014
	S.D.	.00013	.00014	.00028	.00013
	N	26	26	26	26
EPIDIDYMIDES Ratio	MEAN	0.0027	0.0028	0.0028	0.0027
	S.D.	.00026	.00029	.00039	.00030
	N	26	26	26	26

Statistical key: * = p<0.05

Huntingdon Life Sciences 00-4202 PAGE 109

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 21 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF ORGAN WEIGHT TO BODY WEIGHT RATIO

	GROUP	I	II	111	IV
DOSE LEVEL(MG/M3)	0	2000	10000 2	
FINAL BODY WEIGHT g	MEAN	330	333	326	332
	S.D.	23.2	25.5	25.5	22.1
	N	22	25	24	23
IVER Ratio	MEAN	0.0447	0.0437	0.0442	0.0467
	S.D.	.00453	.00457	.00468	.00590
	N	22	25	24	23
UNGS Ratio	MEAN	0.0046	0.0046	0.0045	0.0046
	S.D.	.00054	.00032	.00045	.00051
	N	22	25	24	23
RAIN Ratio	MEAN	0.0060	0.0060	0.0061	0.0059
	S.D.	.00050	.00044	.00042	.00039
	N	22	25	24	23
PLEEN Ratio	MEAN	0.0018	0.0019	0.0018	0.0017
	S.D.	.00020	.00035	.00021	.00021
	N	22	25	24	23
IDNEYS Ratio	MEAN	0.0083	0.0084	0.0085	0.0091**
	S.D.	.00087	.00046	.00061	.00103
	N	22	25	24	23
TERUS/OVIDUCTS Ratio	MEAN	0.0019	0.0018	0.0020	0.0017
	S.D.	.00056	.00062	.00067	.00045
	N	22	25	24	23
DRENALS Ratio	MEAN	0.0002	0.0002	0.0002	0.0002
	S.D.	.00003	.00003	.00002	.00002
	N	22	25	24	23

Statistical key: ** = p<0.01

PAGE 110

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 21

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF ORGAN WEIGHT TO BODY WEIGHT RATIO

	GROUP	I	II	III	IV
DOSE LEVE	EL(MG/M3)	0	2000	10000	20000
ITUITARY Ratio	MEAN	0.0000	0.0000	0.0000	0.0000
	S.D.	.00001	.00001	.00001	.00001
	N	22	25	24	23
VARY LEFT Ratio	MEAN	0.0002	0.0002	0.0001	0.0002
	S.D.	.00003	.00002	.00003	.00003
	N	22	25	24	23
ARY RIGHT Ratio	MEAN	0.0002	0.0002	0.0003	0.0002
	S.D.	.00003	.00003	.00053	.00002
	N	22	25	24	23
VARIES Ratio	MEAN	0.0003	0.0003	0.0004	0.0003
	S.D.	.00005	.00004	.00054	.00005
	N	22	25	24	23

Huntingdon Life Sciences 00-4202 PAGE 111

Sponsor Study No: 211-TAME-1G

TABLE 21 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF ORGAN WEIGHT TO BRAIN WEIGHT RATIO MALES 1 DOSE LEVEL (MG/M3) 0 2000 10000 20000 8.6898 LIVER Ratio MEAN 8.8172 9.0663 10.504** S.D. .87246 .89904 1.0666 1.2898 N 26 26 26 26 LUNGS Ratio MEAN 0.8449 0.8486 0.8376 0.8505 S.D. .09092 .07556 .07517 .07091 N 26 26 SPLEEN Ratio MEAN 0.3732 0.3567 0.3561 0.3815 S.D. .04712 .05134 .05643 .07294 N 26 26 26

KIDNEYS Ratio MEAN 1.8758 2.0424* 2.1451** 2.3081** .24277 S.D. .14639 .19784 .22582 N 26 26 PROSTATE Ratio MEAN 0.5335 0.5655 0.5730 0.5714 .09584 S.D. .09720 .13530 .10419 26 N 26 26 26 SEM.VES & CO.GL. Ratio MEAN 0.8628 0.9703 0.8915 0.9493 S.D. .18347 .16355 .15681 .13863 N 26 ADRENALS Ratio MEAN 0.0272 0.0278 0.0290 0.0298 S.D. .00296 .00453 .00506 .00450 N 26 26 26

0.0058

.00092

0.0055

.00113

0.0057

.00105

0.0058

.00144

Statistical key: * = p<0.05 ** = p<0.01

MEAN

S.D.

PITUITARY Ratio

Huntingdon Life Sciences 00-4202 PAGE 112

Sponsor Study No: 211-TAME-1G

TABLE 21 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF ORGAN WEIGHT TO BRAIN WEIGHT RATIO MALES

	GROUP	I	II	III	IV
DOSE LEVEL()	MG/M3) 	0 	2000	10000	20000
ESTIS - LEFT Ratio	MEAN	0.7794	0.7949	0.7558	0.7829
	S.D.	.05984	.07053	.07942	.07017
	N	26	26	26	26
ESTIS - RIGHT Ratio	MEAN	0.7852	0.7984	0.7597	0.7926
	S.D.	.05834	.06944	.07864	.07539
	N	26	26	26	26
TES Ratio	MEAN	1.5573	1.5905	1.5140	1.5706
	S.D.	.11070	.13821	.15226	.14367
	N	26	26	26	26
PIDIDYMIS LEFT Ratio	MEAN	0.3342	0.3494	0.3343	0.3373
	S.D.	.03107	.03789	.03715	.05820
	N	26	26	26	26
PIDIDYMIS RIGHT Ratio	MEAN	0.3335	0.3478	0.3470	0.3326
	S.D.	.03353	.02507	.06730	.02629
	N	26	26	26	26
PIDIDYMIDES Ratio	MEAN	0.6656	0.6939	0.6752	0.6674
	S.D.	.06420	.05910	.08271	.06666
	N	26	26	26	26

PAGE 113

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

TABLE 21 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF ORGAN WEIGHT TO BRAIN WEIGHT RATIO

	GROUP	I	II	III	IV
DOSE LEVEL	(MG/M3)	0	2000	10000	20000
JVER Ratio	MEAN	7.5084	7.3053	7.2627	7.9286
	S.D.	.94603	.95934	.87340	1.1544
	N	22	25	24	23
JNGS Ratio	MEAN	0.7639	0.7604	0.7461	0.7820
	S.D.	.08726	.05665	.07990	.07071
	N	22	25	24	23
PLEEN Ratio	MEAN	0.3065	0.3155	0.2929	0.2893
	S.D.	.03743	.05716	.04343	.03144
	N	22	25	24	23
IDNEYS Ratio	MEAN	1.3890	1.4070	1.3943	1.5440**
	S.D.	.12749	.10792	.06952	.20815
	N	22	25	24	23
TERUS/OVIDUCTS Ratio	MEAN	0.3086	0.2976	0.3238	0.2899
	S.D.	.08412	.09179	.10850	.07003
	N	22	25	24	23
DRENALS Ratio	MEAN	0.0378	0.0371	0.0345*	0.0377
	S.D.	.00547	.00524	.00345	.00360
	N	22	25	24	23
ITUITARY Ratio	MEAN	0.0077	0.0077	0.0078	0.0079
	S.D.	.00133	.00117	.00143	.00116
	N	22	. 25	24	23
VARY LEFT Ratio	MEAN	0.0269	0.0270	0.0244	0.0275
	S.D.	.00549	.00383	.00485	.00461
	N	22	25	24	23

Statistical key: * = p < 0.05 ** = p < 0.01

Huntingdon Life Sciences 00-4202

Sponsor Study No: 211-TAME-1G

TABLE 21

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

PAGE 114

SUMMARY OF ORGAN WEIGHT TO BRAIN WEIGHT RATIO

	GROUP	I	ΙΙ	III	IV
DOSE LEVE	L(MG/M3)	0	2000	10000	20000
VARY RIGHT Ratio	MEAN	0.0285	0.0280	0.0429	0.0266
	S.D.	.00538	.00421	.08049	.00356
	N	22	25	24	23
VARIES Ratio	MEAN	0.0541	0.0547	0.0670	0.0531
	S.D.	.00729	.00530	.08206	.00707
	N	22	25	24	23

Huntingdon Life Sciences 00-4202 PAGE 115

Sponsor Study No: 211-TAME-1G

TABLE 22 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF PUP ORGAN WEIGHT DATA PUP ORGAN WEIGHTS IN GRAMS

	GROUP	I	II	III	IV
DOSE LEVEI		0	2000	10000	20000
MIA	MEAN	1.557	1.533	1.535	1.515
	S.D.	0.0538	0.0541	0.0759	0.0774
	N	22	25	24	23
of Male Pups	MEAN	1.582	1.552	1.559	1.547
Of Male Pups	S.D.	0.0629	0.0642	0.0768	0.0897
	N.D.	22	25	24	23
of Female Pups	MEAN	1.532	1.513	1.512	1.483
or remare rups	S.D.	0.0672	0.0575	0.0904	0.0882
	n	22	25	24	23
OT HIDAY	MEAN	0.306	0.313	0.298	0.290
EEN	S.D.	0.0497	0.0410	0.0376	0.0483
	N.	22	25	24	23
of Mala Rung	MEAN	0.324	0.329	0.315	0.306
of Male Pups	S.D.	0.0500	0.0563	0.0495	0.0451
	N. N.	22	25	24	23
of Demale Dung	MEAN	0.288	0.298	0.281	0.275
of Female Pups	S.D.	0.0680	0.0484	0.0379	0.0606
	S.D. N	22	25	24	23
	MEAN	0.371	0.343	0.360	0.349
YMUS	S.D.	0.0404	0.0413	0.0622	0.0581
	N. N.	22	25	24	23
S. Malla Propa	MEAN	0.359	0.337	0.366	0.360
of Male Pups	S.D.	0.0547	0.0595	0.0730	0.0703
	S.D. N	22	25	24	23
	N	22			
of Female Pups	MEAN	0.384	0.350	0.354	0.338
	S.D.	0.0468	0.0503	0.0641	0.0738
	N	22	25	24	23

Huntingdon Life Sciences 00-4202 PAGE 116

Sponsor Study No: 211-TAME-1G

TABLE 22 GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF PUP ORGAN WEIGHT DATA PUP ORGAN WEIGHT TO BODY WEIGHT RATIO

	GROUP	I	II	III	IV
DOSE LEVE	L(MG/M3)	0	2000	10000	20000
RAIN	MEAN	1.969	2.064	2.080	2.077
KAIN	S.D.	0.1141	0.1942	0.1979	0.2425
	n	22	25	24	23
of Male Pups	MEAN	1.931	2.022	2.064	2.005
or hare rape	S.D.	0.1264	0.2175	0.2577	0.2040
	N	22	25	24	23
of Female Pups	MEAN	2.007	2.105	2.097	2.149
	S.D.	0.1472	0.1978	0.1989	0.3085
	N	22	25	24	23
PLEEN	MEAN	0.385	0.418	0.401	0.393
	S.D.	0.0536	0.0489	0.0415	0.0528
	N	22	25	24	23
of Male Pups	MEAN	0.395	0.424	0.413	0.396
-	S.D.	0.0589	0.0589	0.0532	0.0618
	N	22	25	24	23
of Female Pups	MEAN	0.374	0.412	0.388	0.389
	S.D.	0.0702	0.0637	0.0411	0.0546
	N	22	25	24	23
IYMUS	MEAN	0.468	0.459	0.480	0.470
	S.D.	0.0355	0.0345	0.0486	0.0526
	N	22	25	24	23
of Male Pups	MEAN	0.435	0.435	0.475	0.462
_	S.D.	0.0480	0.0617	0.0627	0.0696
	N	22	25	24	23
of Female Pups	MEAN	0.500	0.484	0.485	0.478
_	S.D.	0.0488	0.0611	0.0569	0.0633
	N	22	25	24	23

Huntingdon Life Sciences	
--------------------------	--

00-4202 211-TAME-1G

Page 117 Final Report

Lesion Incidence Summary	
with Expanded Severity Levels	
Preface	Table 23

Key to Abbreviations

GI Gland

NAD No abnormal diagnoses =

Controls (Group I) Ctls

Oviducts and Fallopian Tubes Oviducts/Fallop =

Corresponding exposure levels for each group were as follows:

 0 mg/m^3

Group 1 -Group 2 -Group 3 -2000 mg/m³ 10000 mg/m³ 20000 mg/m³ Group 4 -

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats

Incidence Summary of Microscopic Findings with Severity Levels All Animals

• • • • • • • • • • • • • • • • • • • •				An:	i m a 1	s	Affec	tec		
Controls from group(s): 1	nimal sex:		Mal	e s		1	F	e m a	ıle	s
Dos	sage group:	Ctls	2	3	4	İ	Ctls	2	3	4
Tissues With Diagnoses No.	in group:	26	0	0	26	İ	10	0	0	10
Adrenal Glands	examined:	10	0	0	10		10	0	0	10
	Nad>	10	0	0	10	1	10	0	0	8
	Minimal>	0	0	0	0	ĺ	0	0	0	1
	Slight>	0	0	0	0	i	0	0	0	1
	Observed:	0	0	0	0	Ì	0	0	0	2
BrainNumber	examined:	10	0	0	10	1	10	0	0	10
Coagulating Gl	examined:	26	0	0	26	ļ				
	Nad>	25	0	0	24	1				
	Minimal>	1	0	0	0	- 1				
	Slight>	.0	0	0	2	İ				
Total Incidence of Finding	Observed:	1	0	0	2	j				
Left EpididymisNumber	examined:	0	0	0	1	1	0	0	0	0
	Present>	0	0	0	1		0	0	0	0
	g Observed:	0	0	0	1	ĺ	0	0	0	0
Right Epididymis	examined:	26	0	0	25	1				
	Nad>	26	0	0	24					
	Minimal>	0	0	0	1	ĺ				
	g Observed:	0	0	0	1	ĺ				
Kidneys	examined:	10	0	0	10	1	10	0	0	10 .
-EPITHELIUM-EOSINOPHILIC/HYALINE GRANULES	Nad>	10	^	^	٥	1	10	0	۸	1.0
	Nau> Minimal>	10 0	0	0	0 1	l I	10 0	0	0	10 0
	Slight>	0	0	0	6			0	0	0
	_			-			0			
Motol Incidence of Bindin	Moderate>	0	0	0	3		0	0	0	0
	g Observed:	0	0	0	10		0	0	0	0

29-Apr-04; 14:18 Huntingdon Life Sciences 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats

Incidence Summary of Microscopic Findings with Severity Levels $\hbox{ All Animals }$

				Ani	i mal	s A	ffec	ted		
Controls from group(s): 1	Animal sex:		Mal			1	F	e m a	l e	s
Colletois from group(s). I	Dosage group:	Ctls	2	3	4	į	Ctls	2	3	4
Tissues With Diagnoses	No. in group:	26	0	0	26 _	<u> </u>	10	0	0	_10
Kidneys	Number examined:	10	0	0	10		10	0	0	10
	Nad>	8	0	0	0		10	0	0	9
	Minimal>	1	0	0	4		0	0 0	0	1
	Slight>	1	0	0	6		0	0	0	0
	Finding Observed:	2	0	0	10	1	0	0	0	1
CORTEX: INTERSTITIAL MONONUCLEAR CELL INFIL							•		•	0
	Nad>	7	0	0	2		9	0	0	8
	Minimal>	3	0	0	7		1	0	0	2
	Slight>	0	0	0	1	\	0	0	0	0 2
	Finding Observed:	3	0	0	8	ı	1	U		2
CORTEX/CORTICO-MEDULLARY JUNCTION: TUBULAR -CASTS	LUMENS- GRANULAR									
-CA515	Nad>	10	0	0	. 8		10	0	0	10
	Minimal>	0	0	0	2	j	0	0	0	0
Total Incidence of	Finding Observed:	0	0	0	2	İ	0	0	0	0
MEDULLA: TUBULAR LUMEN(S)-EOSINOPHILIC MATE	ERIAL									
	Nad>	10	0	0	5	ļ	10	0	0	9
	Minimal>	0	0	0	5	1	0	0	0	0
	Slight>	0	0	0	0	l	0	0	0	1
Total Incidence of	Finding Observed:	0	0	0	5	ı	0	0	0	1
CORTEX/CORTICO-MEDULLARY JUNCTION: MINERAL	DEPOSIT(S)									_
	Nad>	9	0	0	10	1	8	0	0	8
	Minimal>	1	0	0	0	!	2	0	0	1
	Slight>	0	0	0	0		0	0	0	1
Total Incidence o	f Finding Observed:	1	0	0	0		2	0	0	2

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats

Incidence Summary of Microscopic Findings with Severity Levels All Animals

								-		
Controls from group(s): 1 Animal sex:		Mal		imal	S A	ffec F				
Dosage group:	Ctls	2	. e s	4	i i	Ctls	2	3	4	
Tissues With Diagnoses No. in group:	26	0	0	26	-	10	0	0	10	
Kidneys	10	0	0	10		10	0	0	10	
Nad>	9	0	0	8		10	0	0	9	
Minimal>	0	0	0	0	į	0	0	0	1	
Slight>	1	0	0	2	Ì	0	0	0	0	
	1	0	0	2	Ì	0	0	0	1	
CORTICAL TUBULAR LUMENS: EOSINOPHILIC MATERIAL										
Nad>	10	0	0	10		10	0	0	9	
Slight>	0	0	0	0	1	0	0	0	1	
	0	0	0	0	I	0	0	0	1	
LiverNumber examined: MONONUCLEAR CELL INFILTRATES	10	0	0	10		10	0	0	10	
Nad>	9	0	0	7	1	8	0	0	5	
Minimal>	1	0	0	3		2	0	0	5	
	1	0	0	3	1	2	0	0	5	
LungsNumber examined: ALVEOLAR/INTRAALVEOLAR MACROPHAGES	10	0	0	10	1	10	0	0	10	
Nad>	8	0	0	7	1	10	0	0	8	
Minimal>	2	0	0	2	ĺ	0	0	0	2	
Slight>	0	0	0	1	İ	0	0	0	0	
	2	0	0	3		0	0	0	2	
ATELECTASIS										
Nad>	10	0	0	10	1	9	0	0	9	
Minimal>	0	0	0	0		1	0	0	0	
Moderate>	0	0	0	0		0	0	0	1	
	0	0	0	0	l	1	0	0	1	

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats

Incidence Summary of Microscopic Findings with Severity Levels ${\tt All\ Animals}$

				An.	i m a]	Ls	Affec	t e d		
Controls from group(s): 1	nimal sex:		Mal	e s			F	e m a	l e	S
Dosa	age group:	Ctls	2	3	4	ĺ	Ctls	2	3	4
Tissues With Diagnoses No.	in group:	26	0	0	26		10	0	0	10
LungsNumber OSSEOUS METAPLASIA	examined:	10	0	0	10	[10	0	0	10
	Nad>	9	0	0	10	i	10	0	0	10
	Minimal>	1	0	0	0	i	0	0	0	0
	Observed:	1	0	0	0	İ	0	0	0	0
OvariesNumber	examined:					1	10	0	0	10
Oviducts/FallopNumber	examined:					-	10	0	0	10
Pituitary glandNumber	examined:	10	0	0	10	1	10	0	0	10
ProstateNumber	examined:	26	0	0	26	1				
Seminal vesicles	examined:	26	0	0	26					
	Nad>	26	0	0	25					
	Minimal>	0	0	0	1	Ì				
Total Incidence of Finding	Observed:	0	0	0	1	j.				
SkinNumber EPITHELIUM: SQUAMOUS CELL HYPERPLASIA	examined:	1	0	0	0	١	0	0	0	0
	Moderate>	1	0	0	0	- 1	0	0	0	0
	Observed:	1	0	0	0	- 1	0	0	0	0
EPITHELIUM: HYPERKERATOSIS										
	Slight>	1	0	0	0	- 1	0	0	0	0
Total Incidence of Finding	Observed:	1	0	0	0	1	0	0	0	0
EPITHELIUM: ULCER(S)										
	Marked>	1	0	0	0	ļ	0	0	0	0
	Observed:	1	0	0	0		0	0	0	0

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats

Incidence Summary of Microscopic Findings with Severity Levels All Animals

					An:	imals	A	ffec	t e d		
Controls from group(s): 1	Ar	Animal sex:		Males			1	Females			
	Dosa	ge group:	Ctls	2	3	4	Ì	Ctls	2	3	4
Tissues With Diagnoses	No.	in group:	26	0	0	26	j	10	0	0	10
Skin	Number	examined:	1	0	0	0	ļ	0	0	0	0
		Moderate>	1	0	0	0	1	0	0	0	0
	Finding	Observed:	1	0	0	0	i	0	0	0	0
Spleen	Number	examined:	10	0	0	10	1	10	0	0	10
Left testis	Number	examined:	0	0	0	1		0	0	0	0
Right Testis	Number	examined:	26	0	0	25					
Uterus		examined:					I	10	0	0	10
		Nad>					1	3	0	0	5
		Minimal>						1	0	0	0
		Slight>					i	6	0	0	5
Total Incidence of	Finding	Observed:					1	7	0	0	5
LUMEN: DILATED											
		Nad>						9	0	0	8
		Minimal>					ĺ	1	0	0	1
		Slight>					ĺ	0	0	0	1
Total Incidence of	Finding	Observed:					İ	1	0	0	2

Inhalation Report Appendix A

TABLE OF CONTENTS

1.	INTI	RODUCTION124
2.	MAT	TERIALS AND METHODS
	2.1.	Husbandry During Exposure Periods124
	2.2.	Test Substance Administration and Chamber Operations125
	2.3.	Exposure Concentration Determination
3.	TAB	LES
	I.	Summary of In-Chamber Observations131
	II.	Chamber Monitoring Records
	III.	Equipment List164
	IV.	Chamber Distribution Records
	V.	Miran Calibration
	VI.	Testing Room and Chambers Environmental Monitoring175
4.	FIGU	URES
	I.	Chamber Generation System and Whole-Body Exposure Chamber – Group I
	II.	Chamber Generation System and Whole-Body Exposure
	11.	, ,
		Chamber – Groups II, III, IV177

Inhalation Report	Appendix A
initiation Report	Appendix A

1. INTRODUCTION

This appendix presents the methodology for exposure atmosphere generation monitoring and results.

2. MATERIALS AND METHODS

2.1. HUSBANDRY DURING EXPOSURE PERIODS

2.1.1. HOUSING

Animals were individually housed in stainless steel, wire mesh cages within a 1.5 m³ glass and stainless steel whole-body exposure chamber. The placement of the animal in the whole-body exposure chamber was rotated weekly to ensure uniform exposure of the animals. A description of the animal rotation is included in the raw data.

2.1.2. FEED

None was provided during exposure.

2.1.3. WATER

None was provided during exposure.

2.1.4. ENVIRONMENTAL CONDITIONS

Chamber temperature and relative humidity were recorded every half-hour during exposure and maintained, to the maximum extent possible, within the ranges presented below. Excursions outside the specified range did not affect the integrity of the study.

Temperature

Desired: 20 to 24°C Actual: 20 to 26°C

00-4202 211-TAME-1G Page 125 Final Report

Inhalation Report	Appendix A

Relative Humidity

Desired: 40 to 60% Actual: 29 to 66%

2.2. TEST SUBSTANCE ADMINISTRATION AND CHAMBER OPERATIONS

2.2.1. ROUTE OF ADMINISTRATION

Inhalation via whole-body exposures

2.2.2. TEST SUBSTANCE ADMINISTRATION

The test substance was administered as a vapor in the breathing air of the animals. The test atmosphere was generated by an appropriate procedure determined during the pre-study trials. The trials were performed to evaluate the optimal set of conditions and equipment to generate a stable atmosphere at the target exposure levels and maintain uniform conditions throughout the exposure chambers.

2.2.3. JUSTIFICATION FOR ROUTE OF ADMINISTRATION

The inhalation route is one of the potential routes of human exposure to this test substance and is the route specified in the referenced US EPA 79.61 guidelines and US OPPTS 870.3800 guidelines.

2.2.4. TARGET EXPOSURE LEVELS

Group I - 0 mg/m^3

Group II - 2000 mg/m^3

Group III - 10000 mg/m³

Group IV - 20000 mg/m³

·	
Inhalation Report	Appendix A

2.2.5. JUSTIFICATION FOR EXPOSURE LEVEL SELECTION

Exposure levels were selected by the Sponsor, based on results from a 13-week inhalation study conducted at the Testing Facility that utilized this test substance in rats (00-6128). The exposure levels were also selected based on the lower flammability limits of the test substance.

2.2.6. FREQUENCY OF ADMINISTRATION

Frequency

 P_0 males and females received 70 consecutive days (ten weeks) of exposure prior to mating for six hours/day. P_0 males and females continued to be exposed daily throughout a 14-day cohabitation period. The mated females continued to be exposed daily from Day 0 through 19 of gestation. Beginning on Day 5 of lactation, nursing P_0 females were exposed daily until weaning of the F_1 offspring on Day 28. P_0 females with no confirmed day of mating continued exposure for 25 days following completion of the mating period. P_0 females with a confirmed day of mating that did not deliver were euthanized on presumed Day 25 of gestation.

 P_0 males were exposed daily until euthanasia, which occurred proximate to the date that the last F_1 litters were weaned.

2.2.7. DURATION

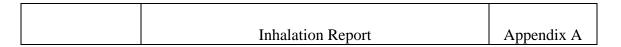
The test substance was administered for 6 hours/day during all segments of the study.

2.2.8. EXPOSURE PROCEDURE AND CHAMBER OPERATIONS Group I

Houseline nitrogen was delivered from a regulator with a backpressure gauge via $\frac{1}{4}$ " tubing to a flowmeter regulated by a metering valve. This nitrogen flow (~ 20 Lpm) was then directed into the turret of the 1.5 m³ glass and stainless steel exposure

T 1 1 1 1 D	A 1. A
Inhalation Report	Appendix A

chamber where it was mixed with room air as it was drawn into the chamber. This nitrogen flow simulated the generation nitrogen flow for Groups II, III, and IV.


Groups II, III and IV

Houseline nitrogen was delivered from a regulator with a backpressure gauge through a stainless steel fitting to create three flow systems: the test substance pressurization flow, the purge flow and the volatilization flow.

The nitrogen for the test substance pressurization flow was directed via ¼" tubing through a metering valve, attached to a backpressure gauge, into the vapor inlet valve of the test substance cylinder. The metering valve was used to adjust and maintain the pressure within the cylinder. From the pressurized cylinder, the test substance flowed from the liquid outlet valve through a quick-disconnect fitting and through a filter to prevent equipment contamination. From the filter, the test substance flowed to a liquid flowmeter via ½" tubing. The outlet of the flowmeter was regulated by a built-in metering valve. From this metering valve, the test substance flowed via ½" tubing onto the glass helix of a counter current volatilization chamber. The glass helix was heated by a nichrome wire, which was controlled by an autotransformer and was inserted in the center of the glass tube that supported the helix.

The nitrogen for the purge flow system was directed, via $\frac{1}{4}$ " tubing to a flowmeter regulated by a metering valve. The purge nitrogen was delivered via $\frac{1}{8}$ " tubing to the bottom of the tube containing the nichrome wire. This nitrogen flow continuously purged the area surrounding the nichrome wire within the tube, thereby protecting the wire from oxidation.

The nitrogen for the volatilization system was directed via ¼" tubing to a flowmeter regulated by a metering valve. From the flowmeter, the volatilization nitrogen (~ 20 Lpm) flowed via ¼" tubing to a ball and socket joint at the bottom of the volatilization

chamber. This nitrogen flowed up through the volatilization chamber passing over the coil and volatilizing the test substance. The pressure within the counter-current volatilization chamber was maintained slightly negative to the room and was monitored with a pressure gauge.

This test substance laden nitrogen exited the top of the volatilization chamber through a glass elbow, which directed the flow, via ½" tubing, to the turret of 1.5 m³ glass and stainless steel exposure chamber. As the test substance laden nitrogen was drawn into the chamber, it was mixed with room air.

The whole-body exposure chambers each had a volume of approximately 1500 Liters (1.5 m^3). Each chamber was operated at a minimum flow rate of 300 Liters per minute. The final airflow was set to provide at least one air change (calculated by dividing the chamber volume by the airflow rate) in 5.0 minutes (12 air changes/hour) and a T_{99} equilibrium time (calculated by multiplying the air change by the exponential factor 4.6) of at most 23 minutes:

Group	Airflow Rate (Lpm)	Air Change (min)	T ₉₉ (min)
I	312	4.8	22
II	309	4.9	23
III	309	4.9	23
IV	309	4.9	23

This chamber size and airflow rate was considered adequate to maintain the oxygen level at least 19% and the animal-loading factor below 5%. Chamber temperature, humidity, airflow rate and static pressure were monitored continuously and recorded every 30 minutes during exposure. At the end of the 6-hour exposure, all animals remained in the chamber for a minimum of 30 minutes. During this time, the chamber was operated at approximately the same flow rate using clean air only. The chambers were exhausted

00-4202 211-TAME-1G Page 129 Final Report

Inhalation Report	Appendix A

through the in-house filtering system, which consisted of a coarse filter, a HEPA filter and activated charcoal.

See Chamber Figures I and II and Table III for equipment details.

2.3. EXPOSRUE CONCENTRATION DETERMINATION

2.3.1. NOMINAL CONCENTRATION

A nominal exposure concentration was calculated. The flow of air through the chamber was monitored using appropriate calibrated equipment. The test substance consumed (weight difference of the test substance cylinder) during the exposure (mg) was divided by the total volume of air (m³) passing through the chamber (volumetric flow rate times total exposure time) to give the nominal concentration (mg/m³).

2.3.2. CHAMBER SAMPLING

During each exposure, measurements of airborne concentrations were performed in the animals' breathing zone (approximately 20 Lpm) at least 4 times using an appropriate sampling procedure and Infra-Red Spectrophotometric (IR) analytical method. Also, one charcoal tube sample per chamber per week was analyzed by gas chromatography (GC) to characterize at least 10 major components (comprising at least 80% by weight of the test substance) to show test substance stability and comparison between the neat liquid test substance and the vaporized test atmospheres.

See Table III in this appendix for equipment details. See Appendix B for Analytical Report.

2.3.3. PARTICLE SIZE DISTRIBUTION

During each week of exposure, particle size determinations (5 Lpm for 20 seconds) were performed using a TSI Aerodynamic Particle Sizer to characterize the aerodynamic particle size distribution of any aerosol present. The samples were drawn for 20 seconds at a

Huntingdon Life Sciences	00-4202	Page 130
	211-TAME-1G	Final Report
	T.I.I.I. D	
	Inhalation Report	Appendix A

flowrate of 5.0Lpm. The mass median aerodynamic diameter, geometric standard deviation, and total mass concentration were calculated based on the amounts of particles colleted.

See Table III for equipment details.

2.3.4. CHAMBER AND EXPOSURE ROOM ENVIRONMENT

Chamber oxygen levels (maintained at least 19%) were measured pretest and at the beginning, middle and end of the study.

Air samples were taken in the vapor generation area pretest and at the beginning, middle and end of the study. Light (maintained approximately 30 foot-candles at 1.0 meters above the floor) and noise levels (maintained below 85 decibels) in the exposure room were measured pretest and at the beginning, middle and end of the study.

Huntingdon Life Sciences 00-4202 211-TAME-1G

Page 131 Final Report

					Inhal	ation R	Report						Appei	ndix A		
						Tab										
E	0	1	2		-		amber (0	10	11	10	12	1.4	15
Exposure Day	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Group $I - 0 \text{ mg/m}^3$																
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All
Group II $-2,000 \text{ mg/m}^3$																
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All
Group III -10000 mg/m^3																
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All
Group IV -20000 mg/m^3																
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All

Huntingdon Life Sciences	

00-4202 Page 132 Final Report 211-TAME-1G

					Inhal	ation R	eport						Appei	ndix A		
						Tab										
				Sumn	nary of	In-Cha	amber (Observa	ations							
Exposure Day	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Group $I - 0 \text{ mg/m}^3$																
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All
Group II $-2,000 \text{ mg/m}^3$																
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All
Group III -10000 mg/m^3																
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All
Group IV -20000 mg/m^3																
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All

Huntingdon Life Sciences	00-4202	
	211-TAME-1G	

					Inhal	ation R	eport						Apper	ndix A		
						Tab										
					nary of											
Exposure Day	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
Group I -0 mg/m^3																
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All
Group II $-2,000 \text{ mg/m}^3$																
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All
Group III -10000 mg/m^3																
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All
$Group\ IV-20000\ mg/m^3$																
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All

Page 133 Final Report

00-4202 211-TAME-1G Page 134 Final Report

					Inhal	ation R	Report						Appei	ndix A		
							ole I									
					•		amber (
Exposure Day	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
Group $I - 0 \text{ mg/m}^3$																
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	a	All	All	All
Group II $-2,000 \text{ mg/m}^3$																
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	a	All	All	All
$Group\ III-10000\ mg/m^3$																
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	a	All	All	All
$Group\ IV-20000\ mg/m^3$																
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	a	All	All	All

All = 100% of the animals exhibiting a given observation.

Note: In-chamber observations are based on all animals present in the exposure chamber at the time, including satellite animals.

^aDue to oversight, observations were not recorded.

Huntingdon Life Sciences

00-4202 211-TAME-1G

Page 135 Final Report

					Inhal	ation R	Report						Appei	ndix A		
						Tab										
E D	<i>(</i> 1	6 5	"		•		amber (72	74	75	70	77	70	70
Exposure Day	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
Group I -0 mg/m^3																
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All
Group II $-2,000 \text{ mg/m}^3$																
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All
$Group\ III-10000\ mg/m^3$																
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All
Group IV -20000 mg/m^3																
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All

Huntingdon Life Sciences	00-4202	
	211-TAME-1G	

					Inhal	ation R	leport						Apper	ndix A		
						Tab										
					•		amber (
Exposure Day	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
Group $I - 0 \text{ mg/m}^3$																
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	a	All	All	All	All
Group II $-2,000 \text{ mg/m}^3$																
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	a	All	All	All	All
Group III -10000 mg/m^3																
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	a	All	All	All	All
$Group\ IV-20000\ mg/m^3$																
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	a	All	All	All	All

Page 136 Final Report

Note: In-chamber observations are based on all animals present in the exposure chamber at the time, including satellite animals.

All = 100% of the animals exhibiting a given observation.

^aDue to oversight, observations were not recorded.

Huntingdon Life Sciences	00-4202
	211-TAME-1G

	Inhalation Report											Appendix A						
				_		Tab												
Exposure Day	96	97	98	Sumn 99	nary of 100	In-Cha 101	102)bserva 103	104	105	106	107	108	109	110	111		
Group I -0 mg/m^3																		
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All		
Group II $-2,000 \text{ mg/m}^3$																		
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All		
$Group\ III-10000\ mg/m^3$																		
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All		
$Group\ IV-20000\ mg/m^3$																		
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All		

Page 137 Final Report

Huntingdon Life Sciences	00-4202	
	$211_{\text{-}}\text{T}\Delta\text{MF}_{\text{-}}1G$	

					Inhala	ation R	eport					Appendix A				
	Table I Summary of In-Chamber Observations															
Exposure Day	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	
Group $I - 0 \text{ mg/m}^3$																
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	All	-	-	
Group II $-2,000 \text{ mg/m}^3$																
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	-	-	-	-	
Group III -10000 mg/m^3																
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	-	-	-	
$Group\ IV-20000\ mg/m^3$																
Normal Within Normal Limits	All	All	All	All	All	All	All	All	All	All	All	All	All	All	All	

Page 138 Final Report

Huntingdon Life Sciences	00-4202	Page 139
	211-TAME-1G	Final Report
	Inhalation Report	Appendix A

Table II **Chamber Monitoring Records** Preface

Key to Abbreviations

Mass Median Aerodynamic Diameter Geometric Standard Deviation MMAD

GSD **Total Mass Concentration** TMC

00-4202 211-TAME-1G

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION

TOXICITY STUDY IN RATS

Chamber Monitoring Results Cumulative Exposure Record

Group I - 0 mg/m³ (Air Control)

												Chamber En	vironment
									_	Particle Size		Mea	. 1
Day	Date	Exposure	Nominai		Analytical Chamber Concentration					Determinati		Temperature	Humidity
		Number		Mean					MMAD	GSD	TMC		
			(mg/m³)	(mg/m³)	(mg/m³)			(µm)		(mg/m ³)	(°C)	(%)	
0	22-Aug-01	1 1	0	0	0	0	0	0		į		23	50
1	23-Aug-01	2	0	0	0	0	0	0				23	51
2	24-Aug-01	3	0	0	0	0	0	0	0.8435	1.442	1.67E-03	23	51
3	25-Aug-01	4	0	0	0	0	0	0				23	50
4	26-Aug-01	5	0	0	0	0	0	0				23	50
5	27-Aug-01	6	0	0	0	0	0	0				23	44
6	28-Aug-01	7	0	0	0	0	Q	0				23	43
7	29-Aug-01	8	0	0	0	0	0	0				23	49
8	30-Aug-01	9	0	0	0	0	0	0				23	44
9	31-Aug-01	10	0	0	0	0	0	0	0.7992	1.765	7.51E-03	23	44
10	1-Sep-01	11	0	0	0	0	0	0				23	43
11	2-Sep-01	12	0	0	0	0	0	0				23	46
12	3-Sep-01	13	0	0	0	0	0	0				23	48
13	4-Sep-01	14	0	0	0	0	0	0				23	47
14	5-Sep-01	15	0	0	0	0	0	0				23	50
15	6-Sep-01	16	0	0	0	0	0	0	:			24	45
16	7-Sep-01	17	0	0	0	0	0	0	3.650	1.870	3.89E-03	23	50
17	8-Sep-01	18	0	0	0	0	0	0			i	23	49
18	9-Sep-01	19	0	0	0	0	0	0				23	47
19	10-Sep-01	20	0	0	0	0	0	0				24	48
20	11-Sep-01	21	0	0	0	0	0	0		<u> </u>		23	50

00-4202 211-TAME-1G GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

												Chamber Environment		
										Particle Siz	ze	Mean		
Day	Date	Exposure	Nominal	A	Analytical Chamber Concentration					Determinations			Humidity	
		Number		Mean	Individual				MMAD	GSD	TMC			
			(mg/m ³)	(mg/m³)		(mg/	m³)		(µm)		(mg/m ³)	(°C)	(%)	
21	12-Sep-01	22	0	0	0	0	0	0				23	49	
22	13-Sep-01	23	0	0	0	0	0	0	4.410	2.013	5.31E-03	23	47	
23	14-Sep-01	24	0	0	0	0	0	0				24	45	
24	15-Sep-01	25	0	0	0	0	0	0				23	43	
25	16-Sep-01	26	0	0	0	0	0	0				24	44	
26	17-Sep-01	27	0	0	0	0	0	0				24	45	
27	18-Sep-01	28	0	0	0	0	0	0				23	47	
28	19-Sep-01	29	0	0	0	0	0	0				23	48	
29	20-Sep-01	30	0	0	0	0	0	0				22	5 5	
30	21-Sep-01	31	0	0	0	0	0	0	5.935	2.525	6.26E-03	23	54	
31	22-Sep-01	32	0	0	0	0	0	0				23	52	
32	23-Sep-01	33	0	0	0	0	0	0				23	49	
33	24-Sep-01	34	0	0	0	0	0	0				23	44	
34	25-Sep-01	35	0	0	0	0	0	0				23	54	
35	26-Sep-01	36	0	0	0	0	0	0	1			23	44	
36	27-Sep-01	37	0	0	0	0	0	0				24	42	
37	28-Sep-01	38	0	0	0	0	0	0	3.890	1.955	5.64E-03	24	44	
38	29-Sep-01	39	0	0	0	0	0	0				23	46	
39	30-Sep-01	40	0	0	0	0	0	0				23	40	
40	1-Oct-01	41	0	0	0	0	0	0				22	45	
41	2-Oct-01	42	0	0	0	0	0	0				24	44	

00-4202 211-TAME-1G GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

											Chamber Environment		
										Particle Size			n
Day	Date	Exposure	Nominal	Δ	Analytical Chamber Concentration					Determination	ons	Temperature	Humidity
		Number		Mean		Indivi			MMAD	GSD	TMC		
			(mg/m ³)	(mg/m ³)	(mg/m³)				(µm)		(mg/m ³)	(°C)	(%)
42	3-Oct-01	43	0	0	0	0	0	0				23	49
43	4-Oct-01	44	0	0	0	0	0	0				22	63
44	5-Oct-01	45	0	0	0	0	0	0	1.630	2.328	3.53E-03	22	49
45	6-Oct-01	46	0	0	0	0	0	0				23	50
46	7-Oct-01	47	0	0	0	0	0	0				23	38
47	8-Oct-01	48	0	0	0	0	0	0				23	37
48	9-Oct-01	49	0	0	0	0	0	0				23	36
49	10-Oct-01	50	0	0	0	0	0	0				24	43
50	11-Oct-01	51	0	0	0	0	0	0				24	45
51	12-Oct-01	52	0	0	0	0	0	0	4.378	2.125	7.28E-03	24	47
52	13-Oct-01	53	0	0	0	0	0	0				23	49
53	14-Oct-01	54	0	0	0	0	0	0				23	51
54	15-Oct-01	55	0	0	0	0	0	0				23	49
55	16-Oct-01	56	0	0	0	0	0	0				23	44
56	17-Oct-01	57	0	0	0	0	0	0				23	41
57	18-Oct-01	58	0	0	0	0	0	0				24	35
58	19-Oct-01	59	0	0	0	0	0	0	0.9817	1.617	4.40E-04	24	37
59	20-Oct-01	60	0	0	0	0	0	0	1			23	43
60	21-Oct-01	61	0	0	0	0	0	0				23	42
61	22-Oct-01	62	0	0	0	0	0	0				23	46
62	23-Oct-01	63	0	0	0	0	0	0				23	46

00-4202 211-TAME-1G GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

												Chamber En	vironment
										Particle Siz	ze	Mean	
Day	Date	Exposure	Nominal	Analytical Chamber Concentration					Determinations			Temperature	Humidity
		Number		Mean		indivi	dual		MMAD	GSD	TMC		
			(mg/m ³)	(mg/m³)	(mg/m³)				(µm)		(mg/m ³)	(°C)	(%)
63	24-Oct-01	64	0	0	0	0	0	0				23	52
64	25-Oct-01	65	0	0	0	0	0	0				23	52
65	26-Oct-01	66	0	0	0	0	0	0	3.678	1.821	1.12E-03	23	34
66	27-Oct-01	67	0	0	0	0	0	0				23	42
67	28-Oct-01	68	0	0	0	0	0	0				23	39
68	29-Oct-01	69	0	0	0	0	0	0				23	40
69	30-Oct-01	70	0	0	0	0	0	0				23	43
70	31-Oct-01	71	0	0	0	0	0	0				23	47
71	1-Nov-01	72	0	0	0	0	0	0				23	51
72	2-Nov-01	73	0	0	0	0	0	0	1.933	2.453	4.98E-03	23	63
73	3-Nov-01	74	0	0	0	0	0	0				23	63
74	4-Nov-01	75	0	0	0	0	0	0				23	51
75	5-Nov-01	76	0	0	0	0	0	0				23	46
76	6-Nov-01	77	0	0	0	0	0	0				23	42
77	7-Nov-01	78	0	0	0	0	0	0				23	47
78	8-Nov-01	79	0	0	0	0	0	0	0.9040	1.521	7.84E-04	23	50
79	9-Nov-01	80	0	0	0	0	0	0				24	43
80	10-Nov-01	81	0	0	0	0	0	0				23	44
81	11-Nov-01	82	0	0	0	0	0	0				24	43
82	12-Nov-01	83	0	0	0	0	0	0				23	40
83	13-Nov-01	84	0	0	0	0	0	0				23	41

00-4202 211-TAME-1G

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

												Chamber En	vironment	
										Particle Siz	ze	Mean		
Day	Date	Exposure	Nominal	Δ.	Analytical Chamber Concentration					Determinations			Humidity	
		Number		Mean		Indivi	dual		MMAD	GSD	TMC			
			(mg/m ³)	(mg/m³)		(mg/	m ³)		(µm)		(mg/m ³)	(°C)	(%)	
84	14-Nov-01	85	0	0	0	0	0	0				24	48	
85	15-Nov-01	86	0	0	0	0	0	0				24	53	
86	16-Nov-01	87	0	0	0	0	0	0	0.8619	2.044	2.87E-03	24	53	
87	17-Nov-01	88	0	0	0	0	0	0				23	46	
88	18-Nov-01	89	0	0	0	0	0	0	İ			24	48	
89	19-Nov-01	90	0	0	0	0	0	0				24	48	
90	20-Nov-01	91	0	0	0	0	0	0				23	48	
91	21-Nov-01	92	0	0	0	0	0	0				23	37	
92	22-Nov-01	93	0	0	0	0	0	0				22	38	
93	23-Nov-01	94	0	0	0	0	0	0	1.513	2.260	2.37E-03	22	42	
94	24-Nov-01	95	0	0	0	0	0	0				22	49	
.95	25-Nov-01	96	0	0	0	0	0	0				22	54	
96	26-Nov-01	97	0	0	0	0	0	0				22	52	
97	27-Nov-01	98	0	0	0	0	0	0				22	44	
98	28-Nov-01	99	0	0	0	0	0	0				23	54	
99	29-Nov-01	100	0	0	0	0	0	0				24	45	
100	30-Nov-01	101	0	0	0	0	0	0	1.188	1.823	2.66E-03	24	56	
101	1-Dec-01	102	0	0	0	0	0	0				24	55	
102	2-Dec-01	103	0	0	0	0	0	0				24	45	
103	3-Dec-01	104	0	0	0	0	0	0				24	43	
104	4-Dec-01	105	0	0	0	0	0	0				25	45	

00-4202 211-TAME-1G GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION

Chamber Monitoring Results Cumulative Exposure Record Group I - 0 mg/m³ (Air Control)

TOXICITY STUDY IN RATS

												Chamber En	vironment
	•									Particle Siz	ze	Mea	n
Day	Date	Exposure	Nominal	A	nalytical C	hamber Con	centration		[Determinati	ons	Temperature	Humidity
		Number		Mean		Indivi	dual		MMAD	GSD	тмс		
			(mg/m ³)	(mg/m³)		(mg/	m³)		(µm)		(mg/m ³)	(°C)	(%)
105	5-Dec-01	106	0	0	0	0	0	0				24	48
106	6-Dec-01	107	0	0	0	0	0	0				25	48
107	7-Dec-01	108	0	0	0	0	0	0	0.8534	1.489	1.21E-03	24	50
108	8-Dec-01	109	0	0	0	0	0	0				25	38
109	9-Dec-01	110	0	0	0	0	0	0				25	43
110	10-Dec-01	111	0	0	0	0	0	0				23	42
111	11-Dec-01	112	0	0	0	0	0	0				22	46
112	12-Dec-01	113	0	0	0	0	0	0				22	42
113	13-Dec-01	114	0	0	0	0	0	0				22	45
114	14-Dec-01	115	0	0	0	0	0	0	0.7663	1.903	8.56E-03	22	49
115	15-Dec-01	116	0	0	0	0	0	0				22	39
116	16-Dec-01	117	0	0	0	0	0	0				21	37
117	17-Dec-01	118	0	0	0	0	0	0				22	42
118	18-Dec-01	119	0	0	0	0	0	0				22	45
119	19-Dec-01	120	0	0	0	0	0	0				22	38
120	20-Dec-01	121	0	0	0	0	0	0				22	40
121	21-Dec-01	122	0	0	0	0	0	0	1.503	1.578	4.69E-04	21	39
122	22-Dec-01	123	0	0	0	0	0	0				21	35
123	23-Dec-01	124	0	0	0	0	0	0				20	35
124	24-Dec-01	125	0	0	0	0	0	0				21	39
		Mean	0			0			2.921	1.992	4.33E-03	23.1	46.4
		S.D.	0	=		0			1.752	0.342	2.43E-03	0.5	4.8

00-4202 211-TAME-1G GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

Chamber Monitoring Results Cumulative Exposure Record

Group II - 2000 mg/m³

												Chamber En	
										Particle Size		Mea	
Day	Date	Exposure	Nominal		nalytical C	hamber Con				Determinati		Temperature	Humidity
		Number		Mean		Indivi			MMAD	GSD	TMC		
			(mg/m ³)	(mg/m ³)		(mg/	m³)		(µm)		(mg/m ³)	(°C)	(%)
0	22-Aug-01	1	2220	2073	2370	2270	2000	1650				23	49
1	23-Aug-01	2	2320	1958	2500	1110	2170	2050				24	51
2	24-Aug-01	3	2370	2055	1720	2190	2180	2130	0.8689	1.880	3.81E-03	23	51
3	25-Aug-01	4	2360	2250	2080	2400	2400	2120				24	49
4	26-Aug-01	5	2370	2060	1600	2230	2290	2120				24	49
5	27-Aug-01	6	2420	2113	2250	2130	2240	1830				24	43
6	28-Aug-01	7	2330	1958	1650	2250	2260	1670				24	43
7	29-Aug-01	8	2100	1768	1640	1650	1840	1940				24	48
8	30-Aug-01	9	2230	1920	1810	1890	2050	1930				24	43
9	31-Aug-01	10	2450	2035	1810	1870	2260	2200	0.7886	1.421	7.43E-03	24	43
10	1-Sep-01	11	2530	2268	2020	2400	2510	2140				24	43
11	2-Sep-01	12	2250	2155	1780	1920	2620	2300				24	46
12	3-Sep-01	13	2390	2163	1880	2210	1950	2610				24	47
13	4-Sep-01	14	2290	2008	1650	1880	2170	2330				24	48
14	5-Sep-01	15	2420	2050	1770	1890	2400	2140				24	48
15	6-Sep-01	16	2380	2140	1730	2500	2310	2020	1			24	45
16	7-Sep-01	17	2140	1890	1630	1730	1900	. 2300	6.184	2.469	3.49E-03	24	48
17	8-Sep-01	18	2300	2160	1820	2160	2290	2370				24	50
18	9-Sep-01	19	2270	2215	2030	2320	2160	2350				24	48
19	10-Sep-01	20	2160	2010	1890	1950	2110	2080				24	48
20	11-Sep-01	21	2130	2125	1950	2030	2000	2500				24	51

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

												Chamber En	vironment
										Particle Siz	ze	Меа	ın
Day	Date	Exposure	Nominal	Α	nalytical C	hamber Con	centration		[Determination	ons	Temperature	Humidity
		Number		Mean		Indivi	dual		MMAD	GSD	TMC		
]			(mg/m³)	(mg/m³)		(mg/	m³) _		(µm)		(mg/m ³)	(°C)	(%)
21	12-Sep-01	22	2210	1995	1830	2000	2120	2030		-		24	49
22	13-Sep-01	23	2500	2360	2010	2060	2720	2640	2.985	2.106	3.43E-03	24	48
23	14-Sep-01	24	1520	1873	1720	1790	2030	1950				24	45
24	15-Sep-01	25	2050	2120	2480	1640	2220	2140				24	43
25	16-Sep-01	26	2200	2015	1840	2350	1890	1980				24	44
26	17-Sep-01	27	2400	2085	1830	1720	2400	2390				24	45
27	18-Sep-01	28	2510	2260	1770	2590	2400	2280				24	48
28	19-Sep-01	29	2400	2100	1810	1940	2340	2310				24	46
29	20-Sep-01	30	3030	1788	1830	1810	1790	1720				24	52
30	21-Sep-01	31	2820	1928	1790	1850	1980	2090	4.872	2.182	7.43E-03	24	54
31	22-Sep-01	32	2230	2020	1900	2090	2040	2050				24	53
32	23-Sep-01	33	2210	2030	1900	1970	2120	2130				24	51
33	24-Sep-01	34	2350	1930	1720	1970	2050	1980				24	43
34	25-Sep-01	35	2310	2095	2140	2040	2120	2080				24	53
35	26-Sep-01	36	2470	2018	2060	2080	1960	1970				24	42
36	27-Sep-01	37	3470	1918	1820	1850	1830	2170	,			25	41
37	28-Sep-01	38	2020	2080	2300	2100	2020	1910	2.195	1.844	1.36E-03	24	43
38	29-Sep-01	39	1980	1995	2080	1920	2000	1980				24	46
39	30-Sep-01	40	1950	2070	2070	2150	2040	2020				24	41
40	1-Oct-01	41	2210	2075	2200	1920	1990	2190				24	43
41	2-Oct-01	42	1920	1980	1870	2100	1990	1960				24	44

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

Chamber Monitoring Results Cumulative Exposure Record Group II - 2000 mg/m³

												Chamber En	vironment
									ļ	Particle Size	ze	Mea	ın
Day	Date	Exposure	Nominal	ρ	nalytical C	hamber Con	centration			Determinati	ons	Temperature	Humidity
		Number		Mean		Indivi	dual		MMAD	GSD	TMC		
			(mg/m³)	(mg/m ³)		(mg/	m³)		(µm)		(mg/m ³)	(°C)	(%)
42	3-Oct-01	43	2060	1985	1920	2040	2000	1980				24	48
43	4-Oct-01	44	2080	2035	2090	2070	2000	1980	:			23	66
44	5-Oct-01	45	2140	2223	1950	2030	2620	2290	2.213	2.158	4.64E-03	24	48
45	6-Oct-01	46	2240	2138	1920	1850	2380	2400				24	50
46	7-Oct-01	47	1900	1900	1830	1820	1890	2060				24	38
47	8-Oct-01	48	2140	2110	1820	2000	2820	1800				24	37
48	9-Oct-01	49	1990	2185	1840	1850	2900	2150				24	36
49	10-Oct-01	50	1950	2013	2020	2010	1950	2070				24	40
50	11-Oct-01	51	1920	1985	2040	1970	2010	1920				24	45
51	12-Oct-01	52	2050	2080	1700	2370	2140	2110	5.480	2.276	1.10E-02	25	46
52	13-Oct-01	53	2110	2075	2000	2150	2090	2060				24	49
53	14-Oct-01	54	2140	2245	2120	2070	2390	2400				а	а
54	15-Oct-01	55	2110	2315	2140	2550	2630	1940				24	49
55	16-Oct-01	56	2030	2143	1870	2330	2180	2190				24	43
56	17-Oct-01	57	2270	2153	1730	2310	2190	2380				24	40
57	18-Oct-01	58	1980	1935	1940	1900	1990	1910				25	36
58	19-Oct-01	59	2570	2223	2530	2200	2100	2060	1.138	1.799	6.55E-04	25	37
59	20-Oct-01	60	1940	2010	1960	1960	2080	2040				24	43
60	21-Oct-01	61	2230	2235	2830	1910	2110	2090				24	42
61	22-Oct-01	62	2350	2318	2460	2310	2260	2240				24	45
62	23-Oct-01	63	2130	1963	1990	1850	2100	1910				24	46

00-4202 211-TAME-1G GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION

Chamber Monitoring Results Cumulative Exposure Record Group II - 2000 mg/m³

TOXICITY STUDY IN RATS

												Chamber En	vironment
										Particle Si	ze	Mea	ın
Day	Date	Exposure	Nominal	A	nalytical C	hamber Cor	centration		Г	Determinati	ons	Temperature	Humidity
		Number		Mean		Indivi	dual		MMAD	GSD	TMC		
			(mg/m ³)	(mg/m ³)		(mg/	m³)		(µm)		(mg/m ³)	(°C)	(%)
63	24-Oct-01	64	2120	2033	1660	2130	2180	2160				24	50
64	25-Oct-01	65	2180	2145	2150	2100	2220	2110				24	51
65	26-Oct-01	66	2010	2108	2560	1940	1910	2020	2.884	1.967	9.19E-04	24	34
66	27-Oct-01	67	2090	2075	2090	2030	2100	2080				24	41
67	28-Oct-01	68	2100	2138	2260	1880	2130	2280				24	39
68	29-Oct-01	69	2080	2115	2410	2040	1830	2180	i			24	40
69	30-Oct-01	70	2050	2075	2110	2090	2270	1830				24	42
70	31-Oct-01	71	2020	1980	2080	2100	2110	1630				24	46
71	1-Nov-01	72	2130	2143	2160	2050	2150	2210				24	49
72	2-Nov-01	73	2050	1983	2180	1380	2170	2200	7.011	3.128	1.42E-02	24	63
73	3-Nov-01	74	2360	2105	2390	2030	1990	2010				24	63
74	4-Nov-01	75	2020	2085	1850	2260	1970	2260				24	50
75	5-Nov-01	76	2130	2118	1700	2110	2110	2550				24	46
76	6-Nov-01	77	1840	1863	1800	1790	1890	1970				24	42
77	7-Nov-01	78	1940	1990	1940	2110	1950	1960				24	46
78	8-Nov-01	79	2110	2243	2390	2090	2220	2270	0.9573	1.746	8.68E-04	24	49
79	9-Nov-01	80	2120	2185	2200	2210	2390	1940				24	43
80	10-Nov-01	81	2250	2048	2260	2000	1900	2030				24	42
81	11-Nov-01	82	1640	1955	2000	1960	1850	2010				24	41
82	12-Nov-01	83	1640	1783	1720	1840	1790	1780				24	41
83	13-Nov-01	84	1780	1990	1890	1990	1980	2100				24	41

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION

TOXICITY STUDY IN RATS

		" " " " " " " " " " " " " " " " " " "				•	2000 mg/m					Chamber En	vironment
										Particle Si	ze	Mea	
Day	Date	Exposure	Nominal	P	Analytical C	hamber Cor	centration] [Determinati	ons	Temperature	Humidity
		Number		Mean		Indivi	dual		MMAD	GSD	TMC		
			(mg/m ³)	(mg/m ³)		(mg/	m³)		(µm)		(mg/m ³)	(°C)	(%)
84	14-Nov-01	85	1840	1908	1800	1890	1960	1980				25	48
85	15-Nov-01	86	1950	2010	2070	2010	1990	1970				25	51
86	16-Nov-01	87	1900	1978	1930	1920	2060	2000	0.7491	1.504	2.19E-03	24	51
87	17-Nov-01	88	2010	2103	1850	2500	2060	2000		-		24	46
88	18-Nov-01	89	1820	1898	1220	1910	1960	2310				24	47
89	19-Nov-01	90	2140	2108	1990	1950	1940	2550				24	50
90	20-Nov-01	91	2140	2253	1900	2350	2500	2260				24	47
91	21-Nov-01	92	1760	1830	1810	1890	1800	1820				23	37
92	22-Nov-01	93	2010	1943	1770	2010	1980	2010				23	37
93	23-Nov-01	94	2050	2133	1920	2160	2470	1980	0.8027	1.618	1.51E-03	23	41
94	24-Nov-01	95	2130	2133	1840	2230	2380	2080	,			23	47
95	25-Nov-01	96	1790	1743	1540	1920	1840	1670				23	53
96	26-Nov-01	97	2220	2208	1810	2230	2400	2390				23	51
97	27-Nov-01	98	2670	2183	2340	2360	2070	1960				23	44
98	28-Nov-01	99	2160	2015	2300	1840	2050	1870				24	53
99	29-Nov-01	100	1990	2068	2440	1990	2000	1840				25	47
100	30-Nov-01	101	2030	2045	1980	1890	2200	2110	0.8405	1.616	1.96E-03	25	57
101	1-Dec-01	102	1720	1913	2200	1760	1940	1750		,		25	59
102	2-Dec-01	103	2090	2145	2090	2240	2200	2050				25	48
103	3-Dec-01	104	2070	2143	2160	2100	2130	2180				25	45
104	4-Dec-01	105	2080	2093	2050	2020	2010	2290				26	45

00-4202 211-TAME-1G GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION

Chamber Monitoring Results Cumulative Exposure Record Group II - 2000 mg/m³

TOXICITY STUDY IN RATS

												Chamber En	vironment
										Particle Size	ze	Mea	ın
Day	Date	Exposure	Nominal	Α	nalytical C	hamber Cor	centration	-	ָ	Determinati	ons	Temperature	Humidity
		Number		Mean		Indivi	dual		MMAD	GSD	TMC		
			(mg/m ³)	(mg/m³)		(mg/	m³)		(µm)		(mg/m ³)	(°C)	(%)
105	5-Dec-01	106	2000	2115	2140	2100	2230	1990				26	49
106	6-Dec-01	107	1930	2125	1360	2360	2280	2500				26	48
107	7-Dec-01	108	1820	1825	1760	1760	1910	1870	0.8219	1.564	1.26E-03	26	49
108	8-Dec-01	109	1900	1993	1910	2070	2000	1990				26	39
109	9-Dec-01	110	1950	1908	1790	1900	1950	1990				26	43
110	10-Dec-01	111	1860	1918	1910	1960	1920	1880		:		23	41
111	11-Dec-01	112	1970	2013	1870	1960	1950	2270				23	45
112	12-Dec-01	113	1900	2028	2280	2330	1500	2000				23	43
113	13-Dec-01	114	2040	1988	2050	1920	2010	1970			l	23	45
114	14-Dec-01	115	2110	2100	1960	1880	2210	2350	0.7556	1.420	6.33E-03	23	48
115	15-Dec-01	116	1900	1905	1860	1890	1990	1880				23	38
116	16-Dec-01	117	1970	2038	2090	1930	2090	2040				22	39
117	17-Dec-01	118	2070	1953	2100	1680	1610	2420				23	42
118	18-Dec-01	119	2240	2545	2810	2310	2480	2580				23	45
119	19-Dec-01	120	1650	1703	1450	1790	1740	1830				23	37
120	20-Dec-01	121	1750	1765	1540	1760	1840	1920				22	39
121	21-Dec-01	122	1820	1950	1930	2000	1960	1910	1.807	1.690	6.17E-04	22	38
122	22-Dec-01	123	1900	2065	2030	1870	2240	2120				21	36
		Mean	2213			2060			3.329	2.112	5.31E-03	24.0	46.0
		S.D.	264			240			2.211	0.438	4.32E-03	0.3	5.0

00-4202 211-TAME-1G GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION

WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

Chamber Monitoring Results Cumulative Exposure Record

Group III - 10000 mg/m³

												Chamber En	vironment
									j	Particle Size		Mea	:
Day	Date	Exposure	Nominal		nalytical C	hamber Cor				Determinati		Temperature	Humidity
		Number		Mean		Indivi			MMAD	GSD	TMC		
			(mg/m ³)	(mg/m ³)		(mg/	m³)		(µm)		(mg/m ³)	(°C)	(%)
0	22-Aug-01	1	10000	10560	11900	10100	10300	9950				24	46
1	23-Aug-01	2	10200	10480	10400	10400	10400	10700				23	49
2	24-Aug-01	3	9810	10090	11200	9950	8920	10300	0.8184	1.431	2.14E-03	24	48
3	25-Aug-01	4	9960	10080	9950	9910	11100	9340	!			24	47
4	26-Aug-01	5	10200	10530	10100	10500	9910	11600				24	44
5	27-Aug-01	6	10100	10260	9370	9880	10800	11000				24	41
6	28-Aug-01	7	10200	10150	11000	9880	10000	9700				24	40
7	29-Aug-01	8	10100	10150	10700	9950	9950	9990				24	46
8	30-Aug-01	9	10200	10600	10800	10400	10300	10900				24	41
9	31-Aug-01	10	9970	9885	10100	9300	10300	9840	0.8250	2.158	9.10E-03	24	40
10	1-Sep-01	11	10000	10200	10100	10200	10600	9910				24	40
11	2-Sep-01	12	10100	10090	9630	10600	10200	9910	İ			24	43
12	3-Sep-01	13	9650	10320	11000	9880	11000	9410				24	45
13	4-Sep-01	14	9870	9793	9770	9660	9140	10600				24	45
14	5-Sep-01	15	10200	9953	9340	9370	10600	10500				24	46
15	6-Sep-01	16	9960	9715	9700	9910	9520	9730				24	43
16	7-Sep-01	17	10200	9768	9770	10300	9950	9050	1.914	1.873	1.13E-03	24	44
17	8-Sep-01	18	10300	10360	11200	9730	10500	10000				24	46
18	9-Sep-01	19	10000	10190	10700	9990	10100	9950				24	45
19	10-Sep-01	20	10000	10500	11000	10700	10300	10100				24	45
20	11-Sep-01	21	10500	11100	10500	11600	12000	10400				24	48

00-4202 211-TAME-1G GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION

Chamber Monitoring Results Cumulative Exposure Record Group III - 10000 mg/m³

TOXICITY STUDY IN RATS

												Chamber En	vironment
										Particle Siz	ze	Mea	n
Day	Date	Exposure	Nominal	Α	nalytical C	hamber Con	centration			Determinati	ons	Temperature	Humidity
		Number		Mean		Indivi	dual		MMAD	GSD	TMC		
			(mg/m ³)	(mg/m ³)		(mg/	m³)		(µm)		(mg/m ³)	(°C)	(%)
21	12-Sep-01	22	9870	10650	11200	10500	10900	10000				24	46
22	13-Sep-01	23	10400	11000	11100	11000	11000	10800	5.796	2.302	2.31E-03	24	43
23	14-Sep-01	24	8830	10280	10100	10200	10500	10300				24	42
24	15-Sep-01	25	9300	10190	10500	10800	10100	9340				24	41
25	16-Sep-01	26	11300	10250	10300	10300	10100	10300				24	42
26	17-Sep-01	27	10300	10830	11600	11100	10200	10400				24	43
27	18-Sep-01	28	10200	10530	10900	10400	10900	9910				24	45
28	19-Sep-01	29	10200	10330	11400	9590	9910	10400				24	45
29	20-Sep-01	30	10600	10780	10400	11100	10900	10700				24	48
30	21-Sep-01	31	10300	10240	10100	10300	9550	11000	1.372	1.940	2.33E-03	24	51
31	22-Sep-01	32	10200	10500	10700	10400	10400	10500				24	49
32	23-Sep-01	33	10100	10350	10600	10300	10200	10300				24	47
33	24-Sep-01	34	10400	10730	11600	10500	10400	10400				24	42
34	25-Sep-01	35	10200	10140	10600	9910	9730	10300				24	50
35	26-Sep-01	36	10600	10680	11100	10800	10700	10100				24	39
36	27-Sep-01	37	11100	10900	10500	11000	11100	11000				24	40
37	28-Sep-01	38	11100	9900	9600	10000	10100	9900	9.375	1.908	6.82E-03	24	41
38	29-Sep-01	39	11100	10060	10200	10000	9750	10300				24	43
39	30-Sep-01	40	11200	10450	10500	10400	10500	10400				24	38
40	1-Oct-01	41	10900	9398	9480	8900	9840	9398				25	41
41	2-Oct-01	42	11200	10480	9930	10900	10700	10400				24	43

00-4202 211-TAME-1G GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

												Chamber En	vironment
]	Particle Siz	ze	Mea	n .
Day	Date	Exposure	Nominal	A	nalytical C	hamber Cor	centration			Determinati	ons	Temperature	Humidity
		Number		Mean		Indivi	dual		MMAD	GSD	TMC		
			(mg/m ³)	(mg/m ³)		(mg/	m³)		(µm)		(mg/m ³)	(°C)	(%)
42	3-Oct-01	43	11000	10280	10500	10300	10200	10100				24	45
43	4-Oct-01	44	11000	10030	10100	10000	9930	10100				24	45
44	5-Oct-01	45	11100	10220	10300	9370	10600	10600	11.59	2.686	1.29E-02	24	44
45	6-Oct-01	46	11100	10130	10400	10300	9990	9840				24	48
46	7-Oct-01	47	10800	9970	9340	10600	10100	9840				24	35
47	8-Oct-01	48	11000	9880	10200	9450	9870	10000				24	35
48	9-Oct-01	49	11000	10230	10300	10200	10200	10200				24	34
49	10-Oct-01	50	11100	10280	10300	10300	10300	10200				24	38
50	11-Oct-01	51	10800	10120	10200	10000	9960	10300				24	43
51	12-Oct-01	52	11200	10240	10200	9930	10900	9930	7.302	2.584	6.48E-03	24	45
52	13-Oct-01	53	10800	9980	10000	9660	10300	9960				24	45
53	14-Oct-01	54	11400	10330	10300	10300	10400	10300				24	47
54	15-Oct-01	55	11100	9788	9660	9720	9370	10400				24	44
55	16-Oct-01	56	11300	10400	9900	10600	10600	10500				24	40
56	17-Oct-01	57	11000	9708	9370	9570	10200	9690				24	37
57	18-Oct-01	58	11100	10110	10000	10100	9720	10600				24	33
58	19-Oct-01	59	11200	10150	9390	10200	10700	10300	7.822	1.922	5.00E-03	24	34
59	20-Oct-01	60	11200	10290	9930	9810	10800	10600				24	40
60	21-Oct-01	61	11500	10580	10800	10600	10600	10300				24	39
61	22-Oct-01	62	10900	10340	9660	10600	10700	10400				24	43
62	23-Oct-01	63	11000	9963	9930	8720	10600	10600				24	42

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

											·	Chamber En	vironment
										Particle Siz	ze	Mea	n
Day	Date	Exposure	Nominal	P	nalytical C	hamber Con	centration			Determinati	ons	Temperature	Humidity
		Number		Mean		Indivi	dual		MMAD	GSD	TMC		
			(mg/m ³)	(mg/m ³)		(mg/	m³)		(µm)		(mg/m ³)	(°C)	(%)
63	24-Oct-01	64	10500	10210	12000	9070	9810	9600				24	48
64	25-Oct-01	65	10800	9983	9840	10300	9690	10100				а	a
65	26-Oct-01	66	11200	10110	9630	10200	10300	10300	3.090	2.324	1.19E-03	24	32
66	27-Oct-01	67	11100	10370	11300	10100	10100	9960				24	40
67	28-Oct-01	68	10800	9958	10100	9810	9720	10200				24	38
68	29-Oct-01	69	10900	10350	10400	10500	10000	10500				24	37
69	30-Oct-01	70	10900	10170	9990	10300	10000	10400				24	41
70	31-Oct-01	71	11000	10120	10200	10100	10200	9960				24	44
71	1-Nov-01	72	10900	9928	9450	10100	10200	9960				24	47
72	2-Nov-01	73	11100	9958	9930	10100	9840	9960	0.8781	1.989	3.33E-03	24	60
73	3-Nov-01	74	11100	10040	9930	10000	9930	10300				23	61
74	4-Nov-01	75	11100	10040	9750	10400	10200	9810				24	47
75	5-Nov-01	76	10800	10060	10100	9690	9960	10500				24	44
76	6-Nov-01	77	10900	10110	10300	10300	10000	9840				24	39
77	7-Nov-01	78	10600	10010	10200	9840	10000	10000				24	44
78	8-Nov-01	79	10800	10150	10300	9990	10100	10200	0.8427	1.987	1.12E-03	24	46
79	9- N ov-01	80	10900	9995	10200	10100	9960	9720				24	40
80	10-Nov-01	81	10500	9865	9810	10300	9250	10100				24	37
81	11 -N ov-01	82	10800	9843	9570	9960	9840	10000				24	38
82	12-Nov-01	83	10300	9685	10000	9750	9600	9390				24	38
83	13-Nov-01	84	10600	10040	10000	10200	10000	9960				24	38

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

												Chamber En	vironment
										Particle Size	ze	Mea	n
Day	Date	Exposure	Nominal	Δ	nalytical C	hamber Con	centration		[Determination	ons	Temperature	Humidity
]		Number		Mean		Indivi	dual		MMAD	GSD	TMC		
			(mg/m³)	(mg/m³)		(mg/	m³)		(µm)		(mg/m ³)	(°C)	(%)
84	14-Nov-01	85	10700	10010	10300	10100	9810	9840				24	46
85	15-Nov-01	86	10600	9838	9750	9600	10000	10000				24	51
86	16- N ov-01	87	10400	9833	10000	9280	10300	9750	0.8398	2.146	2.81E-03	24	50
87	17- N ov-01	88	10800	9893	10100	9960	10000	9510				24	43
88	18-Nov-01	89	10600	10020	9990	10000	10100	10000				25	43
89	19-Nov-01	90	10800	9915	10100	9720	10000	9840				25	47
90	20-Nov-01	91	10800	9808	9450	9810	9870	10100				24	44
91	21-Nov-01	92	10600	9880	9930	10000	9600	9990				23	33
92	22-Nov-01	93	11000	10310	9720	10500	10500	10500				23	35
93	23-Nov-01	94	10600	10060	9720	10200	10300	10000	3.588	2.062	1.30E-02	23	40
94	24-Nov-01	95	10500	9735	9280	10000	10000	9660				23	46
95	25-Nov-01	96	10900	10060	10000	9930	9990	10300				23	51
96	26-Nov-01	97	10400	9770	10200	10000	9510	9370				23	48
97	27-Nov-01	98	11600	10100	10300	9990	10000	10100				23	42
98	28-Nov-01	99	10800	10140	9750	9810	10000	11000				24	50
99	29-Nov-01	100	10700	9963	10000	9750	10000	10100				25	44
100	30-Nov-01	101	10100	9643	8780	9870	9990	9930	0.7876	1.640	1.75E-03	25	53
101	1-Dec-01	102	10800	9775	8870	10300	10000	9930				25	54
102	2-Dec-01	103	10400	9808	9450	9960	10100	9720				25	46
103	3-Dec-01	104	10600	9723	9900	9510	9280	10200				25	41
104	4-Dec-01	105	11200	10580	10600	10800	10400	10500				26	43

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

Chamber Monitoring Results Cumulative Exposure Record

Group III - 10000 mg/m³

												Chamber En	vironment
										Particle Size	ze	Mea	n
Day	Date	Exposure	Nominal	Α	nalytical C	hamber Con	centration			Determinations			Humidity
		Number		Mean		Indivi	dual		MMAD	GSD	TMC		
			(mg/m ³)	(mg/m³)		(mg/	m³)		(µm)		(mg/m ³)	(°C)	(%)
105	5-Dec-01	106	11000	10260	9840	10400	10300	10500				26	46
106	6-Dec-01	107	11300	10600	10400	10900	10500	10600				26	47
107	7-Dec-01	108	10700	9968	9510	9660	10300	10400	0.8739	1.867	1.72E-03	26	46
108	8-Dec-01	109	11200	10100	10300	9690	10000	10400				26	35
109	9-Dec-01	110	10800	9650	9900	9370	9370	9960				26	40
110	10-Dec-01	111	10900	9910	9570	9570	10100	10400				23	40
111	11-Dec-01	112	11200	10250	10100	10300	10400	10200				23	44
112	12-Dec-01	113	11100	10200	10000	9900	10500	10400				23	40
113	13-Dec-01	114	11100	10390	10900	9960	10200	10500				23	43
114	14-Dec-01	115	11200	10400	10800	10000	10600	10200	0.8255	2.723	1.15E-02	23	45
115	15-Dec-01	116	11200	10310	9720	10400	10800	10300				23	37
116	16-Dec-01	117	10900	9868	10000	9070	10000	10400				22	37
117	17-Dec-01	118	11200	10430	10600	10200	10400	10500				23	39
118	18-Dec-01	119	10900	10250	10100	10300	10100	10500				23	43
119	19-Dec-01	120	10900	10350	10300	10300	10200	10600				23	36
120	20-Dec-01	121	11000	10060	10300	9780	10200	9960				22	37
121	21-Dec-01	122	11100	9808	9600	10100	9750	9780	1.923	2.047	6.57E-04	22	36
122	22-Dec-01	123	11300	10080	9900	10200	10100	10100				21	34
123	23-Dec-01	124	10900	9880	8520	10600	10100	10300				20	33
		Mean	10600		10500			4.617	2.102	4.79E-03	24.0	43.0	
		S.D.	541		516				3.913	0.357	3.73E-03	0.2	4.1

$\begin{array}{c} 00\text{--}4202 \\ 211\text{--}\text{TAME-1G} \\ \text{GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION} \end{array}$

WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

Chamber Monitoring Results Cumulative Exposure Record Group IV - 20000 mg/m³

Chamber Environment Particle Size Mean Nominal **Analytical Chamber Concentration** Determinations Temperature | Humidity Day Date **Exposure** Number Mean Individual MMAD GSD TMC (mg/m^3) (mg/m³) (mg/m^3) (mg/m³)(µm) (°C) (%) 22-Aug-01 23-Aug-01 24-Aug-01 3.32E-03 0.8627 2.117 25-Aug-01 26-Aug-01 27-Aug-01 28-Aug-01 29-Aug-01 30-Aug-01 1.28E-02 31-Aug-01 0.8123 2.034 1-Sep-01 2-Sep-01 3-Sep-01 4-Sep-01 5-Sep-01 6-Sep-01 2.754 1.82E-03 7-Sep-01 1.995 8-Sep-01 9-Sep-01 10-Sep-01 11-Sep-01

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

												Chamber En	vironment
										Particle Si	ze	Mea	n
Day	Date	Exposure	Nominal		nalytical C	hamber Con	centration			Determinati	ons	Temperature	Humidity
		Number		Mean		Indivi	dual		MMAD	GSD	TMC		
			(mg/m ³)	(mg/m³)		(mg/	m³)		(µm)		(mg/m ³)	(°C)	(%)
21	12-Sep-01	22	18500	21150	21100	21500	21100	20900				24	45
22	13-Sep-01	23	19000	21000	20800	21200	21100	21000	2.478	2.156	1.64E-03	24	43
23	14-Sep-01	24	18600	21230	21000	21600	21300	21000				24	42
24	15-Sep-01	25	17100	20730	21200	21900	20200	19600				24	38
25	16-Sep-01	26	18900	21430	20600	21400	22200	21500		,		24	41
26	17-Sep-01	27	18200	20450	21000	20600	20000	20200				24	42
27	18-Sep-01	28	17900	20550	19600	21200	21900	19500				24	43
28	19-Sep-01	29	18500	20400	19000	20000	21900	20700				24	44
29	20-Sep-01	30	16200	17730	18700	16400	17100	18700				24	48
30	21-Sep-01	31	18400	19850	19400	18500	20900	20600	1.102	2.199	2.03E-03	24	48
31	22-Sep-01	32	18600	20180	20100	19300	20700	20600				24	47
32	23-Sep-01	33	18800	20330	21400	20100	19900	19900				24	46
33	24-Sep-01	34	18400	19380	16800	18800	21400	20500	i .			24	38
34	25-Sep-01	35	19000	21130	21300	21400	21600	20200				24	49
35	26-Sep-01	36	18500	21230	19300	22500	22000	21100				24	39
36	27-Sep-01	37	20700	21230	21800	21100	21300	20700				24	39
37	28-Sep-01	38	21200	20950	18600	22500	21900	20800	4.738	2.052	1.54E-03	24	40
38	29-Sep-01	39	20400	21000	21900	21200	20700	20200				24	43
39	30-Sep-01	40	19700	20830	22900	20000	20400	20000				24	36
40	1-Oct-01	41	20200	20550	20400	20800	19000	22000				24	40
41	2-Oct-01	42	20600	21130	23000	20900	20600	20000				24	42

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

	• •											Chamber En	vironment
										Particle Si	ze	Mea	n
Day	Date	Exposure	Nominal		nalytical C	hamber Con	centration			Determinations			Humidity
		Number		Mean		Indivi	dual		MMAD	GSD	TMC		
			(mg/m ³)	(mg/m³)		(mg/	m³)		(µm)		(mg/m ³)	(°C)	(%)
42	3-Oct-01	43	19600	20230	21200	19300	19300	21100				24	44
43	4-Oct-01	44	20300	20800	20700	20500	20700	21300				23	48
44	5-Oct-01	45	20000	19900	19200	20000	20800	19600	0.8592	2.096	3.29E-03	24	44
45	6-Oct-01	46	20100	20380	21200	18600	20800	20900				24	46
46	7-Oct-01	47	19100	19400	19700	19300	19400	19200				24	34
47	8-Oct-01	48	19200	19700	19400	22200	18000	19200				24	33
48	9-Oct-01	49	19700	19730	17400	20500	20000	21000				24	33
49	10-Oct-01	50	20100	20400	19300	21500	20500	20300				24	37
50	11-Oct-01	51	19500	20480	20900	20500	20300	20200				24	42
51	12-Oct-01	52	19900	20100	20300	20200	20100	19800	11.75	3.002	5.41E-03	24	43
52	13-Oct-01	53	20200	20830	16000	23700	22100	21500				24	45
53	14-Oct-01	54	20200	21000	20900	18600	22900	21600				24	45
54	15-Oct-01	55	19600	20830	20500	19000	21400	22400				24	44
55	16-Oct-01	56	19400	19400	19300	19400	20100	18800				24	39
56	17-Oct-01	57	20700	20450	19200	20300	21100	21200				24	36
57	18-Oct-01	58	19300	19850	20800	19800	19400	19400				24	33
58	19-Oct-01	59	20000	19680	18000	22700	17200	20800	1.259	1.739	7.06E-04	24	34
59	20-Oct-01	60	19500	22030	21500	21900	23300	21400				24	38
60	21-Oct-01	61	19300	20200	19300	20300	20600	20600				24	39
61	22-Oct-01	62	19100	20430	22000	20100	19800	19800				24	42
62	23-Oct-01	63	19000	19800	18900	20700	19000	20600				24	40

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

						Oloup IV = 2		•	[· · · · · ·	Chamber Env	vironment
		į							•	Particle Si	ze	Meai	
Day	Date	Exposure	Nominal	A	nalytical C	hamber Con	centration		1	Determinati	ons	Temperature	Humidity
		Number		Mean		Individual				GSD	TMC		
			(mg/m³)	(mg/m³)		(mg/	m³)		(µm)		(mg/m³)	(°C)	(%)
63	24-Oct-01	64	20200	21150	21100	20000	21100	22400				24	47
64	25-Oct-01	65	19500	20930	20300	20500	23600	19300				24	47
65	26-Oct-01	66	19600	20250	19000	18900	22100	21000	2.378	1.989	6.30E-04	24	30
66	27-Oct-01	67	20000	20730	21200	19900	19700	22100				24	38
67	28-Oct-01	68	20800	20700	21200	20700	20700	20200				23	35
68	29-Oct-01	69	19100	20100	21200	20500	19400	19300				24	36
69	30-Oct-01	70	19300	20850	21200	20900	21000	20300				24	40
70	31-Oct-01	71	20700	21400	22400	21100	21200	20900				24	43
71	1-Nov-01	72	20100	20480	21800	21300	19200	19600				24	46
72	2-Nov-01	73	19300	20130	20200	19900	19200	21200	0.9184	2.580	4.22E-03	24	66
73	3-Nov-01	74	21600	21300	21800	21200	21100	21100				24	56
74	4-Nov-01	75	20500	20880	20800	21200	20600	20900				24	46
75	5-Nov-01	76	20100	20730	20900	21000	21100	19900				24	43
76	6-Nov-01	77	19300	19930	20100	19300	19600	20700				24	39
77	7-Nov-01	78	20100	21150	21400	20900	21200	21100				24	42
78	8-Nov-01	79	20100	22230	22200	22900	21900	21900	0.8543	2.136	1.22E-03	25	44
79	9-Nov-01	80	18100	20900	22100	21600	21100	18800				25	37
80	10-Nov-01	81	20800	21530	22200	21100	22700	20100				24	37
81	11-Nov-01	82	19600	21680	23200	21900	21600	20000				25	37
82	12-Nov-01	83	18600	21650	22400	21400	21300	21500				25	37
83	13-Nov-01	84	17300	19750	20800	17800	20400	20000				24	37

$\begin{array}{c} 00-4202 \\ 211-\text{TAME-1G} \\ \text{GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION} \end{array}$

WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

												Chamber En	vironment
									j	Particle Si	ize	Mea	n
Day	Date	Exposure	Nominal	A	nalytical C	hamber Con	centration			Determinati	ions	Temperature	Humidity
		Number		Mean		Indivi	dual		MMAD	GSD	тмс		
			(mg/m ³)	(mg/m³)		(mg/	m³)		(µm)		(mg/m ³)	(°C)	(%)
84	14-Nov-01	85	20000	21480	21500	22200	20700	21500				24	44
85	15-Nov-01	86	20000	21300	22800	21100	20700	20600				24	49
86	16-Nov-01	87	19100	20700	21500	21300	21000	19000	2.175	2.486	4.89E-03	24	48
87	17-Nov-01	88	18800	20000	20300	21100	19100	19500				24	40
88	18-Nov-01	89	19400	21150	21100	20500	21200	21800				24	43
89	19- N ov-01	90	19600	21400	22200	21100	21100	21200				24	46
90	20-Nov-01	91	20000	21480	22000	20000	22100	21800				24	44
91	21-Nov-01	92	20000	21300	21400	21000	20700	22100				24	34
92	22-Nov-01	93	20500	20950	22600	20400	20200	20600				23	34
93	23-Nov-01	94	20600	20130	19700	21200	20300	19300	22.82	2.323	2.58E-02	23	39
94	24-Nov-01	95	21100	20800	21400	20800	20500	20500				23	45
95	25-Nov-01	96	21000	20030	20400	20100	18100	21500				23	49
96	26-Nov-01	97	21300	21430	21500	22100	21100	21000				23	47
97	27-Nov-01	98	19800	21100	21200	21100	21400	20700				23	40
98	28-Nov-01	99	20600	20280	16900	21800	21300	21100				23	49
99	29-Nov-01	100	19200	20730	20900	20900	21600	19500				25	41
100	30-Nov-01	101	19900	21300	20700	22100	21200	21200	1.034	1.685	2.55E-03	25	50
101	1-Dec-01	102	19400	21230	20700	21000	21500	21700				25	51
102	2-Dec-01	103	17300	19580	20700	20500	18100	19000				25	44
103	3-Dec-01	104	20900	19850	14300	21500	21800	21800				25	40
104	4-Dec-01	105	21100	22430	23500	22300	22000	21900				25	43

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

												Chamber En	vironment
										Particle Si	ze	Mea	n
Day	Date	Exposure	Nominal	Δ	nalytical C	hamber Con	centration			Determinati	ions	Temperature	Humidity
		Number		Mean		Indivi	dual		MMAD	GSD	TMC		
			(mg/m ³)	(mg/m³)		(mg/	m³)		(µm)		(mg/m ³)	(°C)	(%)
105	5-Dec-01	106	18500	19300	21500	20400	19800	15500				25	45
106	6-Dec-01	107	19400	20280	19600	20900	20300	20300				25	45
107	7-Dec-01	108	20300	21550	21800	21600	21500	21300	2.356	2.418	3.87E-03	25	45
108	8-Dec-01	109	19200	20480	21200	20100	20300	20300				25	35
109	9-Dec-01	110	19200	19950	19900	19800	20400	19700				25	40
110	10-Dec-01	111	19500	20750	21100	20500	20200	21200				23	38
111	11-Dec-01	112	20100	20750	20100	20700	21100	21100				23	40
112	12-Dec-01	113	20000	20150	20700	19000	20600	20300				23	41
113	13-Dec-01	114	18400	20650	21300	20900	19500	20900				23	42
114	14-Dec-01	115	19000	19680	20000	20100	19300	19300	0.7437	1.752	9.51E-03	23	45
115	15-Dec-01	116	19700	20650	21100	20700	20200	20600				23	36
116	16-Dec-01	117	18900	20500	20200	20500	20700	20600				22	36
117	17-Dec-01	118	19700	20280	20000	20700	19400	21000				23	38
118	18-Dec-01	119	19000	19730	20800	20400	18100	19600				23	42
119	19-Dec-01	120	18800	20130	20200	20800	20100	19400				23	36
120	20-Dec-01	121	20000	21030	21300	21300	21100	20400				23	37
121	21-Dec-01	122	19800	20280	17700	21100	21000	21300	2.700	2.075	1.34E-03	22	36
122	22-Dec-01	123	21100	20330	19300	20800	19900	21300				21	34
123	23-Dec-01	124	23100	19900	19400	19400	21800	19000				20	32
124	24-Dec-01	125	23400	20430	21800	20300	19700	19900				21	37
125	25-Dec-01	126	21200	18850	17500	17800	20800	19300				20	29
126	26-Dec-01	127	22700	20530	21200	19800	21300	19800				20	37
		Mean	19430			20500			2.719	2.178	3.40E-03	23.9	41.8
		S.D.	859			1184			3.230	0.339	3.45E-03	0.2	4.0

	Inhalation Report	Appendix A

Table III Equipment List

Exposure Chamber

1500 Liter glass and stainless steel chamber (Unifab Cages).

Chamber Air-flow Gauges

Dwyer[®] Magnehelic[®] gauge (Dwyer® Instruments Inc.), calibrated prestudy with a Side Trak[™] III, equipped with a Digital Meter, Model 831-N2 (Sierra Instruments, Inc.).

Chamber Static Pressure

Dwyer[®] Magnehelic[®] gauge (Dwyer[®] Instruments Inc.); calibrated prestudy with a Dwyer[®] Mark II Manometer, Model 25 (Dwyer[®] Instruments Inc.).

Compound Generator

Counter-Current Volatilization Unit, coiled glass rod insert with nichrome wire (Crown Glass Co., Inc.).

Flowmeter with built-in valve, size 0-65 mm, tube #'s 6G02R3, 6G03R3, 6G04R3 (Key Instruments).

Variable Autotransformer, Type 3PN 1010 (Staco Energy Products Company). Minitrol, Model PL312 (Glas-col[®] Apparatus Company).

T° Sentry Digital Alarm Module, Model 110 (Hampshire Controls Corp.) Balston[®] Microfibre[™] Disposable Filter Units, No. L9933-05 (Grade DQ). Quick-disconnect fitting with toggle valve (Rego[®]).

Compound Reservoir

5-gallon cylinder (Manchester Tank).

Balance

Mettler PM30000K (Mettler Instrument Corporation). Pelooze, Model No. 4010.

Inhalation Report	Appendix A

Table III Equipment List

Flowmeters

Flowmeter, size 0-4, 0-5, 0-30, 0-40 Lpm, (Dwyer[®]),
Top Trak™ Mass Flow Meter size 0-1 Lpm, Model 821-1, (Sierra Instruments),
calibrated prestudy with a Gilibrator[®]Bubble Generator, P/N D800286, S/N 569S, flow cell assembly P/N D800268, BD #1860).

Pressure/Vacuum Gauges

Matheson® backpressure gauge, P/N 63-3161. Union Carbide backpressure gauge, P/N SG 8363. Norgreen backpressure gauge, P/N 9892K23. Ashcroft backpressure gauge, P/N 733-47. Dwyer® Magnehelic® gauge. Gast® vacuum gauge, Model 169-01

Regulator

Norgreen, P/N 9892K23.

Valves

Metering Valve, Model SS-4L Series, (Nupro® Co.).

Tubing

Plastic Size 1/4", 1/2", 3/16" (Norton). Teflon[®], size 1/8", 1/4", 1/2". Stainless steel 1/2". T-Tube, stainless steel. Glass elbow tube (Crown Glass Co.). Stainless stell cross (Swage).

Huntingdon Life	e Sciences
-----------------	------------

Page 166 Final Report

Inhalation Report	Appendix A

Table III Equipment List

Air Analyzer

MIRAN[®] 1A-CVF Ambient Air Analyzer (Wilks) with a Cole Parmer strip recorder No. 201 and a Micronta[®] LCD Benchtop Digital Multimeter No. 22-195.

Oxygen/Gas Analyzer, Model 12145 (Gastech).

Digital Sound Level Meter, Model 840029 (Speer Scientific).

Photometer/Light Meter (Quantum Instruments).

Particle Sizer/Analyzer

TSI Aerodynamic Particle Sizer, Model 331001 and a DELL computer, Model 486P/25, equipped with an Epson LQ-570+ Dot matrix printer, Model P630B.

Absorbent Tube Sampling

Charcoal Tubes, ORBO-32, Lot #2000 (Supelco).

Vacuum Pumps

Thomas Industries Inc., Model 707CM50, 107CA18 3.

Timer

Gralab Universal Timer, Model 171.

Environmental Monitoring

VWR Big Digit Temperature and Humidity Gauge, tested prestudy with a VWR NIST Traceable Digital Hygrometer/Thermometer.

Miscellaneous

Ball and Socket Joint

Inhalation Report	A manadire A
Illialation Report	Appendix A
	F F

Table IV Chamber Distribution Records

Group (target)	Date	Port	IR Conc (mg/m ³)	Ratio to H-3
II (2000 mg/m^3)	17-Aug-01	H-3	2060	1.00
		H-1	1920	0.93
		H-2	1880	0.91
		H-3	2060	1.00
		H-9	2160	1.05
		H-7	2150	1.04
		H-8	1770	0.86
		H-3	2030	1.00
		H-11	2200	1.08
		H-12	2170	1.07
		H-13	1870	0.92
		H-3	2070	1.00
		H-14	1920	0.93
	21-Aug-01	H-3	2110	1.00
		H-1	2050	0.97
		H-2	1910	0.91
		H-9	2060	0.98
		H-3	1890	1.00
		H-7	1930	1.02
		H-8	2010	1.06
		H-3	1920	1.00
		H-11	1960	1.02
		H-12	2000	1.04
		H-13	1930	1.01
_		H-14	2220	1.16

Inhalation Report	Appendix A

Table IV Chamber Distribution Records

Group (target)	Date	Port	IR Conc (mg/m ³)	Ratio to H-1
			, ,	
III (10000 mg/m ³)	21-Aug-01	H-3	10600	1.00
,		H-1	10500	0.99
		H-2	10100	0.95
		H-9	10300	0.97
		H-3	10200	1.00
		H-7	10000	0.98
		H-8	10800	1.06
		H-11	11900	1.17
		H-3	10600	1.00
		H-12	10700	1.01
		H-13	10400	0.98
		H-14	9990	0.94
IV (20000 mg/m ³)	20-Aug-01	H-3	20200	1.00
_		H-1	20100	1.00
		H-3	20900	1.00
		H-2	20600	0.99
		H-9	19900	0.95
		H-7	19200	0.92
		H-3	20400	1.00
		H-8	21300	1.04
		H-11	21400	1.05
		H-3	21300	1.00
		H-12	20700	0.97
		H-13	21300	1.00
		H-14	20800	0.98

Inhalation Report	Annondiy A
milaration Report	Appendix A

Table V Miran Calibration

Methodology for Gasoline TAME Vapor Condensate

Miran Calibration for Miran #04, used 22 August 2001 to 27 September 2001.

Settings: The instrument settings for the unit are summarized below:

wavelength, microns	10.3
pathlength, dial setting	5.53
slit width, mm	1
range, absorbance	1
response, seconds	1
gain	High
chart speed, cm/min	1
chart volts	1

<u>Calibrations:</u> The Miran[®] was turned on and allowed to warm up for approximately 10 minutes. The cell was flushed with room air for approximately one minute. The loop was closed, the unit was zeroed and the calibration series was performed as shown below. The resultant data were plotted to obtain a calibration curve. Each observer used a separate syringe for calibration.

Injection	Calculated	Absorbance		
$\frac{\text{Volume}}{(\mu L)}$	$\frac{\text{Concentration}^{1}}{(\text{mg/m}^{3})}$	Operator 1 (volts)	Operator 2 (volts)	Average (volts)
8.8	1014	0.0327	0.0347	0.0337
17	1959	0.0744	0.0759	0.0752
85	9796	0.329	0.323	0.326
175	20168	0.650	0.612	0.634^{2}
		0.574	0.699	
215	24778	0.833	0.846	0.817^{2}
		0.760	0.828	

 $^{^{1}}$ Calculated Conc. (mg/m 3) = <u>Injection volume (μ L) x Density (mg/ μ L) x 1000 L/m 3 5.64 L</u>

²Due to the variability of the results, two additional injections were performed for these points. All four values were used for the regression analysis, where density = 0.65 mg/ μ L and 5.64 L = volume of Miran cell.

Inhalation Report	Annondiy A
milaration Report	Appendix A

Table V Miran Calibration

<u>Calibration Checks:</u> A three-point calibration check of the Miran[®] was performed for each exposure prior to sampling the chambers. The parameters are shown below:

		Expected	Acceptable
Injection	Calculated	Absorbance	Absorbance
<u>Volume</u>	<u>Concentration</u>	Reading	Range
(µL)	(mg/m^3)	(volts)	(volts)
17	1959	0.0752	0.0639 - 0.0865
85	9796	0.326	0.277 - 0.375
175	20168	0.634	0.539 - 0.729

The absorbance was recorded after each injection. The absorbance was considered satisfactory if it was within 15% of the original calibration series. If any of the absorbance values fell outside the 15% range, the injection was rechecked as follows. The volume for the value that was out of range was reinjected twice. The closer pair of the three injections were averaged and the results were compared to the original curve. If the average of the pair was within the 15% range, the original was accepted. If the value of the average was outside the 15% range, the Study Director decided if a new graph was to be prepared.

Table V Miran Calibration

Calibration Curve for Gasoline TAME Vapor Condensate

Inhalation Report	Appendix A

Table V Miran Calibration

Methodology for Gasoline TAME Vapor Condensate

Miran Calibration for Miran #02, used 28 September 2001 to 26 December 2001.

Settings: The instrument settings for the unit are summarized below:

wavelength, microns	10.3
pathlength, dial setting	5.53
slit width, mm	1
range, absorbance	1
response, seconds	1
gain	High
chart speed, cm/min	1
chart volts	1

<u>Calibrations:</u> The Miran[®] was turned on and allowed to warm up for approximately 10 minutes. The cell was flushed with room air for approximately one minute. The loop was closed, the unit was zeroed and the calibration series was performed as shown below. The resultant data were plotted to obtain a calibration curve. Each observer used a separate syringe for calibration.

Injection	Calculated		Absorbanc	e
Volume	Concentration ¹	Operator 1	Operator 2	<u>Average</u>
(µL)	(mg/m^3)	(volts)	(volts)	(volts)
8.8	1014	0.0350	0.0363	0.0357
17	1959	0.0720	0.0764	0.0742
85	9796	0.357	0.352	0.355
175	20168	0.707	0.672	0.690
215	24778	0.856	0.825	0.841

¹Calculated Conc. (mg/m³) = <u>Injection volume (μ L) x Density (mg/ μ L) x 1000 L/m³ 5.64 L</u>

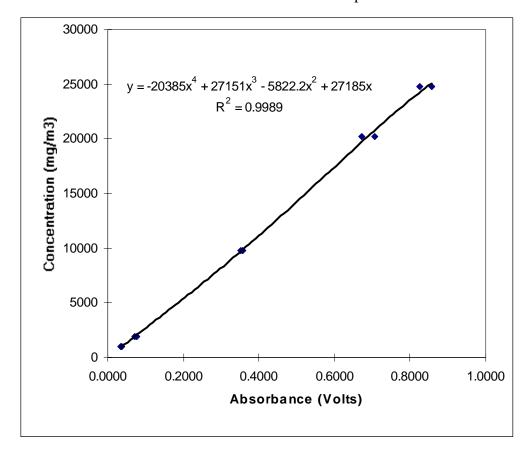
where density = $0.65 \text{ mg/}\mu\text{L}$

5.64 L = volume of Miran cell

Inhalation Report	Appendix A

Table V Miran Calibration

<u>Calibration Checks:</u> A three-point calibration check of the Miran[®] was performed for each exposure prior to sampling the chambers. The parameters are shown below:


		Expected	Acceptable
Injection	Calculated	Absorbance	Absorbance
<u>Volume</u>	<u>Concentration</u>	Reading	Range
(μL)	(mg/m^3)	(volts)	(volts)
17	1959	0.0742	0.0631 - 0.0853
85	9796	0.355	0.302 - 0.408
175	20168	0.690	0.587 - 0.794

The absorbance was recorded after each injection. The absorbance was considered satisfactory if it was within 15% of the original calibration series. If any of the absorbance values fell outside the 15% range, the injection was rechecked as follows. The volume for the value that was out of range was reinjected twice. The closer pair of the three injections were averaged and the results were compared to the original curve. If the average of the pair was within the 15% range, the original was accepted. If the value of the average was outside the 15% range, the Study Director decided if a new graph was to be prepared.

Table V
Miran Calibration

Calibration Curve for Gasoline TAME Vapor Condensate

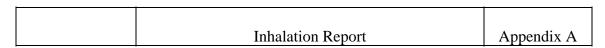


Table VI
Testing Room and Chambers Environmental Monitoring

Interval	Location	Test Substance (mg/m³)	Light (Ft Candles)	Noise (dB)	Oxygen (%)
D	D 000		20.4	<u> </u>	
Pretest	Room 809	0	30.4	61.6	-
	Group I Chamber		-		20
	Group II Chamber	-	-	-	20
	Group III Chamber	-	-	-	20
	Group IV Chamber	-	-	-	20
Week 0	Room 809	0	30.5	60.0	-
	Group I Chamber	-	-	-	20
	Group II Chamber	-	-	-	20
	Group III Chamber	-	-	-	20
	Group IV Chamber	-	-	-	20
Week 9	Room 809	0	31.1	58.4	-
	Group I Chamber	-	-	-	20
	Group II Chamber	-	-	-	20
	Group III Chamber	-	-	-	20
	Group IV Chamber	-	-	-	20
Week 17	Room 809	0	31.3	63.0	-
	Group I Chamber	-	-	-	20
	Group II Chamber	-	-	-	20
	Group III Chamber	-	-	-	20
	Group IV Chamber	-	-	-	20

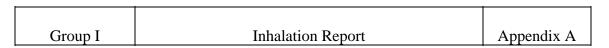
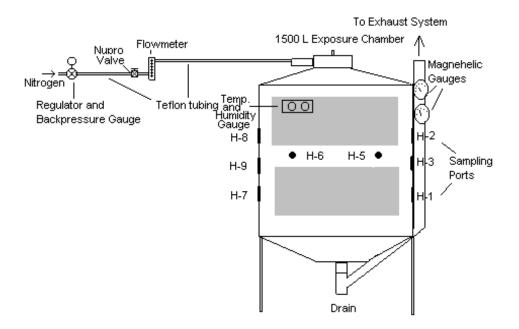
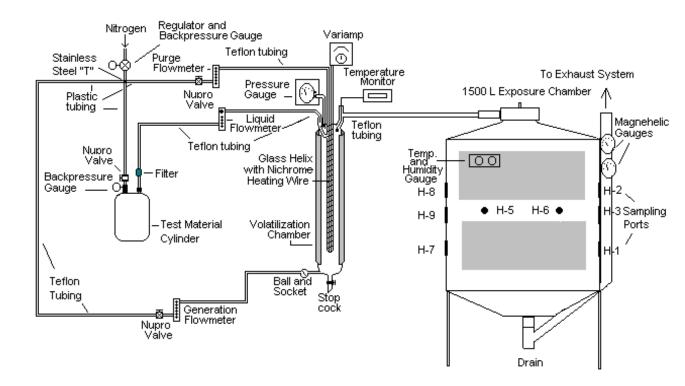



Figure I Chamber Generation System and Whole-Body Exposure Chamber



Notes:

- 1. Sampling Ports H-11 (left-bottom), H-12 (left-top), H-13 (right-bottom) and H-14 (right-top) used for pretest distribution sampling, were located on the back wall of the chambers.
- 2. Animals where individually housed on three levels within the exposure chamber.

Groups II, III		
and IV	Inhalation Report	Appendix A

Figure II Chamber Generation System and Whole-Body Exposure Chamber

Notes:

- 1. Sampling Ports H-11 (left-bottom), H-12 (left-top), H-13 (right-bottom) and H-14 (right-top) used for pretest distribution sampling, were located on the back wall of the chambers.
- 2. Animals where individually housed on three levels within the exposure chamber.

Huntingdon Life Sciences	00-4202	Page 178
	211-TAME-1G	Final Report
	Analytical Report	Appendix B

STUDY TITLE

Analytical Report For:

Gasoline TAME Vapor Condensate:
A One Generation Whole-Body Inhalation Reproduction Toxicity In Rats

AUTHOR

Yonggang Wang

REPORT DATE

22 January 2009

STUDY NUMBER

00-4202

Written by:

Yonggang Wang, M.A.

Laboratory Manager Formulation Chemistry 22 Jan Ol

Date

Reviewed by: 1990

Kay Saladdin, B.S.

Associate Director

Formulation Chemistry

22 Jan 09

Date

Approved by: Bours

Barbara A. Litzenberger, B.S. MT (ASCP)

Director

Analytical Services

Huntingdon	Life	Sciences
------------	------	----------

Page 180 Final Report

Analytical Report	Appendix B

Table of Contents

Study Title Page	178
Signature Page	179
Table of Contents	180
1. Summary	181
2. Experimental Procedures	
3. Results and Discussion	
Tables	
I. Chamber Components Confirmation - Area Percent of Gas	soline TAME Vapor
Condensate (Pretest/Trials)	183
II. Summary of Chamber Components Confirmation – Area P	ercent of Gasoline
TAME Vapor Condensate (Exposures 5-123)	184
III. A-R. Chamber Components Confirmation – Area Percent of	of Gasoline TAME Vapor
Condensate (Exposures 5-123)	185-202
Figures	
Figures	
I. Gas Chromatogram of Sample 1006 (Group I) Charcoal-Tu	be (Exposure 40) 203
II. Gas Chromatogram of Sample 2006 (Group II) Charcoal-Tu	ube (Exposure 40) 204
III. Gas Chromatogram of Sample 3006 (Group III) Charcoal-T	ube (Exposure 40) 205
IV. Gas Chromatogram of Sample 4006 (Group IV) Charcoal-	Tube (Exposure 40) 206

Huntingdon Life Sciences	00-4202 211-TAME-1G	Page 181 Final Report			
	Analytical Report	Appendix B			

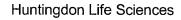
1. Summary

Samples of the test substance (Gasoline TAME Vapor Condensate) exposures to rats were analyzed to confirm that the relative concentrations of the test substance's major components were appropriate under the study conditions. The analytical method was validated at Huntingdon Life Sciences (HLS). The method involved the extraction of Gasoline TAME Vapor Condensate from charcoal tubes with Carbon Disulfide (CS₂). The test substance's major components were then quantified (relative area percent) utilizing Gas Chromatography with a Flame Ionization Detection (FID).

2. Experimental Procedures

The analytical method (HLS-008-01) was validated by the Analytical Toxicology Support Department at HLS. Details of the analytical methods and their validation are maintained in the study files for Study No. 00-6128.

The charcoal tube samples containing the test substance were received from the Inhalation Department at HLS. Samples analyzed to determine the relative concentration of the major components of Gasoline TAME Vapor Condensate were extracted from the charcoal tubes with Carbon Disulfide (CS₂). The extracted solutions were analyzed by Gas Chromatography equipped with a Supelco PetrocolTM DH 150 (150m x 0.25mm, 1.0 μm) column and Flame Ionization Detector (FID). PE Nelson Turbochrom installed on a personal computer was used for data collection and processing.


Huntingdon Life Sciences	00-4202	Page 182
	211-TAME-1G	Final Report
	Analytical Report	Appendix B

Date of sample receipt and analysis is listed as follows:

Interval	Date of Exposures	Date Received	Date Analyzed
Pretest	20 August 01	20 August 01	20–22 August 01
Exposure-5	27 August 01	27 August 01	27–29 August 01
Exposure-12	03 September 01	03 September 01	03-05 September 01
Exposure-19	10 September 01	10 September 01	11-13 September 01
Exposure-26	17 September 01	17 September 01	17-19 September 01
Exposure-33	24 September 01	24 September 01	24-26 September 01
Exposure-40	01 October 01	01 October 01	01-02 October-01
Exposure-47	08 October 01	08 October 01	08-09 October-01
Exposure-54	15 October 01	15 October 01	15-16 October-01
Exposure-61	22 October 01	22 October 01	22-23 October 01
Exposure-68	29 & 30 October 01	29 & 30 October 01	29-30 October 01
Exposure-75	05 November 01	05 November 01	05-06 November 01
Exposure-82	12 November 01	12 November 01	12-13 November 01
Exposure-89	19 November 01	19 November 01	19-21 November 01
Exposure-96	26 November 01	26 November 01	26-27 November 01
Exposure-103	03 December 01	03 December 01	06-07 December 01
Exposure-116	16 December 01	17 December 01	17-19 December 01
Exposure-117	17 December 01	17 December 01	17-19 December 01
Exposure-123	23 December 01	24 December 01	23-24 December 01

3. Results and Discussion

During the trials and exposures, Gasoline TAME Vapor Condensate was analyzed to determine the area percent of the test substance's major components in the chamber. The results of the pretest, summary of animal exposures and animal exposures are presented in Tables I, II, and III. Typical chromatograms of groups I, II, III, and IV are presented in Figures I to IV.

Page 183 Final Report

Analytical Report Appendix B

Table I. Chamber Components Confirmation Area Percent of Gasoline TAME Vapor Condensate Pretest /Trials

Area %

	Control 1	TM Standard-1	Spiked _Control-1	Sample 101	Sample 201	Sample 301	Sample 401	TM Standard-2	Spiked Control-2
Compound	013_002	013_003	013_004	013_013	013_014	013_015	013_016	013_017	013_018
Isobutane	ND	1.52	1.59	ND	1.77	1.79	1.77	1.43	1.54
N-Butane	ND	8.76	8.95	ND	9.69	9.78	9.70	8.40	8.72
3-Methyl-1-butene	ND	0.35	0.36	ND	0.36	0.37	0.36	0.35	0.35
Isopentane	ND	33.07	33.44	ND	33.63	33.78	33.75	32.78	33.09
N-Pentane	ND	7.67	7.69	ND	7.64	7.58	7.58	7.55	7.59
Trans-2-pentene	ND	1.68	<u>1.</u> 61	ND	1.69	1.68	1.73	1.77	1.69
2,3-Dimethylbutane	ND	2.03	2.06	ND	1.96	1.98	1.98	2.00	2.03
2-Methylpentane	ND	6.20	6.23	ND	6.06	6.06	6.07	6.27	6.24
3-Methylpentane	ND.	3.60	3.62	ND	3.52	3.51	3.52	3.65	3.63
N-hexane	ND	3.13	3.14	ND	3.04	3.02	3.03	3.17	3.15
Methylcyclopentane	ND	1.63	1.62	ND	1.58	1.58	1.58	1.66	1.64
2,4-Dimethylpentane	ND	1.48	1.48	ND	1.43	1.43	1.42	1.51	1.50
Benzene	<loq< td=""><td>2.51</td><td>2.44</td><td><loq< td=""><td>2.37</td><td>2.37</td><td>2.38</td><td>2.54</td><td>2.46</td></loq<></td></loq<>	2.51	2.44	<loq< td=""><td>2.37</td><td>2.37</td><td>2.38</td><td>2.54</td><td>2.46</td></loq<>	2.37	2.37	2.38	2.54	2.46
2-Methylhexane	ND	1.63	1.63	ND	1.57	1.57	1.57	1.67	1.66
2,3-Dimethylpentane	ND	1.65	1.63	ND	1.59	1.59	1.59	1.69	1.68
TAME	ND	13.99	13.76	ND	13.36	13.31	13.36	14.26	13.98
3-Methylhexane	ND	1,84	1.84	ND	1.78	1.77	1.77	1.88	1.87
Isooctane	ND	2.08	2.02	ND	2.01	2.00	1.99	2.12	2.11
Toluene	ND	3.77	3.59	ND	3.52	3.48	3.49	3.85	3.71
Total	0.00	98.59	98.70	0.00	98.57	98.65	98.64	98.55	98.64

ND = not detected. <LOQ = Less than the limit of quantification = less than 25% of the area count of the component in the test substance standard.

Final Report

Table II. Summary of Chamber Components Confirmation Area Percent of Gasoline TAME Vapor Condensate (Exposures 5-123)

Area %

Compound	TM Standard-1	Spiked Control 1	Samples Group 1	Samples Group 2	Samples Group 3	Samples Group 4	TM Standard-2	Spiked Control 2	All Samples ^a	All Standards	% Difference ^b	Absolute Difference ^c
Isobutane	1.55	1.53	ND	1.72	1.74	1.74	1.49	1.56	1.73	1.52	-13.82	-0.21
N-Butane	8.78	8.70	ND	9.52	9.57	9.62	8.67	8.89	9.57	8.73	-9.62	-0.84
3-Methy-1-butene	0.35	0.35	ND	0.37	0.36	0.36	0.35	0.35	0.36	0.35	-2.86	-0.01
Isopentane	33.22	33.21	ND	34.06	33.93	34.25	33.08	33.35	34.08	33.15	-2.81	-0.93
N-Pentane	7.41	7.45	ND	7.51	7.42	7.49	7.44	7.41	7.47	7.43	-0.54	-0.04
Trans-2-pentene	1.97	1.91	ND	1.91	1.94	1.97	2.01	1.93	1.94	1.99	2.51	0.05
2,3-Dimethylbutane	2.01	2.03	ND	1.96	1.98	1.97	2.00	2.01	1.97	2.01	1.99	0.04
2-Methylpentane	6.09	6.13	ND	6.06	5.99	5.98	6.10	6.13	6.01	6.10	1.48	0.09
3-Methylpentane	3.62	3.64	ND	3.56	3.55	3.54	3.63	3.61	3.55	3.63	2.20	0.08
N-hexane	3.14	3.17	ND	3.05	3.07	3.04	3.15	3.14	3.05	3.15	3.17	0.10
Methylcyclopentane	1.64	1.65	ND	1.59	1.60	1.59	1.64	1.63	1.59	1.64	3.05	0.05
2,4-Dimethylpentane	1.44	1.46	ND	1.40	1.42	1.39	1.47	1.46	1.40	1.46	4.11	0.06
Benzene	2.54	2.49	ND	2.37	2.38	2.36	2.54	2.46	2.37	2.54	6.69	0.17
2-Methylhexane	1.63	1.65	ND	1.56	1.57	1.55	1.64	1.63	1.56	1.64	4.88	0.08
2,3-Dimethylpentane	1.64	1.66	ND	1.58	1.58	1.55	1.65	1.64	1.57	1.65	4.85	0.08
TAME	14.01	14.02	ND	13.30	13.36	13.19	14.04	13.86	13.28	14.03	5.35	0.75
3-Methylhexane	1.84	1.86	ND	1.76	1.77	1.75	1.85	1.84	1.76	1.85	4.86	0.09
Isooctane	2.03	2.06	ND	1.95	1.95	1.92	2.04	2.04	1.94	2.04	4.90	0.10
Toluene	3.76	3.70	ND	3.44	3.46	3.41	3.79	3.67	3.44	3.78	8.99	0.34
Total	98.67	98.67	0.00	98.67	98.64	98.67	98.58	98.61	98.64	98.69	-	-

^a Groups II, III, and IV only. ^b % Difference = (All Standards Area % - All Samples Area %) / All Standards Area % *100. ^c Absolute Difference = Difference in Area % = All Standards Area % - All Samples Area %.

Huntingdon	Life	Sciences
------------	------	----------

Page 185 Final Report

Analytical Report Appendix B

Table III-A. Chamber Components Confirmation Area Percent of Gasoline TAME Vapor Condensate Exposure 5

Area %

	Control 1	TM Standard 1	Spiked Control 1	Sample 1001	Sample 2001	Sample 3001	Sample 4001	TM Standard 2	Spiked Control 2
Compound	014_002	014_003	014_004	014_013	014_014	014_015	014_016	014_017	014_018
Isobutane	ND	1.46	1.56	ND	1.79	1.84	1.76	1.50	1.57
N-Butane	ND	8.45	8.84	ND	9.76	10.00	9.57	8.59	8.86
3-Methyl-1-butene	ND	0.35	0.35	ND	0.37	0.38	0.37	0.35	0.35
Isopentane	ND	33.08	33.30	ND	34.19	35.00	33.87	33.24	33.25
N-Pentane	ND	7.61	7.54	_ ND	7.72	7.55	7.65	7.50	7.50
Trans-2-pentene	ND	1.73	1.59	ND	1.74	1.66	1.71	1.66	1.68
2,3-Dimethylbutane	ND	2.08	2.06	ŊD	1.98	1.96	2.02	2.02	2.00
2-Methylpentane	ND	6.29	6.28	ND	6.09	6.11	6.11	6.28	6.26
3-Methylpentane	ND	3.66	3.65	_ ND	3.53	3.53	3.54	3.64	3.63
N-hexane	ND_	3.16	3.17	ND	3.03	3.02	3.07	3.16	3.16
Methylcyclopentane	ND	1.66	1.64	ND	1.59	1.59	1.59	1.65	1.63
2,4-Dimethylpentane	ND	1.49	1.49	ND	1.40	1.37	1.43	1.49	1.48
Benzene	ND	2.55	2.46	_ND	2.35	2.33	2.39	2.53	2.46
2-Methylhexane	ND	1.66	1.65	_ ND	1.53	1.48	1.58	1.65	1.65
2,3-Dimethylpentane	ND	1.65	1.65	ND	1.55	1.49	1.58	1.66	1.65
TAME	ND	14.08	13.91	ND	13.08	_12.76	13.28	14.04	13.92
3-Methylhexane	ND	1.87	1.81	ND	1.73	1.66	1.77	1.85	1.86
Isooctane	ND_	2.05	2.06	ND	1.89	1.78	1.95	2.04	2.05
Toluene	ND	3.77	3.63	ND	3.33	3.10	3.45	3.75	3.66
Total	0.00	98.65	98.64	0.00	98.65	98.61	98.69	98.60	98.62

Page 186 Final Report

Analytical Report Appendix B

Table III-B. Chamber Components Confirmation Area Percent of Gasoline TAME Vapor Condensate Exposure 12

Area %

	Control 1	TM Standard-1	Spiked Control 1	Sample 1002	Sample 2002	Sample 3002	Sample 4002	TM Standard 2	Spiked Control 2
Compound	015_002	015_003	015_004	015_013	015_014	015_015	015_016	015_017	015_018
Isobutane	ND	1.56	1.57	ND	1.81	1.79	1.80	1.53	1.58
N-Butane	ND	8.86	8.90	ND	9.76	9.69	9.72	8.75	8.91
3-Methyl-1-butene	ND	0.35	0.36	ND	0.37	0.36	0.36	0.34	0.34
Isopentane	ND	33.41	33.33	ND	34.44	33.99	34.16	33.26	33.42
N-Pentane	ND	7.45	7.82	ND	7.72	7.72	7.75	7.68	7.70
Trans-2-pentene	ND	1.75	1.65	ND	1.61	1.61	1.74	1.73	1.61
2,3-Dimethylbutane	ND	2.03	2.03	ND	2.00	1.96	2.03	2.06	1.99
2-Methylpentane	ND	6.22	6.23	ND	6.12	6.08	6.09	6.24	6.21
3-Methylpentane	ND	3.61	3.62	ND	3.55	3.52	3.53	3.62	3.61
N-hexane	ND	3.13	_3.10	ND	3.03	3.03	3.03	3.14	3.13
Methylcyclopentane	ND	1.63	1.63	ND	1.59	1.58	1.59	1.63	1.63
2,4-Dimethylpentane	ND	1.46	1.46	ND	1.38	1.42	1.40	1.46	1.47
Benzene	ND	2.53	2.46	ND	2.36	2.36	2.36	2.52	2.45
2-Methylhexane	ND	1.63	1.63	ND	1.53	1.57	1.54	1.63	1.64
2,3-Dimethylpentane	ND	1.63	1.63	ND	1.53	1.57	1.55	1.63	1.64
TAME	ND	13.85	13.76	ND	13.06	13.23	13.09	13.89	13.78
3-Methylhexane	ND_	1.82	1.84	ND	1.70	1.76	1.73	1.83	1.84
Isooctane	ND	2.01_	2.02	ND	1.84	1.95	1.89	2.02	2.03
Toluene	ND	3.70	3.60	ND	3.26	3.44	3.34	3.70	3.64
Total	0.00	98.63	98.64	0.00	98.66	98.63	98.70	98.66	98.62

Page 187 Final Report

Analytical Report Appendix B

Table III-C. Chamber Components Confirmation Area Percent of Gasoline TAME Vapor Condensate Exposure 19

Area %

	Control 1	TM Standard 1	Spiked Control 1	Sample 1003	Sample 2003	Sample 3003	Sample 4003	TM Standard 2	Spiked Control 2
Compound	016_002	016_003	016_004	016_013	016_014	016_015	016_016	016_017	016_018
Isobutane	ND	1.50	1.51	ND	1.67	1.62	1.79	1.43	1.54
N-Butane	ND	8.56	8.60	ND	9.33	9.14	9.63	8.36	8.72
3-Methyl-1-butene	ND	0.35	0.35	ND	0.35	0.36	0.37	0.35	0.35
Isopentane	ND	33.01	33.04	ND	32.88	33.64	34.05	33.06	33.31
N-Pentane	ND	7.56	<u>7.</u> 59	ND	7.66	7.51	7.53	7.39	7.40
Trans-2-pentene	ND_	1.72	<u>1</u> .65	ND	1.62	1.69	1.61	1.67	1.62
2,3-Dimethylbutane	ND	2.04	1.99	ND	2.03	2.03	2.00	2.03	2.03
2-Methylpentane	ND	6.25	6.25	ND	6.24	6.18	6.11	6.25	6.25
3-Methylpentane	ND	3.64	3.64	ND	3.62	3.59	3.55	3.67	3.63
N-hexane	ND_	3.15	3.16	ND	3.13	3.11	3.06	3.17	3.15
Methylcyclopentane	ND	1.65	1.65	ND	1.63	1.61	1.59	1.66	1.64
2,4-Dimethylpentane	ND	1.42	1.43	ND	1.45	1.45	1.39	1.50	1.48
Benzene	ND	2.55	2.49	ND	2.42	2.44	2.45	2.57	2.46
2-Methylhexane	ND	1.65	1.67	_ ND	1.61	1.60	1.57	1.66	1.65
2,3-Dimethylpentane	ND	1.66	1.67	ND	1.64	1.61	1.54	1.67	1.66
TAME	ND	14.26	14.25	ND	13.78	13.75	13.54	14.41	14.14
3-Methylhexane	ND	1.85	1.88	ND	1.83	1,80	1.73	1.87	1.86
Isooctane	ND	2.05	2.09	ND	2.07	1.99	1.89	2.08	2.06
Toluene	ND	3.79	3.74	ND	3.64	3.54	3.32	3.82	3.69
Total	0.00	98.66	98.65	0.00	98.60	98.66	98.72	98.62	98.64

Page 188 Final Report

Analytical Report Appendix B

Table III-D. Chamber Components Confirmation Area Percent of Gasoline TAME Vapor Condensate Exposure 26

Area %

	Control 1	TM Standard 1	Spiked Control 1	Sample 1004	Sample 2004	Sample 3004	Sample 4004	TM Standard 2	Spiked Control 2
Compound	017_002	017_003	017_004	017_013	017_014	017_015	017_016	017_017	017_018
Isobutane	ND	1.36	1.41	ND	1.71	1.72	1.75	0.83	1.41
N-Butane	ND	8.09	8.25	ND.	9.36	9.47	9.49	6.18	8.20
3-Methyl-1-butene	ND	0.33	0.34	ND	0.35	0.36	0.36	0.32	0.34
Isopentane	ND	32.67	32.79	ND	33.72	34.04	33.84	31.26	32.76
N-Pentane	ND	7.47	7.45	ND	7.60	7.72	7.56	7.43	7.48
Trans-2-pentene	ND	1.77	1.75	_ ND	1.74	1.71	1.79	1.83	1.79
2,3-Dimethylbutane	ND	2.03	2.10	ND	2.03	2.03	1.98	2.19	2.05
2-Methylpentane	ND	6.37	6.37	ND	6.15	6.16	6.11	6.70	6.35
3-Methylpentane	ND	3,71	3.71	ND	3.57	3.57	3.56	3.93	3.70
N-hexane	ND	3.23	3.22	ND	3.08	3.07	3.06	3.46	3.22
Methylcyclopentane	ND	1.69	1.69	ND	1.61	1.61	1.60	1.82	1.68
2,4-Dimethylpentane	ND	1,45	1.46	ND	1.43	1.40	1.41	1.64	1.51
Benzene	ND	2.64	2.56	ND	2.40	2.41	2.42	2.86	2.55
2-Methylhexane	ND	1.70	1.70	ND	1.59	1.55	1.58	1.84	1.69
2,3-Dimethylpentane	_ ND	1.70	1.71	ND	1.60	1.55	1.57	1.86	1.70
TAME	ND	14.49	14.35	ND	13.46	13.28	13.37	15.63	14.32
3-Methylhexane	ND	1.90	1.91	ND	1.79	1.73	1.77	2.08	1.91
Isooctane	ND	2.10	2.12	_ND	1.98	1.88	1.94	2.32	2.13
Toluene	ND	3.89	3.81	ND	3.51	3.32	3.45	4.33	3.82
Total	0.00	98.59	98.70	0.00	98.68	98.58	98.61	98.51	98.61

Page 189 Final Report

Analytical Report Appendix B

Table III-E. Chamber Components Confirmation Area Percent of Gasoline TAME Vapor Condensate Exposure 33

Area %

	Control 1	TM Standard 1	Spiked Control 1	Sample 1005	Sample 2005	Sample 3005	Sample 4005	TM Standard 2	Spiked Control 2
Compound	018_002	018_003	018_004	018_013	018_014	018_015	018_016	018_017	018_018
Isobutane	ND	1.53	1.45	ND	1.63	1.70	1.30	1.46	1.62
N-Butane	ND	8.73	8.45	ND	9.17	9.34	8.16	8.48	9.02
3-Methyl-1-butene	ND	0.35	0.35	ND	0.36	0.36	0.35	0.35	0.35
Isopentane	ND	33.11	32.91	ND	33.62	33.68	33.25	33.14	33.49
N-Pentane	ND	7.59	7.59	ND	7.56	7.46	7.53	7.47	7.42
Trans-2-pentene	ND	1.62	1.65	ND	1.69	1.79	1.81	1.79	1.75
2,3-Dimethylbutane	ND	1.97	2.06	ND	1,97	1.98	2.09	2.02	2.05
2-Methylpentane	ND	6.19	6.27	ND	6.17	6.15	6.40	6.25	6.22
3-Methylpentane	ND	3.60	3.66	ND	3.59	3.57	3.72	3.66	3.60
N-hexane	ND	3.13	3.18	ND	3.10	3.07	3.19	3.18	3.04
Methylcyclopentane	ND	1.64	1.67	ND	1.62	1.61	1.69	1.66	1.63
2,4-Dimethylpentane	ND	1.46	1.49	ND	1.43	1.42	1.49	1.45	1.45
Benzene	ND	2.56	2.54	ND	2.43	2.40	2.56	2.60	2.48
2-Methylhexane	ND	1.63	1.67	ND	1.60	1.59	1.67	1.65	1.63
2,3-Dimethylpentane	ND	1.64	1.67	ND	1.60	1.60	1.68	1.65	1.63
TAME	ND	14.16	14.33	ND	13.59	13.50	14.11	14.15	13.83
3-Methylhexane	ND	1.84	1.88	ND	1.80	1.78	1.88	1.86	1.83
Isooctane	ND	2.04	2.08	ND	1.98	1.96	2.06	2.02	2.00
Toluene	ND	3.79	3.76	ND	3.51	3.51	3.65	3.79	3.64
Total	0.00	98.58	98.66	0.00	98.42	98.47	98.59	98.63	98.68

Page 190 Final Report

Analytical Report Appendix B

Table III-F. Chamber Components Confirmation Area Percent of Gasoline TAME Vapor Condensate Exposure 40

Area %

	Control 1	TM Standard 1	Spiked Control 1	Sample 1006	Sample 2006	Sample 3006	Sample 4006	TM Standard 2	Spiked Control 2
		Standard	Control	1000	2006	3000	4006	Standard 2	Control 2
Compound	001_002	001_003	001_004	001_005	001_006	001_007	001_008	001_009	001_010
Isobutane	ND	1.54	1.58	ND	1.66	1.61	1.49	1.52	1.38
N-Butane	ND	8.73	8.91	ND	9.35	9.14	8.77	8.72	8.31
3-Methyl-1-butene	ND	0.35	0.36	ND	0.36	0.36	0.36	0.35	0.35
Isopentane	ND	33.27	33.47	ND	33.83	33.75	33.56	33.20	33.01
N-Pentane	ND	7.50	7.51	ND	7.54	7.54	7.57	7.41	7.59
Trans-2-pentene	ND	1.91	1.86	ND	1.88	1.98	1.95	2.01	1.79
2,3-Dimethylbutane	ND	2.05	2.00	ND	2.04	2.13	1.99	1.98	2.07
2-Methylpentane	ND	6.23	6.24	ND	6.17	6.22	6.26	6.24	6.34
3-Methylpentane	ND	3.63	3.62	_ ND	3.58	3.61	3.64	3.62	3.69
N-hexane	ND	3.16	3.14	ND	3.03	3.10	3.15	3.15	3.20
Methylcyclopentane	ND	1.64	1.64	ND	1.62	1.63	1.65	1.64	1.67
2,4-Dimethylpentane	ND	1.39	1.39	ND	1.47	1.40	1.41	1.41	1.44
Benzene	ND	2.57	2.49	ND	2.41	2.31	2.47	2.56	2.55
2-Methylhexane	ND	1.64	1.64	_ ND	1.59	1.60	1.62	1.63	1.68
2,3-Dimethylpentane	ND	1.62	1.61	_ ND	1.60	1.60	1.63	1.63	1.68
TAME	ND	14.00	13.81	_ ND	13.37	13.60	13.73	13.98	14.20
3-Methylhexane	ND	1.83	1.82	_ ND	1.76	1.80	1.82	1.83	1.88
Isooctane	ND	1.99	1.98	ND	1.97	1.97	2.00	2.01	2.07
Toluene	ND	3.69	3.58	ND	3.52	3.45	3.56	3.73	3.76
Total	0.00	98.74	98.65	0.00	98.75	98.80	98.63	98.62	98.66

Page 191 Final Report

Analytical Report Appendix B

Table III-G. Chamber Components Confirmation Area Percent of Gasoline TAME Vapor Condensate Exposure 47

Area %

	Control 1	TM Standard 1	Spiked Control 1	Sample 1007	Sample 2007	Sample 3007	Sample 4007	TM Standard 2	Spiked Control 2
Compound	002_002	002_003	002_004	002_005	002_006	002_007	002_008	002_009	002_010
Isobutane	ND	1.55	1.56	ND	1.64	1.70	1.75	1.47	1.57
N-Butane	ND	8.77	8.78	ND	9.21	9.34	9.56	8,57	8.88
3-Methyl-1-butene	ND_	0.35	0.34	ND	0.36	0.36	0.36	0.35	0.35
Isopentane	ND	33,26	33.23	ND	33.72	33.71	33.90	33.25	33.36
N-Pentane	ND	7.49	7.45	ND_	7.50	7.47	7.51	7.43	7.45
Trans-2-pentene	ND	1.90	1.80	ND	1.80	1.87	1.86	1.90	1.82
2,3-Dimethylbutane	ND	2.03	2.07	ND	2.05	2.01	1.97	2.04	2.06
2-Methylpentane	ND	6.24	6.27	ND	6.20	6.16	6.13	6.27	6.26
3-Methylpentane	ND	3.62	3.65	ND	3.60	3.58	3.55	3.65	3.63
N-hexane	ND	3.14	3.15	ND	3.11	3.09	3.02	3.12	3.14
Methylcyclopentane	ND	1.64	1.65	ND	1.62	1,62	1.60	1.66	1.64
2,4-Dimethylpentane	ND	1.40	1.41	_ND	1.42	1.41	1.40	1.45	1.44
Benzene	ND	2.56	2.51	ND	2.43	2.43	2.31	2.58	2.49
2-Methylhexane	ND	1.64	1.66	ND	1.60	1.59	1.58	1.65	1.64
2,3-Dimethylpentane	ND	1.62	1.65	ND	1.61	1.59	1.58	1.64	1.63
TAME	ND	13.97	14.01	ND	13.55	13.51	13.39	14.08	13.86
3-Methylhexane	ND	1.82	1.85	ND	1.80	1.78	1.77	1.83	1.83
Isooctane	ND	1.99	2.03	ND	1.97	1.95	1.94	1.99	2.00
Toluene	_ND	3.69	3.64	ND	3.48	3.47	3.47	3.72	3.61
Total	0.00	98.68	98.71	0.00	98.67	98.64	98.65	98.65	98.66

Huntingdon	Life	Sciences
------------	------	----------

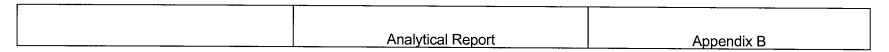
Page 192 Final Report

Analytical Report Appendix B

Table III-H. Chamber Components Confirmation Area Percent of Gasoline TAME Vapor Condensate Exposure 54

Area %

	Control 1	TM Standard 1	Spiked Control 1	Sample 1008	Sample 2008	Sample 3008	Sample 4008	TM Standard 2	Spiked Control 2
Compound	003_002	003_003	003_004	003_005	003_006	003_007	003_008	003_009	003_010
Isobutane	ND	1.57	1.69	ND	1.73	1.73	1.84	1.58	1.64
N-Butane	ND	8.83	9.37	ND	9.57	9.59	9.91	8.91	9.17
3-Methyl-1-butene	ND	0.35	0.37	ND	0.37	0.37	0.37	0.36	0.36
Isopentane	ND	33.34	34.12	ND	34.05	34.06	34,22	33.52	33.71
N-Pentane	ND	7.47	7.75	ND	7.56	7.59	7.53	7.49	7.53
Trans-2-pentene	ND	1.77	1.71	ND	1.73	1.80	1.84	1.82	1.74
2,3-Dimethylbutane	ND_	1.98	1.97	ND	1.97	2.03	1.97	1.97	2.00
2-Methylpentane	ND	6.22	6.16	ND_	6.12	6.11	6.09	6.21	6.20
3-Methylpentane	ND	3.61	_3.56	ND	3.54	3.54	3.52	3.61	3.60
N-hexane	ND	3.14	3.08	ND	3.05	3.05	3.05	3.12	3.13
Methylcyclopentane	ND	1.64	1.59	ND	1.59	1.59	1.57	1.63	1.62
2,4-Dimethylpentane	ND	1.39	1.35	ND	1.38	1.37	1.34	1.39	1.38
Benzene	ND	2.56	2.39	ND	2.37	2.37	2.34	2.53	2.45
2-Methylhexane	ND	1.64	1.58	ND	1.57	1.57	1.55	1.62	1.54
2,3-Dimethylpentane	ND	1.63	1.57	ND	1.59	1.58	1.55	1.62	_1.58
TAME	ND	13.96	13.36	ND	13.35	13.24	13.00	13.84	13.70
3-Methylhexane	_ND	1.82	1.75	ND	1.69	1.76	1.74	1.81	1.80
Isooctane	ND	2.01	1.92	ND_	1.97	1.94	1.92	1.96	1.98
Toluene	ND	3.73	3.40	ND	3.49	3.45	3.36	3.67	3.54
Total	0.00	98.66	98.69	0.00	98.69	98.74	98.71	98.66	98.67


Page 193 Final Report

Analytical Report Appendix B

Table III-I. Chamber Components Confirmation Area Percent of Gasoline TAME Vapor Condensate Exposure 61

Area %

	Control 1	TM Standard 1	Spiked Control 1	Sample 1009	Sample 2009	Sample 3009	Sample 4009	TM Standard 2	Spiked Control 2
Compound	004_002	004_003	004_004	004_005	004_006	004_007	004_008	004_009	004_010
Isobutane	ND	1.56	1.58	ND	1.73	1.82	1.82	1.53	1.53
N-Butane	ND	8.89	8.98	ND	9.54	9.82	9.85	8.82	8.78
3-Methyl-1-butene	ND	0.36	0.36	ND	0.37	0.37	0.37	0.35	0.34
Isopentane	ND	33.70	33.65	ND	34.15	34.29	34.34	33.65	33.47
N-Pentane	ND	7.68	7.73	ND	7.67	7.56	7.67	7.78	7.55
Trans-2-pentene	ND	1.68_	1.60	ND	1.69	1.66	1.66	1.64	1.68
2,3-Dimethylbutane	ND	2.05	1.98	ND	2.02	1.98	2.02	2.04	2.06
2-Methylpentane	ND	6.23	6.21	ND	6.11	5.99	6.10	6.23	6.27
3-Methylpentane	ND	3.61	3.61	ND	3.54	3.54	3.52	3.61	3.64
N-hexane	ND	3.13	3.13	ND	3.05	3.05	3.04	3.12	3.15
Methylcyclopentane	ND	1.62	1.62	ND	1.58	1.58	1.57	1.62	1.64
2,4-Dimethylpentane	ND	1.37	1.39	ND	1.38	1.37	1.35	1.42	1.41
Benzene	ND	2.52	2.45	ND	2.35	2.34	2.34	2.51	2.49
2-Methylhexane	ND	1.61	1.63	ND	1.56	1.56	1.55	1.62	1.65
2,3-Dimethylpentane	ND	1.60	1.62	ND	1.57	1.56	1.49	1.61	1.64
TAME	ND	13.76	13.75	ND	13.27	13.11	13.08	13.76	13.93
3-Methylhexane	ND	1.80	1.81	ND	1.76	1.76	1.73	1.80	1.84
Isooctane	ND	1.96	1.98	ND_	1.96	1.94	1.90	1.96	2.03
Toluene	ND	3.61	3.57	ND	3.44	3.37	3.34	3.60	3.60
Total	0.00	98.74	98.65	0.00	98.74	98.67	98.74	98.67	98.70

Table III-J. Chamber Components Confirmation Area Percent of Gasoline TAME Vapor Condensate Exposure 68

Area % Control 1 TM Spiked Sample Sample Sample Sample TM Spiked Standard 1 4010D-1 a Control 1 1010 2010 3010 Standard 2 Control 2 005 002 005 003 005_004 005 005 005 006 005 007 Compound 005 010 005 009 005 011 Isobutane ND 1.62 1.63 ND 1.68 1.79 1.84 1.59 1.63 N-Butane ND 9.10 9.13 ND 9.36 9.73 9.90 8.97 9.12 3-Methyl-1-butene 0.36 ND 0.36 ND 0.36 0.30 0.36 0.33 0.31 33.54 Isopentane ND 33.57 ND 33.87 33.96 34.36 33.61 33.64 ND N-Pentane 7.60 7.55 ND 7.52 7.59 7.62 7.49 7.61 Trans-2-pentene ND 1.90 1.74 ND 1.78 1.79 1.79 1.68 1.67 2,3-Dimethylbutane ND 1.98 2.01 ND 1.96 2.01 1.99 2.00 2.00 2-Methylpentane ND 6.20 6.17 ND 6.16 6.07 6.08 6.19 6.19 3-Methylpentane ND 3.59 3.58 3.56 ND 3.51 3.51 3.59 3.59 N-hexane ND 3.09 3.13 ND 3.08 3.04 3.02 3.12 3.11 Methylcyclopentane ND 1.61 1.62 ND 1.60 1.58 1.57 1.62 1.61 2,4-Dimethylpentane ND 1.37 1.43 1.42 1.37 1.38 1.42 ND 1.44 Benzene 2.50 2.45 ND ND 2.37 2.36 2.32 2.45 2.51 2-Methylhexane ND 1.60 1.62 ND 1.58 1.56 1.61 1.53 1.62 2,3-Dimethylpentane ND 1.59 1.61 ND 1.60 1.56 1.54 1.61 1.61 TAME 13.69 ND 13.70 ND 13.44 13.04 13.79 13.28 13.68 3-Methylhexane ND 1.79 1.81 ND 1.79 1.76 1.73 1.80 1.81 Isooctane ND 1.95 1.98 1.94 ND 1.98 1.90 1.96 1.99 Toluene 3.62 ND 3.55 ND 3.51 3.46 3.33 3.56 3.64 Total 0.00 98.69 98.65 98.62 0.00 98.64 98.72 98.64 98.64

^a Results were reported from this duplicate sample because the original sample was suspect.

Page 195 Final Report

Analytical Report Appendix B

Table III-K. Chamber Components Confirmation Area Percent of Gasoline TAME Vapor Condensate Exposure 75

Area %

	Control 1	TM Standard 1	Spiked Control 1	Sample 1011	Sample 2011	Sample 3011	Sample 4011	TM Standard 2	Spiked Control 2
Compound	006_002	006_003	006_004	006_005	006_006	006_007	006_008	006_009	006_010
Isobutane	ND	1.57	1.64	ND	1.82	1.84	1.80	1.55	1.59
N-Butane	ND	8.87	9.18	ND	9.82	9.90	10.00	9.02	9.19
3-Methyl-1-butene	ND	0.35	0.36	ND	0.37	0.37	0.36	0.35	0.35
Isopentane	ND_	33.33	33.64	ND	34.08	34.19	33.93	33.14	33.37
N-Pentane	ND	7.39	7.49	ND	7.44	7.46	7.41	7.36	7.54
Trans-2-pentene	ND	1.94	1.85	ND	1.92	1.97	1.79	1.91	1.85
2,3-Dimethylbutane	ND	2.02	2.04	ND	1.94	1.95	1.93	1.98	2.03
2-Methylpentane	ND	6.19	6.18	ND	6.07	6.05	6.05	6.16	6.16
3-Methylpentane	ND	3.60_	3.58	ND	3.51	3.50	3.50	3.58	3.57
N-hexane	ND_	3.13	3.11	ND	3.02	3.02	3.03	3.11	3.10
Methylcyclopentane	ND	1.63	1.62	ND	1.57	<u>1</u> .56	1.57	1.62	1.61
2,4-Dimethylpentane	ND	1.44	1.39	ND	1.40	1.38	1.40	1.46	1.45
Benzene	ND	2.54	2.44	ND	2.34	2.34	2.36	2.53	2.44
2-Methylhexane	ND	1.63	1.61	_ND	1.55	1.54	1.56	1.62	1.61
2,3-Dimethylpentane	ND	1.62	1.61	ND	1.56	_1.55	1.57	1.64	1.63
TAME	ND	13.89	13.66	ND	13.15	13.07	13.17	13.90	13.67
3-Methylhexane	ND	1.82	1.80	ND	1.75	1.73	1.76	1.83	1.82
Isooctane	ND_	2.00	1.99	ND	1.94	1.90	1.99	2.07	2.06
Toluene	ND	3.69	3.55	ND	3.39	3.33	3.47	3.77	3.64
Total	0.00	98.65	98.74	0.00	98.64	98.65	98.65	98.60	98.68

Huntingdon	Life	Sciences
------------	------	----------

Page 196 Final Report

Analytical Report Appendix B

Table III-L. Chamber Components Confirmation Area Percent of Gasoline TAME Vapor Condensate Exposure 82

Area %

	Control 1	TM Standard 1	Spiked Control 1	Sample 1012	Sample 2012	Sample 3012	Sample 4012	TM Standard 2	Spiked Control 2
Compound	007_002	007_003	007_004	007_005	007_006	007_007	007_008	007_009	007_010
Isobutane	ND	1.56	1.64	ND	1.70	1.80	1.78	1.59	1.55
N-Butane_	ND	9.02	9.15	ND	9.49	9.84	9.65	8.92	8.89
3-Methyl-1-butene	ND	0.33	0.36	ND	0.36	0.36	0.35	0.33	0.32
Isopentane	ND	33.10	33.56	ND	33.67	33.95	33.78	33.29	33.40
N-Pentane	ND	7.39	7.53	ND	7.46	7.54	7.53	7.45	7.59
Trans-2-pentene	ND	1.87	1.86	ND	1.80	1.87	1.88	1.89	1.80
2,3-Dimethylbutane	ND	2.01	2.01	ND	1.99	1.95	1.96	1.96	2.05
2-Methylpentane	ND	6.17	6.14	ND	6.13	6.05	6.06	6.15	6.20
3-Methylpentane	ND	3.59	3.56	ND	3.56	3.51	3.51	3.57	3.60
N-hexane	ND	3.11	3.09	ND	3.06	3.02	3.03	3.10	3.13
Methylcyclopentane	ND	1.63	1.60	ND	1.60	1.58	1.58	1.62	1.62
2,4-Dimethylpentane	ND	1.46	1.45	_ND	1.37	1.41	1.41	1.45	1.46
Benzene	<loq< td=""><td>2.54</td><td>2.43</td><td><loq< td=""><td>2.40</td><td>2.35</td><td>2.37</td><td>2.51</td><td>2.46</td></loq<></td></loq<>	2.54	2.43	<loq< td=""><td>2.40</td><td>2.35</td><td>2.37</td><td>2.51</td><td>2.46</td></loq<>	2.40	2.35	2.37	2.51	2.46
2-Methylhexane	ND	1.62	1.60	ND	1.59	1.56	1.57	1.62	1.63
2,3-Dimethylpentane	ND	1.64	1.62	ND	1.61	1.58	1.59	1.64	1.64
TAME	ND	13.90	13.58	ND	13.34	13.04	13.22	13.84	13.77
3-Methylhexane	ND	1.83	1.80	ND	1.80	1.76	1.77	1.83	1.83
Isooctane	ND	2.07	2.04_	_ ND	2.04	2.00	2.01	2.06	2.08
Toluene	ND	3.78	3.61	ND	3.53	3.42	3.48	3.76	3.67
Total	0.00	98.62	98.63	0.00	98.50	98.59	98.53	98.58	98.69

ND = not detected. <LOQ = Less than the limit of quantification = less than 25% of the area count of the component in the test substance standard.

Page 197 Final Report

Analytical Report	Appendix B

Table III-M. Chamber Components Confirmation Area Percent of Gasoline TAME Vapor Condensate Exposure 89

Area %

	Control 1	TM Standard 1	Spiked Control 1	Sample 1013	Sample 2013	Sample 3013	Sample 4013	TM Standard 2	Spiked Control 2
Compound	008_002	008_003	008_004	008_005	008_006	008_007	800_800	008_009	008_010
Isobutane	ND	1.48	1.54	ND	1.72	1.78	1.76	1.23	1.61
N-Butane	ND	8.41	8.78	ND	9.50	9.66	9.65	8.52	9.25
3-Methyl-1-butene	ND	0.35	0.35	ND	0.37	0.37	0.37	0.32	0.36
Isopentane	ND	33.31	33.49	ND	34.38	34.05	34.33	31.19	33.78
N-Pentane	ND	7.74	7.76	ND	7.76	7.58	7.60	8.25	7.50
Trans-2-pentene	ND	_ 1.99	1.94	ND	1.71	1.76	1.77	2.72	2.00
2,3-Dimethylbutane	ND	1.98	2.04	ND	2.04	1.96	2.01	2.01	2.02
2-Methylpentane	ND	6.22	6.21	ND	6.21	6.11	6.14	6.12	6.16
3-Methylpentane	ND	3.60	3.60	ND	3.60	_3.52	3.56	3.56	3.57
N-hexane	ND	3,10	3.10	ND	2.97	3.05	3.06	3.10	3.07
Methylcyclopentane	ND	1.61	1.61	ND	1.41	1.58	1.59	1.61	1.60
2,4-Dimethylpentane	ND	1.48	<u>1</u> .45	ND	1.40	1.38	1.35	1.47	1.44
Benzene	ND	2.49	2.44	ND	2.40	2.36	2.36	2.50	2.41
2-Methylhexane	ND	1.63	1.60	ND	1.59	1.57	1.55	1.58	1.56
2,3-Dimethylpentane	ND	1.64	1.62	ND	1.57	1.55	1.55	1.64	1.58
TAME	ND	13.86	13.57	ND	13.34	13.17	13.06	14.03	13.37
3-Methylhexane	ND	1.83	1.80	ND	1.76	1.75	1.72	1.85	1.77
Isooctane	ND	2.07	2.03	ND	1.92	1.91	1.89	2.05	2.01
Toluene	ND	3.54	3.56	ND	3.37	3.34	3.26	3.79	3.50
Total	0.00	98.33	98.49	0.00	99.02	98.45	98.58	97.54	98.56

Page 198 Final Report

Analytical Report Appendix B

Table III-N. Chamber Components Confirmation Area Percent of Gasoline TAME Vapor Condensate Exposure 96

Area %

	Control 1	TM Standard 1	Spiked Control 1	Sample 1014	Sample 2014	Sample 3014	Sample 4014	TM Standard 2	Spiked Control 2
Compound	009_002	009_003	009_004	009_005	009_006	009_007	009_008	009_009	009_010
Isobutane	ND	1.65	1.64	ND	1.73	1.83	1.85	1.63	1.69
N-Butane	ND	9.10	9.14	ND	9.55	9.86	9.90	9.10	9.32
3-Methyl-1-butene	ND	0.36	0.36	ND	0.36	0.37	0.37	0.36	0.36
Isopentane	ND	33.30	33.39	ND	33.88	34.04	34.18	33.43	33.62
N-Pentane	ND	7.59	7.54	ND	7,62	7.55	7.54	7.63	7.60
Trans-2-pentene	ND	1.73	1.72	ND_	1.71	1.80	1.91	1.81	1.77
2,3-Dimethylbutane	ND	2.10	2.11	ND	1.99	1.93	1.93	1.97	1.98
2-Methylpentane	ND	6.13	6.16	ND	6.11	6.05	6.05	6.14	6.13
3-Methylpentane	ND	3.56	3.58	ND	3.54	3.50	3.50	3.56	3.55
N-hexane	ND	3.08	3.10	ND	3.05	3.02	3.02	3.08	3.08
Methylcyclopentane	ND	1.61	1.62	ND	1.59	1.57	1.56	1.61	1.60
2,4-Dimethylpentane	ND	1.44	1.44	ND	1.42	1.40	1.36	1.43	1.43
Benzene	ND	2.51	2.46	<u>N</u> D	2.39	2.35	2.36	2.50	2.42
2-Methylhexane	ND	1.61	1.62	ND	1.58	1.55	1.55	1.60	1.60
2,3-Dimethylpentane	ND	1.61	1.63	ND	1.59	1.56	1.54	1.61	1.61
TAME	ND	13.80	13.74	ND	13.30	13.14	13.09	13.70	13.55
3-Methylhexane	ND	1.82	1.83	ND	1.78	1.74	1.72	1.80	1.80
Isooctane	ND	2.01	2.04	ND	1.98	1.95	1.89	1.99	2.00
Toluene	ND	3.74	3.65	ND_	3.49	3.42	3.33	3.67	3.57
Total	0.00	98.75	98.77	0.00	98.66	98.63	98.65	98.62	98.68

Page 199 Final Report

Analytical Report	Appendix B

Table III-O. Chamber Components Confirmation Area Percent of Gasoline TAME Vapor Condensate Exposure 103

Area %

	Control 1	TM Standard 1	Spiked Control 1	Sample 1015	Sample 2015	Sample 3015	Sample 4015	TM Standard 2	Spiked Control 2
Compound	010_002	010_003	010_004	010_005	010_006	010_007	010_008	010_009	010_010
Isobutane	ND	1.65	0.56	ND	1.76	1.64	1.56	1.70	1.41
N-Butane	ND	9.29	5.07	ND	10.15	9.22	10.26	9.49	8.63
3-Methyl-1-butene	ND	0.36	0.31	ND	0.40	0.36	0.43	0.37	0.36
Isopentane	ND	33.46	30.61	ND	36.96	33.48	39.17	33.99	33.62
N-Pentane	ND_	6.86	6.92	ND	_ 7.43	6.85	7.57	7.02	7.00
Trans-2-pentene	ND	2.71	2.60	ND_	2.93	2.66	3.01	2.64	2.60
2,3-Dimethylbutane	ND	1.87	2.13	ND_	1.93	1.92	1.81	1.87	1.90
2-Methylpentane	ND	5.56	6.28	ND_	5.80	5.64	<u>5</u> .16	5.54	5.65
3-Methylpentane	ND	3.56	4.09	ND	3.42	_3.62	3.29	3.54	3.62
N-hexane	ND	3.22	3.75	ND	2.77	3.26	2.64	3.18	3.27
Methylcyclopentane	ND	1.61	1.91	ND	1,64	1.64	1.58	1.58	1.63
2,4-Dimethylpentane	ND	1.36	1.67	ND	1.07	1.47	1.07	1.38	1.43
Benzene	<loq< td=""><td>2.46</td><td>2.87</td><td><loq< td=""><td>2.10</td><td>2.41</td><td>1.97</td><td>2.42</td><td>2.43</td></loq<></td></loq<>	2.46	2.87	<loq< td=""><td>2.10</td><td>2.41</td><td>1.97</td><td>2.42</td><td>2.43</td></loq<>	2.10	2.41	1.97	2.42	2.43
2-Methylhexane	ND	1.63	1.99	ND	_1.29	1.65	1.25	1.60	1.69
2,3-Dimethylpentane	ND	1.66	2.02	_ND	1.34	1.69	1.29	1.62	1.70
TAME	ND	13.90	16.63	ND	11.68	13.82	10.91	13.47	14.02
3-Methylhexane	ND	1.86	2.23	ND	<u>1.</u> 46	1.86	1.40	1.78	1.88
Isooctane	ND	2.03	2.49	ND	1.58	2.04	1.52	1.96	2.09
Toluene	ND	3.84	4.62	ND	2.74	3.68	2.80	3.68	3.84
Total	0.00	98.89	98.75	0.00	98.45	98.91	98.69	98.83	98.77

ND = not detected. <LOQ = Less than the limit of quantification = less than 25% of the area count of the component in the test material standard

Huntingdon Li	fe Sciences
---------------	-------------

Page 200 Final Report

Analytical Report	Appendix B

Table III-P. Chamber Components Confirmation Area Percent of Gasoline TAME Vapor Condensate Exposure 116

Area %

	Control 1	TM Standard 1	Spiked Control 1	Sample 1016D-1	Sample 2016D-1	Sample 3016D-1	Sample 4016D-1	TM Standard 2	Spiked Control 2
Compound	012_002	012_003	012_004	012_005	012_006	012_007	012_008	012_013	012_015
Isobutane	ND	1.56	1.63	ND	1.61	1.61	1.79	1.59	1.59
N-Butane	ND	8.76	9.01	ND	9.09	9.16	9.77	9.01	8.94
3-Methyl-1-butene	ND_	0.35	0.36	ND	0.36	0.36	0.37	0.35	0.35
Isopentane	ND	33.12	33.30	ND_	33.56	33.48	33.78	33.14	32.99
N-Pentane	ND	7.12	6.99	ND	6.92	6.91	6.95	7.04	6.92
Trans-2-pentene	ND	2.41	2.53	ND	2.54	2.47	2.50	2.47	2.54
2,3-Dimethylbutane	ND	1.94	1.96	ND	1.87	1.96	1.93	1.95	1.97
2-Methylpentane	ND	5.66	5.62	ND	5.66	5.65	<u>5</u> .54	5.63	5.95
3-Methylpentane	ND	3.63	3.62	ND	3.62	3.62	3.55	3.61	3.61
N-hexane	ND	3.15	3.14	ND	3.15	3.15	3.06	3.13	3.14
Methylcyclopentane	ND_	1.64	1.64	ND	1.64	1.64	1.60	1.63	1.63
2,4-Dimethylpentane	ND	1.52	1.51	ND	1.51	1.51	1.47	1.52	1.51
Benzene	<loq< td=""><td>2.52</td><td>2.45</td><td><loq< td=""><td>2.44</td><td>2.43</td><td>2.37</td><td>2.51</td><td>2.42</td></loq<></td></loq<>	2.52	2.45	<loq< td=""><td>2.44</td><td>2.43</td><td>2.37</td><td>2.51</td><td>2.42</td></loq<>	2.44	2.43	2.37	2.51	2.42
2-Methylhexane	ND	1.60	1. <u>5</u> 9	ND	1.65	1.58	1.54	1.59	1.59
2,3-Dimethylpentane	ND	1.64	1.64	ND	1.68	1.63	1.58	1.63	1.63
TAME	ND	14.14	13.96	ND	13.84	13.86	13.45	14.04	13.92
3-Methylhexane	ND	1.88	1.88	ND	1.86	1.86	1.81	1.87	1.87
Isooctane	ND	2.06	2.06	ND	2.04	2.04	1.98	2.04	2.05
Toluene	ND	3.92	3.78	ND	3.71	3.70	3.60	3.91	3.76
Total	0.00	98.62	98.67	0.00	98.75	98.62	98.64	98.66	98.38

ND = not detected. <LOQ = Less than limit of quantification = less than 25% of the area count of the component in the test material standard.

^a Results were reported from this duplicate sample because the original sample was suspect. ^bSpiked Control-2 re-injected due to a power outage.

Huntingdon	Life	Sciences

Page 201 Final Report

	· · · · · · · · · · · · · · · · · · ·	
An	alytical Report Appe	endix B

Table III-Q. Chamber Components Confirmation Area Percent of Gasoline TAME Vapor Condensate Exposure 117

Area %

	Control 1	TM Standard 1	Spiked Control 1	Sample 1017	Sample 2017	Sample 3017	Sample 4017	TM Standard 2	Spiked Control 2
Compound	012_002	012_003	012_004	012_009	012_010	012_011	012_012	012_013	012_015
Isobutane	ND	1.56	1.63	ND	1.83	1.81	1.81	1.59	1.59
N-Butane	ND	8.76	9.01	ND	9.91	9.86	9.89	9.01	8.94
3-Methyl-1-butene	ND	0.35	0.36	ND	0.37	0.37	0.37	0.35	0.35
Isopentane	ND	33.12	33.30	ND	34.02	33.81	34.06	33.14	32.99
N-Pentane	ND	7.12	6.99	ND	6.93	7.11	7.16	7.04	6.92
Trans-2-pentene	ND	2.41	2.53	ND	2.64	2.39	2.43	2.47	2.54
2,3-Dimethylbutane	ND	1.94	1.96	ND	1.52	1.92	1 <u>.</u> 91	1.95	1.97
2-Methylpentane	ND	5.66	5.62	ND	5.57	5.53	5.53	5.63	5.95
3-Methylpentane	ND	3.63	3.62	ND	3.56	3.54	3.53	3.61	3.61
N-hexane	ND_	3.15	3.14	ND	3.09	3.07	3.05	3.13	3.14
Methylcyclopentane	ND	1.64	1.64	ND	1.60	1.59	1.59	1.63	1.63
2,4-Dimethylpentane	ND	1.52	1.51	ND	1.48	1.47	1.46	1.52	1.51
Benzene	<loq< td=""><td>2.52</td><td>2.45</td><td><loq< td=""><td>2.37</td><td>2.36</td><td>2.34</td><td>2.51</td><td>2.42</td></loq<></td></loq<>	2.52	2.45	<loq< td=""><td>2.37</td><td>2.36</td><td>2.34</td><td>2.51</td><td>2.42</td></loq<>	2.37	2.36	2.34	2.51	2.42
2-Methylhexane	ND	1.60	1.59	ND	1.54	1.53	1.51	1.59	1.59
2,3-Dimethylpentane	ND_	1.64	1.64	ND	1.58	1.57	1.55	1.63	1.63
TAME	ND	14.14	13.96	ND	13.48	13.41	13.27	14.04	13.92
3-Methylhexane	ND	1.88	1.88	_ND	1.81	1.80	1.77	1.87	1.87
Isooctane	ND	2.06	2.06	ND	1.99	1.97	1.93	2.04	2.05
Toluene	ND	3.92	3.78	ND	3.61	3.57	3.50	3.91	3.76
Total	0.00	98.62	98.67	0.00	98.90	98.68	98.66	98.66	98.38

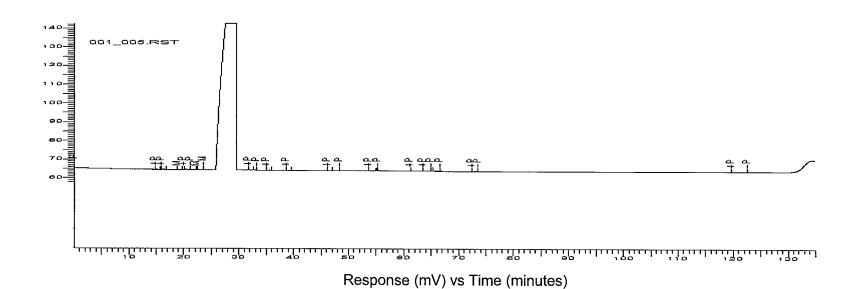
ND = not detected. <LOQ = Less than the limit of quantification = less than 25% of the area count of the component in the test material standard a Spiked Control-2 was re-injected due to a power outage.

Page 202 Final Report

 Analytical Report	Appendix B

Table III-R. Chamber Components Confirmation Area Percent of Gasoline TAME Vapor Condensate Exposure 123

Area %

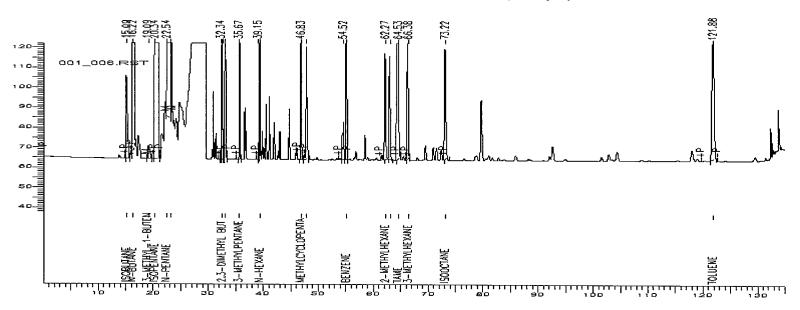

	Control 1	TM Standard 1	Spiked Control 1	Sample 1018	Sample 3018	Sample 4018	TM Standard 2	Spiked Control 2
Compound	013_002	013_003	013_004	013_005	013_006	013_007	013_008	013_009
Isobutane	ND	1.58	1.63	ND	1.76	1.77	1.54	1.61
N-Butane	ND	8.77	9.01	ND	9.50	9.56	8.67	8.96
3-Methyl-1-butene	ND	0.35	0.36	ND	0.36	0.36	0.35	0.35
Isopentane	ND	32.81	33.16	ND	33.54	33.67	32.90	33.19
N-Pentane	ND	6.83	6.88	ND	6.82	7.07	7.07	7.06
Trans-2-pentene	ND	2.62	2.39	ND	2.40	2.45	2.48	2.48
2,3-Dimethylbutane	ND	1.98	1.95	ND	1.96	1.95	1.96	1.96
2-Methylpentane	ND	5.67	5.64	ND	5.56	5.55	5.65	5.63
3-Methylpentane	ND	3.64	3.61	ND	3.56	3.55	3.63	3.61
N-hexane	ND	3.17	3.14	ND	3.08	3.08	3.14	3.13
Methylcyclopentane	ND	1.66	1.64	ND	<u>1.61</u>	1.60	1.65	1.64
2,4-Dimethylpentane	ND	1.55	1.52	ND	1.50	1.49	1.54	1.52
Benzene	<loq< td=""><td>2.55</td><td>2.46</td><td><loq< td=""><td>2.40</td><td>2.39</td><td>2.55</td><td>2.45</td></loq<></td></loq<>	2.55	2.46	<loq< td=""><td>2.40</td><td>2.39</td><td>2.55</td><td>2.45</td></loq<>	2.40	2.39	2.55	2.45
2-Methylhexane	ND	1.61	1.67	ND	1.63	1.55	1.67	1.66
2,3-Dimethylpentane	ND	1.66	1.69	ND	1.66	1.59	1.70	1.68
TAME	ND_	14.27	14.02	ND	13.70	13.59	14.20	13.98
3-Methylhexane	ND	1.90	1.89	ND	1.84	1.82	1.89	1.88
Isooctane	ND	2.08	2.10	ND	2.03	2.00	2.08	2.06
Toluene	ND	3.96	3.81	ND	3.69	3.64	3.92	3.75
Total	0.00	98.66	98.57	0.00	98.60	98.68	98.59	98.60

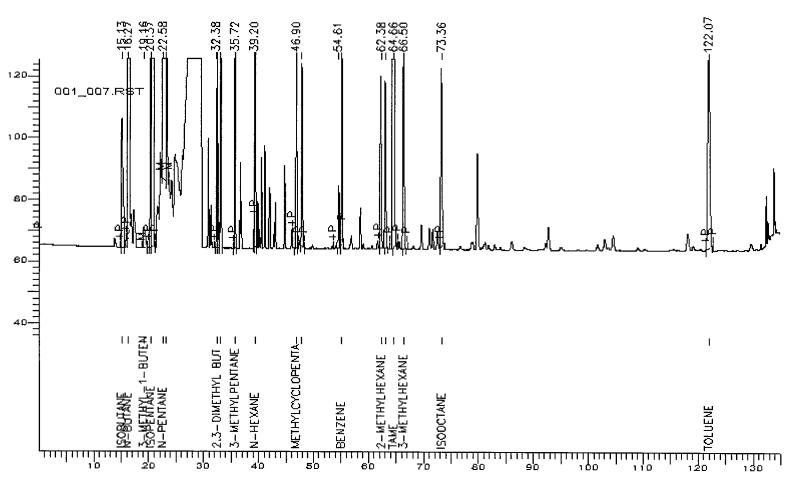
ND = not detected. <LOQ = Less than the limit of quantification = less than 25% of the area count of the component in the test material standard

Analytical Report

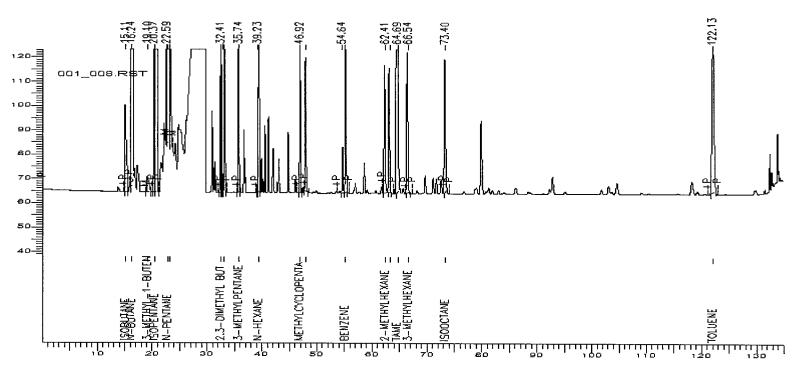
Appendix B

Figure I. A Typical Gas Chromatogram of Sample 1006 (Group I) Charcoal-Tube


Figure II. A Typical Gas Chromatogram of Sample 2006 (Group II) Charcoal-Tube

Response (mV) vs Time (minutes)


Figure III. A Typical Gas Chromatogram of Sample 3006 (Group III) Charcoal-Tube

Response (mV) vs Time (minutes)

A 1 (1 1 D	
Analytical Report	Appendix B

Figure IV. A Typical Gas Chromatogram of Sample 4006 (Group IV) Charcoal-Tube

Response (mV) vs Time (minutes)

PAGE 207

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX C

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

#LAMINA	TYPE OF DEATH	DATE OF DEATH	STUDY DAY	
1101	TERMINAL SACRIFICE	10-DEC-01	110	
1102	TERMINAL SACRIFICE	10-DEC-01	110	
1103	TERMINAL SACRIFICE	10-DEC-01	110	
1104	TERMINAL SACRIFICE	10-DEC-01	110	
1105	TERMINAL SACRIFICE	10-DEC-01	110	
1106	TERMINAL SACRIFICE	10-DEC-01	110	
1107	TERMINAL SACRIFICE	10-DEC-01	110	
1108	TERMINAL SACRIFICE	10-DEC-01	110	
1109	TERMINAL SACRIFICE	10-DEC-01	110	
1110	TERMINAL SACRIFICE	10-DEC-01	110	
1111	TERMINAL SACRIFICE	10-DEC-01	110	
1112	TERMINAL SACRIFICE	10-DEC-01	110	
1113	TERMINAL SACRIFICE	10-DEC-01	110	
1114	TERMINAL SACRIFICE	11-DEC-01	111	
1115	TERMINAL SACRIFICE	11-DEC-01	111	
1116	TERMINAL SACRIFICE	11-DEC-01	111	
1117	TERMINAL SACRIFICE	11-DEC-01	111	
1118	TERMINAL SACRIFICE	11-DEC-01	111	
1119	TERMINAL SACRIFICE	11-DEC-01	111	
1120	TERMINAL SACRIFICE	11-DEC-01	111	
1121	TERMINAL SACRIFICE	11-DEC-01	111	
1122	TERMINAL SACRIFICE	11-DEC-01	111	
1123	TERMINAL SACRIFICE	11-DEC-01	111	
1124	TERMINAL SACRIFICE	11-DEC-01	111	
1125	TERMINAL SACRIFICE	11-DEC-01	111	
1126	TERMINAL SACRIFICE	11-DEC-01	111	

Huntingdon Life Sciences 00-4202 PAGE 208

Sponsor Study No: 211-TAME-1G

APPENDIX C

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

			11,51,150,15		MINATION HISTORI
MALES	GROUP II 2000	MG/M3			
	TYPE	OF	DATE OF	STUDY	
ANIMAL#	DEA	ГН	DEATH	DAY	
2101	TERMINAL	SACRIFICE	10-DEC-01	110	
2102		SACRIFICE	10-DEC-01	110	
2103	TERMINAL	SACRIFICE	10-DEC-01	110	
2104		SACRIFICE	10-DEC-01	110	
2105	TERMINAL	SACRIFICE	10-DEC-01	110	
2106	TERMINAL	SACRIFICE	10-DEC-01	110	
2107	TERMINAL	SACRIFICE	10-DEC-01	110	
2108	TERMINAL	SACRIFICE	10-DEC-01	110	
2109	TERMINAL	SACRIFICE	10-DEC-01	110	
2110	TERMINAL	SACRIFICE	10-DEC-01	110	
2111	TERMINAL	SACRIFICE	10-DEC-01	110	
2112	TERMINAL	SACRIFICE	10-DEC-01	110	
2113	TERMINAL	SACRIFICE	10-DEC-01	110	
2114	TERMINAL	SACRIFICE	11-DEC-01	111	
2115	TERMINAL	SACRIFICE	11-DEC-01	111	
2116	TERMINAL	SACRIFICE	11-DEC-01	111	
2117	TERMINAL	SACRIFICE	11-DEC-01	111	
2118	TERMINAL	SACRIFICE	11-DEC-01	111	
2119	TERMINAL	SACRIFICE	11-DEC-01	111	
2120	TERMINAL	SACRIFICE	11-DEC-01	111	
2121	TERMINAL	SACRIFICE	11-DEC-01	111	
2122	TERMINAL	SACRIFICE	11-DEC-01	111	
2123	TERMINAL	SACRIFICE	11-DEC-01	111	
2124	TERMINAL	SACRIFICE	11-DEC-01	111	
2125	TERMINAL	SACRIFICE	11-DEC-01	111	
2126	TERMINAL	SACRIFICE	11-DEC-01	111	

Huntingdon Life Sciences 00-4202

Sponsor Study No: 211-TAME-1G

APPENDIX C

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

	TYPE OF	DATE OF	STUDY	
ANIMAL#	DEATH		DAY	
3101	TERMINAL SACRIFICE			
3102	TERMINAL SACRIFICE	10-DEC-01	110	
3103	TERMINAL SACRIFICE	10-DEC-01	110	
3104	TERMINAL SACRIFICE	10-DEC-01	110	
3105	TERMINAL SACRIFICE	10-DEC-01	110	
3106	TERMINAL SACRIFICE	10-DEC-01	110	
3107	TERMINAL SACRIFICE	10-DEC-01	110	
3108	TERMINAL SACRIFICE	10-DEC-01	110	
3109	TERMINAL SACRIFICE	10-DEC-01	110	
3110	TERMINAL SACRIFICE	10-DEC-01	110	
3111	TERMINAL SACRIFICE	10-DEC-01	110	
3112	TERMINAL SACRIFICE	10-DEC-01	110	
3113	TERMINAL SACRIFICE	10-DEC-01	110	
3114	TERMINAL SACRIFICE	11-DEC-01	111	
3115	TERMINAL SACRIFICE	11-DEC-01	111	
3116	TERMINAL SACRIFICE	11-DEC-01	111	
3117	TERMINAL SACRIFICE	11-DEC-01	111	
3118	TERMINAL SACRIFICE	11-DEC-01	111	
3119	TERMINAL SACRIFICE	11-DEC-01	111	
3120	TERMINAL SACRIFICE	11-DEC-01	111	
3121	TERMINAL SACRIFICE	11-DEC-01	111	
3122	TERMINAL SACRIFICE	11-DEC-01	111	
3123	TERMINAL SACRIFICE	11-DEC-01	111	
3124	TERMINAL SACRIFICE	11-DEC-01	111	
3125	TERMINAL SACRIFICE	11-DEC-01	111	
3126	TERMINAL SACRIFICE	11-DEC-01	111	

Huntingdon Life Sciences 00-4202 PAGE 210

Sponsor Study No: 211-TAME-1G

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

APPENDIX C

	TYPE OF	DATE OF	STUDY	
ANIMAL#			DAY	
4101	TERMINAL SACRIFICE	10-DEC-01	110	
4102	TERMINAL SACRIFICE	10-DEC-01	110	
4103	TERMINAL SACRIFICE	10-DEC-01	110	
4104	TERMINAL SACRIFICE	10-DEC-01	110	
4105	TERMINAL SACRIFICE	10-DEC-01	110	
4106	TERMINAL SACRIFICE	10-DEC-01	110	
4107	TERMINAL SACRIFICE	10-DEC-01	110	
4108	TERMINAL SACRIFICE	10-DEC-01	110	
4109	TERMINAL SACRIFICE	10-DEC-01	110	
4110	TERMINAL SACRIFICE	10-DEC-01	110	
4111	TERMINAL SACRIFICE	10-DEC-01	110	
4112	TERMINAL SACRIFICE	10-DEC-01	110	
4113	TERMINAL SACRIFICE	10-DEC-01	110	
4114	TERMINAL SACRIFICE	11-DEC-01	111	
4115	TERMINAL SACRIFICE	11-DEC-01	111	
4116	TERMINAL SACRIFICE	11-DEC-01	111	
4117	TERMINAL SACRIFICE	11-DEC-01	111	
4118	TERMINAL SACRIFICE	11-DEC-01	111	
4119	TERMINAL SACRIFICE	11-DEC-01	111	
4120	TERMINAL SACRIFICE	11-DEC-01	111	
4121	TERMINAL SACRIFICE	11-DEC-01	111	
4122	TERMINAL SACRIFICE	11-DEC-01	111	
4123	TERMINAL SACRIFICE	11-DEC-01	111	
4124	TERMINAL SACRIFICE	11-DEC-01	111	
4125	TERMINAL SACRIFICE	11-DEC-01	111	
4126	TERMINAL SACRIFICE	11-DEC-01	111	

Huntingdon Life Sciences 00-4202 PAGE 211

Sponsor Study No: 211-TAME-1G

APPENDIX C

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL ANIMAL TERMINATION HISTORY a.

EMALES	GROUP I	0 MG/M3				
		TYPE OF	DATE OF	STUDY	PREGNANCY	
ANIMAL#		DEATH	DEATH	DAY	STATUS	
1601		TERMINAL SACRIFICE	21-DEC-01	121	P	· · · · · · · · · · · · · · · · · · ·
1602		TERMINAL SACRIFICE	23-DEC-01	123	P	
1603		TERMINAL SACRIFICE	20-DEC-01	120	P	
1604		TERMINAL SACRIFICE	25-DEC-01	125	P	
1605		TERMINAL SACRIFICE	20-DEC-01	120	P	
1606	DIED	FOUND DEAD	24-NOV-01	94	P	
1607		TERMINAL SACRIFICE	21-DEC-01	121	P	
1608		TERMINAL SACRIFICE	20-DEC-01	120	P	
1609		TERMINAL SACRIFICE	28-NOV-01	98	NP	
1610		TERMINAL SACRIFICE	25-DEC-01	125	P	
1611	$_{ m TLL}$	TERMINAL SACRIFICE	19-DEC-01	119	P	
1612		TERMINAL SACRIFICE	21-DEC-01	121	P	
1613		TERMINAL SACRIFICE	21-DEC-01	121	P	
1614		TERMINAL SACRIFICE	21-DEC-01	121	P	
1615		TERMINAL SACRIFICE	23-DEC-01	123	P	
1616		TERMINAL SACRIFICE	22-DEC-01	122	P	
1617		TERMINAL SACRIFICE	21-DEC-01	121	P	
1618		TERMINAL SACRIFICE	21-DEC-01	121	P	
1619		TERMINAL SACRIFICE	22-DEC-01	122	P	,
1620		TERMINAL SACRIFICE	21-DEC-01	121	P	
1621		TERMINAL SACRIFICE	23-DEC-01	123	P	
1622		TERMINAL SACRIFICE	21-DEC-01	121	P	
1623		TERMINAL SACRIFICE	23-DEC-01	123	P	
1624		TERMINAL SACRIFICE	21-DEC-01	121	P	
1625		TERMINAL SACRIFICE	28-NOV-01	98	NP	
1626		TERMINAL SACRIFICE	22-DEC-01	122	P	

NP-NOT PREGNANT, P-PREGNANT

DIED=FOUND DEAD TLL=TOTAL LITTER LOSS

 $^{^{\}mathrm{a}}$ All 28-day old pups from the dam were euthanized the same day as their mothers.

PAGE 212

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX C

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL ANIMAL TERMINATION HISTORY a.

FEMALES	GROUP II 2000 I	MG/M3				
ANIMAL#	TYPE (DATE OF DEATH	STUDY	PREGNANCY STATUS	
ANIPAD#	DEAT.	 	DBAIN			
2601	TERMINAL	SACRIFICE	20-DEC-01	120	P	
2602	TERMINAL	SACRIFICE	21-DEC-01	121	P	
2603	TERMINAL	SACRIFICE	21-DEC-01	121	P	
2604	TERMINAL	SACRIFICE	21-DEC-01	121	P	
2605	TERMINAL	SACRIFICE	20-DEC-01	120	P	
2606	TERMINAL .	SACRIFICE	19-DEC-01	119	P	
2607	TERMINAL	SACRIFICE	23-DEC-01	123	P	
2608	TERMINAL	SACRIFICE	21-DEC-01	121	P	
2609	TERMINAL	SACRIFICE	25-NOV-01	95	NP	
2610	TERMINAL	SACRIFICE	22-DEC-01	122	P	
2611	TERMINAL	SACRIFICE	20-DEC-01	120	P	
2612	TERMINAL	SACRIFICE	21-DEC-01	121	P	
2613	TERMINAL	SACRIFICE	21-DEC-01	121	P	
2614	TERMINAL	SACRIFICE	23-DEC-01	123	P	
2615	TERMINAL	SACRIFICE	22-DEC-01	122	P	
2616	TERMINAL	SACRIFICE	19-DEC-01	119	P	
2617	TERMINAL	SACRIFICE	21-DEC-01	121	P	
2618	TERMINAL	SACRIFICE	21-DEC-01	121	P	
2619	TERMINAL	SACRIFICE	22-DEC-01	122	P	
2620	TERMINAL	SACRIFICE	20-DEC-01	120	P	
2621	TERMINAL	SACRIFICE	20-DEC-01	120	P	
2622	TERMINAL	SACRIFICE	21-DEC-01	121	P	
2623	TERMINAL	SACRIFICE	23-DEC-01	123	P	
2624	TERMINAL	SACRIFICE	22-DEC-01	122	P	
2625	TERMINAL	SACRIFICE	23-DEC-01	123	P	
2626	TERMINAL	SACRIFICE	21-DEC-01	121	P	

NP-NOT PREGNANT, P-PREGNANT

 $^{^{\}mathrm{a}}$ All 28-day old pups from the dam were euthanized the same day as their mothers.

PAGE 213

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX C

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL ANIMAL TERMINATION HISTORY a

	TYPE OF	DATE OF	STUDY	PREGNANCY	
ANIMAL#	DEATH	DEATH	DAY	STATUS	
2601	MEDMINAL CACRIERCE	21 DEC 01	121	P	
3601	TERMINAL SACRIFICE	21-DEC-01	121	P	
3602	TERMINAL SACRIFICE	20-DEC-01		P	
3603	TERMINAL SACRIFICE	23-DEC-01	123	P	
3604	TERMINAL SACRIFICE	22-DEC-01	122	NP	
3605	TERMINAL SACRIFICE	25-NOV-01	95		
3606	TERMINAL SACRIFICE	24-DEC-01	124	P	
3607	TERMINAL SACRIFICE	20-DEC-01	120	Þ	
3608	TERMINAL SACRIFICE	20-DEC-01	120	P	
3609	TERMINAL SACRIFICE	20-DEC-01	120	P	
3610	TERMINAL SACRIFICE	21-DEC-01	121	P	
3611	TERMINAL SACRIFICE	20-DEC-01	120	. P	
3612	TERMINAL SACRIFICE	22-DEC-01	122	P	
3613	TERMINAL SACRIFICE	22-DEC-01	122	P	
3614	TERMINAL SACRIFICE	20-DEC-01	120	P	
3615	TERMINAL SACRIFICE	20-DEC-01	120	P	
3616	TERMINAL SACRIFICE	21-DEC-01	121	P	
3617	TERMINAL SACRIFICE	21-DEC-01	121	P	
3618	TERMINAL SACRIFICE	8-DEC-01	108	NP	
3619	TERMINAL SACRIFICE	22-DEC-01	122	P	
3620	TERMINAL SACRIFICE	20-DEC-01	120	P	
3621	TERMINAL SACRIFICE	21-DEC-01	121	P	
3622	TERMINAL SACRIFICE	20-DEC-01	120	P	
3623	TERMINAL SACRIFICE	21-DEC-01	121	P	
3624	TERMINAL SACRIFICE	21-DEC-01	121	P	
3625	TERMINAL SACRIFICE	20-DEC-01	120	P	
3626	TERMINAL SACRIFICE	20-DEC-01	120	P	
5020	IDIGITATE DISCRIFTON	Et DEC 01	-20	=	

NP-NOT PREGNANT, P-PREGNANT

 $^{^{\}mathrm{a}}\mathrm{All}$ 28-day old pups from the dam were euthanized the same day as their mothers.

Huntingdon Life Sciences 00-4202 PAGE 214

Sponsor Study No: 211-TAME-1G

APPENDIX C

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL ANIMAL TERMINATION HISTORY a

#LAMIN		TYPE OF DEATH	DATE OF DEATH	STUDY DAY	PREGNANCY STATUS	
4601		TERMINAL SACRIFICE	27-DEC-01	127	P	·
4602	NPAD	ACCIDENTAL	27-OCT-01	66	-	
4603		TERMINAL SACRIFICE	22-DEC-01	122	P	
4604		TERMINAL SACRIFICE	21-DEC-01	121	P	
4605		TERMINAL SACRIFICE	20-DEC-01	120	P	
4606		TERMINAL SACRIFICE	22-DEC-01	122	P	
4607		TERMINAL SACRIFICE	21-DEC-01	121	P	
4608		TERMINAL SACRIFICE	23-DEC-01	123	P	
4609		TERMINAL SACRIFICE	28-NOV-01	98	NP	
4610		TERMINAL SACRIFICE	20-DEC-01	120	P	
4611		TERMINAL SACRIFICE	22-DEC-01	122	P	
4612		TERMINAL SACRIFICE	23-DEC-01	123	P	
4613		TERMINAL SACRIFICE	24-DEC-01	124	P	
4614		TERMINAL SACRIFICE	21-DEC-01	121	P	
4615		TERMINAL SACRIFICE	21-DEC-01	121	P	
4616		TERMINAL SACRIFICE	21-DEC-01	121	P	
4617		TERMINAL SACRIFICE	25-NOV-01	95	NP	
4618		TERMINAL SACRIFICE	21-DEC-01	121	P	
4619		TERMINAL SACRIFICE	22-DEC-01	122	P	
4620		TERMINAL SACRIFICE	21-DEC-01	121	P	
4621		TERMINAL SACRIFICE	21-DEC-01	121	P	
4622		TERMINAL SACRIFICE	21-DEC-01	121	P	
4623		TERMINAL SACRIFICE	23-DEC-01	123	P	
4624		TERMINAL SACRIFICE	22-DEC-01	122	P	
4625		TERMINAL SACRIFICE	23-DEC-01	123	P	
4626		TERMINAL SACRIFICE	21-DEC-01	121	P	

NP-NOT PREGNANT, P-PREGNANT

NPAD=ACCIDENTAL DEATH, NOT PG

 $^{^{\}mathrm{a}}$ All 28-day old pups from the dam were euthanized the same day as their mothers.

Page 215 Final Report

Individual Weekly Clinical Findings	
Preface	Appendix D

Note:

Due to the computer limitations of this appendix, if an animal died between two scheduled intervals, the day on which an animal was sacrificed was represented as the Study Day prior to their sacrifice. For example, if an animal was sacrificed on Study Day 109, it was exemplified as Study Day 105, rather than at the next appropriate interval (Day 112).

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX D

PAGE 216

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL WEEKLY CLINICAL OBSERVATIONS

ALES (GROUP I 0 MG/M3		
			1 1
			- 1 2 2 3 4 4 5 6 7 7 8 9 9 0 1
ANIMAL# 	OBSERVATIONS	STUDY	7 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2
1101	WITHIN NORMAL LIMITS		P P P P P P P P P P P P P P P
1101	TERMINAL SACRIFICE		p
1102	WITHIN NORMAL LIMITS		P
	TERMINAL SACRIFICE		P
1103	WITHIN NORMAL LIMITS		PPPPPPPPPPPP
	TERMINAL SACRIFICE		P
1104	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		PPPP PPP PP
	ALOPECIA - EXTREMITIES/SNOUT		3 2 2 3 3 3 3 2
1105	WITHIN NORMAL LIMITS		PPPPPP PPPPPPP
	TERMINAL SACRIFICE		P
	ALOPECIA - EXTREMITIES/SNOUT		2 2
1106	WITHIN NORMAL LIMITS		P P P P P P P P P P P P P P P
	TERMINAL SACRIFICE		P
1107	WITHIN NORMAL LIMITS		P P
	TERMINAL SACRIFICE SCABS		P P P P P P P P P P P P P P
	UPPER DORSAL		
	ALOPECIA - GENERAL		2 2 2
	ULCERATION RIGHT UPPER LATERAL		P
1100	WITHIN NORMAL LIMITS		
1108	TERMINAL SACRIFICE		P

CODE: 1-SLIGHT 2-MODERATE 3-MARKED P-PRESENT

Sponsor Study No: 211-TAME-1G

APPENDIX D

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL WEEKLY CLINICAL OBSERVATIONS

MALES C	GROUP I 0 MG/M3																	
ANIMAL#	OBSERVATIONS	DAY OF STUDY															9	
1109	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	P	ΡI	PΙ	P P	P F	P	P	P	P	P	P 1		P P
1110	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	P	Ρl	PI	P	P	P	P	P	P	P	Ρl	_	P P
1111	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	P	P l	PΙ	P F	? F	P	P	P	P	P	ΡĮ	_	p p
1112	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	P	P I	PΙ	P	? E	P	P	P	P	P	Pl		P P
1113	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	P	Ρl	PΙ	P	? F	P	P	P	P	P	P I		P P
1114	WITHIN NORMAL LIMITS TERMINAL SACRIFICE ALOPECIA - GENERAL		P	P	P	P	Ρl	ΡI	? F	PF		2			P	Ρl		P P
1115	WITHIN NORMAL LIMITS TERMINAL SACRIFICE ALOPECIA - EXTREMITIES/SNOUT		P		2	2	2 :	2 2	2 2	2 2	2 2	2	2	2	2	2 2	2	P 2
1116	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	P	Pi	PI	? P	P	P	P	P	P	P	P J	-	P P
1117	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	P	P I	P I	? P	P F	P	P	P	P	P	Ρļ	_	P P

Sponsor Study No: 211-TAME-1G

APPENDIX D

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL WEEKLY CLINICAL OBSERVATIONS

		ראע סק	1 1 - 1 2 2 3 4 4 5 6 7 7 8 9 9 0 1
ANIMAL#	OBSERVATIONS		7 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2
	· · · · · · · · · · · · · · · · · · ·		·
1118	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P P P P P P P P P P P P P P P P P P P
	MASS LOWER DORSAL		1 1
1119	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P P P P P P P P P P P P P P P P P P P
1120	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P P P P P P P P P P P P P P P P P P P
1121	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P P P P P P P P P P P P P P P P P P P
1122	WITHIN NORMAL LIMITS		PPPP
	TERMINAL SACRIFICE ALOPECIA - EXTREMITIES/SNOUT		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1123	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P P P P P P P P P P P P P P P P P P P
1124	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		PPPP PPPPPPPPP
	ALOPECIA - EXTREMITIES/SNOUT		P 2 2
1125	WITHIN NORMAL LIMITS		ррр
	TERMINAL SACRIFICE ALOPECIA - EXTREMITIES/SNOUT		2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Huntingdon Life Sciences 00-4202

Sponsor Study No: 211-TAME-1G

APPENDIX D

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

PAGE 219

INDIVIDUAL WEEKLY CLINICAL OBSERVATIONS

MALES G	ROUP I 0 MG/M3		
		DAY OF	1 1 - 1 2 2 3 4 4 5 6 7 7 8 9 9 0 1
ANIMAL#	OBSERVATIONS	STUDY	7 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2
1126	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P P P P P P P P P P P P P P P P P P P

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX D

PAGE 220

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL WEEKLY CLINICAL OBSERVATIONS

	GROUP II 2000 MG/M3	
ANIMAL#	OBSERVATIONS	1 1 - 1 2 2 3 4 4 5 6 7 7 8 9 9 0 1 7 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2
2101	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	P P P P
	ALOPECIA - EXTREMITIES/SNOUT	2 3 3 3 3 3 3 3 3 3 3 3 3
2102	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	P P P P P P P P P P P P P P P P P P P
2103	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	P P P P P P P P P P P P P P P P P P P
2104	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	P P P P P P P P P
	ALOPECIA - EXTREMITIES/SNOUT SCABS LEFT UPPER DORSAL	2 2 2 2 2 2 P P
	ALOPECIA - GENERAL	2 2 2 2 2
2105	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	P P P P P P P P P P P P P P P P P P P
2106	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	
	ALOPECIA - GENERAL	2 2
2107	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	P P P P P P P P P P P P P P P P P P P
2108	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	P P P P P P P P P P P P P P P P P P P

Sponsor Study No: 211-TAME-1G

APPENDIX D

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL WEEKLY CLINICAL OBSERVATIONS

MALES	GROUP II 2000 MG/M3	
ANIMAL#	OBSERVATIONS	1 1 - 1 2 2 3 4 4 5 6 7 7 8 9 9 0 1 7 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2
2109	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	P P P P P P P P P P P P P P P P P P P
2110	TERMINAL SACRIFICE ALOPECIA - EXTREMITIES/SNOUT	P 2 2 3 3 3 3 2 2 2 2 2 2 3 3 3 3
2111	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	P P P P P P P P P P P P P P P P P P P
2112	WITHIN NORMAL LIMITS TERMINAL SACRIFICE ALOPECIA - EXTREMITIES/SNOUT SCABS CERVICAL	P P P P 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 P P P P
2113	WITHIN NORMAL LIMITS TERMINAL SACRIFICE CHROMODACRYORRHEA - UNILATERAL LACRIMATION - UNILATERAL INCISORS MALOCCLUDED INCISORS BROKEN/MISSING	P P P P P P P P P P P P P P P P P P P
2114	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	P
2115	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	P P P P P P P P P P P P P P P P P P P
2116	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	 P P P P P P P P P P P P P P P P P P P

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX D

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL WEEKLY CLINICAL OBSERVATIONS

ALES (GROUP II 2000 MG/M3		
			1 1
			- 1 2 2 3 4 4 5 6 7 7 8 9 9 0 1
ANIMAL# 	OBSERVATIONS	STUDY	7 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2
2117	WITHIN NORMAL LIMITS		P
	TERMINAL SACRIFICE		P
2118	WITHIN NORMAL LIMITS		P
	TERMINAL SACRIFICE		P
2119			PPPP PPP
	TERMINAL SACRIFICE		P
	ALOPECIA - EXTREMITIES/SNOUT		2 2 2 2 2 3 3 3 3
	EYE(S) - APPEAR DAMAGED RIGHT		PPPP
2120	WITHIN NORMAL LIMITS		P
	TERMINAL SACRIFICE		P
2121	WITHIN NORMAL LIMITS		PPPPPPPPPPPPP
	TERMINAL SACRIFICE		P
2122	WITHIN NORMAL LIMITS		P P P P
	TERMINAL SACRIFICE		P
	ALOPECIA - EXTREMITIES/SNOUT		2 2 2 2 2 2 2 2 2 2 2 2 2 2
	ALOPECIA - GENERAL		2
2123	WITHIN NORMAL LIMITS		PPPPPPPPP
	TERMINAL SACRIFICE		P
	CHROMODACRYORRHEA - UNILATERAL		PPPP
	LACRIMATION - UNILATERAL		2 2 2 2
	ORAL SORE		P P P
	INCISORS BROKEN/MISSING		P P P P P

Sponsor Study No: 211-TAME-1G

APPENDIX D

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL WEEKLY CLINICAL OBSERVATIONS

MALES (GROUP II 2000 MG/M3		
ANIMAL#	OBSERVATIONS	DAY OF STUDY	1 1 - 1 2 2 3 4 4 5 6 7 7 8 9 9 0 1 7 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2
2124	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P P P P P P P P P P P P P P P P P P P
2125	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P P P P P P P P P P P P P P P P P P P
2126	WITHIN NORMAL LIMITS TERMINAL SACRIFICE INCISORS BROKEN/MISSING		P P P P P P P P

Sponsor Study No: 211-TAME-1G

APPENDIX D

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL WEEKLY CLINICAL OBSERVATIONS

MALES (GROUP II 2000 MG/M3			
ANIMAL#	OBSERVATIONS	DAY OF STUDY	1 1 1 2 2 3 4 4 5 6 7 7 8 9 9 0 1 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2	
2124	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	
2125	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P P P P P P P P P P P P P P P P P P P	
2126	WITHIN NORMAL LIMITS TERMINAL SACRIFICE INCISORS BROKEN/MISSING		P P P P P P P P P P P P P P P P	

Sponsor Study No: 211-TAME-1G

APPENDIX D

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL WEEKLY CLINICAL OBSERVATIONS

MALES (GROUP III 10000 MG/M3	NETTERN NETTERN GENERAL GENERA	
ANIMAL#	OBSERVATIONS	1 1 DAY OF - 1 2 2 3 4 4 5 6 7 7 8 9 9 0 1 STUDY 7 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2	
3101	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	P P P P P P P P P P P P P P P P P P P	
3102	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	P P P P P P P P P P P P P P P P P P P	
3103	WITHIN NORMAL LIMITS TERMINAL SACRIFICE SWOLLEN PAW(S) RIGHT FRONT BLACK STAINS SNOUT INCISORS MALOCCLUDED	РРРРР РРРРРРР РРРРРРР РРРРРРРРРРРРРРР	
3104	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	P P P P P P P P P P P P P P P P P P P	
3105	WITHIN NORMAL LIMITS TERMINAL SACRIFICE ALOPECIA - EXTREMITIES/SNOUT SCABS RIGHT AND LEFT FORE LIMB	P P P P P P P P P P P P P P P P P P P	
3106	WITHIN NORMAL LIMITS TERMINAL SACRIFICE ORAL SORE INCISORS BROKEN/MISSING	P P P P P P P P P P P P P P P P P P P	
3107	WITHIN NORMAL LIMITS TERMINAL SACRIFICE ALOPECIA - EXTREMITIES/SNOUT	P P P P P P P P P P P P P P P P P P P	

Sponsor Study No: 211-TAME-1G

APPENDIX D

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL WEEKLY CLINICAL OBSERVATIONS

MALES (GROUP III 10000 MG/M3	
ANIMAL#	OBSERVATIONS	1 1 - 1 2 2 3 4 4 5 6 7 7 8 9 9 0 1 7 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2
3108	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	P P P P P P P P P P P P P P P P P P P
3109	WITHIN NORMAL LIMITS TERMINAL SACRIFICE ALOPECIA - EXTREMITIES/SNOUT	P P P P P P P P P P P P P P P P P P P
3110	WITHIN NORMAL LIMITS TERMINAL SACRIFICE ALOPECIA - EXTREMITIES/SNOUT	P P P P P P P P P P P P P P P P P P P
3111	WITHIN NORMAL LIMITS TERMINAL SACRIFICE ALOPECIA - EXTREMITIES/SNOUT ALOPECIA - GENERAL	P P P P P P P P P P P P P P P P P P P
3112	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	P P P P P P P P P P P P P P P P P P P
3113	WITHIN NORMAL LIMITS TERMINAL SACRIFICE ALOPECIA - EXTREMITIES/SNOUT	P P P P P P P P P P P P P P P P P P P
3114	WITHIN NORMAL LIMITS . TERMINAL SACRIFICE	P P P P P P P P P P P P P P P P P P P
3115	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	P P P P P P P P P P P P P P P P P P P

Sponsor Study No: 211-TAME-1G

APPENDIX D

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL WEEKLY CLINICAL OBSERVATIONS

MALES (GROUP III 10000 MG/M3	
ANIMAL#	OBSERVATIONS	1 1 - 1 2 2 3 4 4 5 6 7 7 8 9 9 0 1 7 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2
3116	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	P P P P P P P P P P P P P P P P P P P
3117	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	P P P P P P P P P P P P P P P P P P P
3118	WITHIN NORMAL LIMITS TERMINAL SACRIFICE ALOPECIA - EXTREMITIES/SNOUT	P P P P P P P P P P P P P P P P P P P
3119	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	P P P P P P P P P P P P P P P P P P P
3120	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	P P P P P P P P P P P P P P P P P P P
3121	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	P
3122	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	P P P P P P P P P P P P P P P P P P P
3123	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	P
3124	WITHIN NORMAL LIMITS TERMINAL SACRIFICE SCABS UPPER DORSAL	P P P P P P P P P P P P P P P P P P P

Huntingdon Life Sciences 00-4202

Sponsor Study No: 211-TAME-1G

APPENDIX D

PAGE 228

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL WEEKLY CLINICAL OBSERVATIONS

MALES (GROUP III 10000 MG/M3		
ANIMAL#	OBSERVATIONS	DAY OF STUDY	1 1 - 1 2 2 3 4 4 5 6 7 7 8 9 9 0 1 7 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2
3125	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P P P P P P P P P P P P P P P P P P P
3126	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P P P P P P P P P P P P P P P P P P P
			

Sponsor Study No: 211-TAME-1G

APPENDIX D

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL WEEKLY CLINICAL OBSERVATIONS

MALES (GROUP IV 20000 MG/M3		
			1 1
			- 1 2 2 3 4 4 5 6 7 7 8 9 9 0 1
ANIMAL#	OBSERVATIONS	STUDY	7 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2
4101	WITHIN NORMAL LIMITS		P
	TERMINAL SACRIFICE		P
4102	WITHIN NORMAL LIMITS		P P P P P P P P P P P P
	TERMINAL SACRIFICE		P
	SCABS		РРР
	CERVICAL		
4103	WITHIN NORMAL LIMITS		PPPPPPPPPPPP
	TERMINAL SACRIFICE		P
4104	WITHIN NORMAL LIMITS		P P
	TERMINAL SACRIFICE		P
	ALOPECIA - EXTREMITIES/SNOUT		2 2 2 3 3 3 3 3 3 3 3 3 3 3 3
4105	WITHIN NORMAL LIMITS		P
	TERMINAL SACRIFICE		Р
4106	WITHIN NORMAL LIMITS		P P
	TERMINAL SACRIFICE		P
	BLACK STAINS SNOUT		2
	CHROMODACRYORRHEA - UNILATERAL		P PPPPP P
	LACRIMATION - UNILATERAL		2
	INCISORS MALOCCLUDED		PPPPPPPPPPP
	INCISORS BROKEN/MISSING		РРР
4107	WITHIN NORMAL LIMITS		P P P
	TERMINAL SACRIFICE		P
	ALOPECIA - EXTREMITIES/SNOUT		2 2 2 2 2 2 2 2 2 3 3 3 3

Sponsor Study No: 211-TAME-1G

APPENDIX D

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL WEEKLY CLINICAL OBSERVATIONS

MALES (GROUP IV 20000 MG/M3	
ANIMAL#	OBSERVATIONS	1 1 - 1 2 2 3 4 4 5 6 7 7 8 9 9 0 1 7 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2
4108	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	P P P P P P P P P P P P P P P P P P P
4109	WITHIN NORMAL LIMITS TERMINAL SACRIFICE ALOPECIA - EXTREMITIES/SNOUT	P P P P P P P P P P P P P P P P P P P
4110	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	P P P P P P P P P P P P P P P P P P P
4111	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	P P P P P P P P P P P P P P P P P P P
4112	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	P P P P P P P P P P P P P P P P P P P
4113	WITHIN NORMAL LIMITS TERMINAL SACRIFICE ALOPECIA - EXTREMITIES/SNOUT	р р р р р р р р р р р р р р р р р р р
4114	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	P P P P P P P P P P P P P P P P P P P
4115	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	P P P P P P P P P P P P P P P P P P P
4116	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	P P P P P P P P P P P P P P P P P P P

Sponsor Study No: 211-TAME-1G

APPENDIX D

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL WEEKLY CLINICAL OBSERVATIONS

	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 		
		DAY OF	1 1
A ATTAGA T 44	OBSERVATIONS		- 1 2 2 3 4 4 5 6 7 7 8 9 9 0 1 7 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2
MIMATH	OBSERVATIONS	STODY	7 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2
4117	WITHIN NORMAL LIMITS		P
	TERMINAL SACRIFICE		P
4118	WITHIN NORMAL LIMITS		ррррр
	TERMINAL SACRIFICE		P
	CHROMODACRYORRHEA - UNILATERAL INCISORS MALOCCLUDED		P P P P P P P P P
	ORAL SORE		P P P P P P P P P
	INCISORS BROKEN/MISSING		PPPP
4119	WITHIN NORMAL LIMITS		P P P P P P P P P P P P P P P P
	TERMINAL SACRIFICE		P
4120	WITHIN NORMAL LIMITS		PPPPP
	TERMINAL SACRIFICE		P
	ALOPECIA - EXTREMITIES/SNOUT		2 2 2 2 2 2 2 2 2 2
4121	WITHIN NORMAL LIMITS		PPPPP
	TERMINAL SACRIFICE		P
	ALOPECIA - EXTREMITIES/SNOUT		2 2 2 2 2 2 2 2 2 2
4122	WITHIN NORMAL LIMITS		РРР
	TERMINAL SACRIFICE		Р
	ALOPECIA - EXTREMITIES/SNOUT		3 3 3 3 3 3 3 3 3 3 3 3 3 3
4123	WITHIN NORMAL LIMITS		PPPP
	TERMINAL SACRIFICE		P
	CHROMODACRYORRHEA - UNILATERAL INCISORS MALOCCLUDED		P P P
	INCISORS MALOCCHUDED INCISORS BROKEN/MISSING		PPPPPPPPPP
	INCIBORS BROKEN/MISSING		РРР

Sponsor Study No: 211-TAME-1G

APPENDIX D

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL WEEKLY CLINICAL OBSERVATIONS

MALES GROUP IV 20000 MG/M3					
ANIMAL#	OBSERVATIONS	DAY OF STUDY	1 1 - 1 2 2 3 4 4 5 6 7 7 8 9 9 0 1 7 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2		
4124	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P P P P P P P P P P P P P P P P P P P		
4125	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P		
4126	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P P P P P P P P P P P P P P P P P P P		

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX D

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL WEEKLY CLINICAL OBSERVATIONS

FEMALES (GROUP I 0 MG/M3	
ANIMAL#	OBSERVATIONS	1 1 - 1 2 2 3 4 4 5 6 7 7 8 9 9 0 1 7 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2
1601	WITHIN NORMAL LIMITS	P P P P P P P P P P P
1602	WITHIN NORMAL LIMITS	PPPPPPPPP
1603	WITHIN NORMAL LIMITS	PPPPPPPP
1604	WITHIN NORMAL LIMITS	PPPPPPPP
1605	WITHIN NORMAL LIMITS ALOPECIA - GENERAL	P P P P P P P P P P 2 2
1606	WITHIN NORMAL LIMITS ALOPECIA - EXTREMITIES/SNOUT	P P 2 2 2 2 2 2 2 2 2 2
1607	WITHIN NORMAL LIMITS	PPPPPPPPP
1608	WITHIN NORMAL LIMITS	PPPPPPPP
1609	WITHIN NORMAL LIMITS ALOPECIA - EXTREMITIES/SNOUT	P P P P P P P P 2 2 2
1610	WITHIN NORMAL LIMITS	PPPPPPPPP
1611	WITHIN NORMAL LIMITS	P
1612	WITHIN NORMAL LIMITS	P
1613	WITHIN NORMAL LIMITS SWOLLEN PAW(S) RIGHT FRONT	 P P P P P P P

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX D

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL WEEKLY CLINICAL OBSERVATIONS

FEMALES (GROUP I 0 MG/M3		
ANIMAL#	OBSERVATIONS	DAY OF STUDY	1 1 - 1 2 2 3 4 4 5 6 7 7 8 9 9 0 1 7 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2
1614	WITHIN NORMAL LIMITS		PPPPPPPPP
1615	WITHIN NORMAL LIMITS		PPPPPPPPP
1616	WITHIN NORMAL LIMITS		PPPPPPPPP
1617	WITHIN NORMAL LIMITS ALOPECIA - EXTREMITIES/SNOUT		P P P P P P P 2 2 2 2 2 2
1618	WITHIN NORMAL LIMITS		P
1619	WITHIN NORMAL LIMITS ALOPECIA - EXTREMITIES/SNOUT ALOPECIA - GENERAL		P P P P P P 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1620	WITHIN NORMAL LIMITS		PPPPPPPPP
1621	WITHIN NORMAL LIMITS ALOPECIA - EXTREMITIES/SNOUT SCABS CERVICAL ALOPECIA - GENERAL		P P P
1622	WITHIN NORMAL LIMITS		P
1623	WITHIN NORMAL LIMITS		P
1624	WITHIN NORMAL LIMITS		P

Sponsor Study No: 211-TAME-1G

APPENDIX D

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL WEEKLY CLINICAL OBSERVATIONS

FEMALES (FEMALES GROUP I 0 MG/M3					
ANIMAL#	OBSERVATIONS	DAY OF STUDY	1 1 - 1 2 2 3 4 4 5 6 7 7 8 9 9 0 1 7 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2			
1625	WITHIN NORMAL LIMITS ALOPECIA - EXTREMITIES/SNOUT		P P P P 2 2 2 2 2 2 2 2			
1626	WITHIN NORMAL LIMITS		P P P P P P P P P P P			

Sponsor Study No: 211-TAME-1G

APPENDIX D

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL WEEKLY CLINICAL OBSERVATIONS

FEMALES (GROUP II 2000 MG/M3	INDIVIDORE WEEKE	CHINICAL OBSERVATIONS
ANIMAL#	OBSERVATIONS		1 1 - 1 2 2 3 4 4 5 6 7 7 8 9 9 0 1 7 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2
2601	WITHIN NORMAL LIMITS ALOPECIA - EXTREMITIES/SNOUT		P P P P P P P P P P 2 2
2602	WITHIN NORMAL LIMITS ALOPECIA - EXTREMITIES/SNOUT		P P P P P P P P 2 2 2 2
2603	WITHIN NORMAL LIMITS		PPPPPPPPP
2604	WITHIN NORMAL LIMITS		P P P P P P P P P P
2605	WITHIN NORMAL LIMITS		PPPPPPPP
2606	WITHIN NORMAL LIMITS		P P P P P P P P P P
2607	WITHIN NORMAL LIMITS		PPPPPPPPP
2608	WITHIN NORMAL LIMITS ALOPECIA - EXTREMITIES/SNOUT		P P P 3 3 3 3 3 3 3 3 3
2609	WITHIN NORMAL LIMITS INCISORS BROKEN/MISSING		P
2610	WITHIN NORMAL LIMITS		PPPPPPPPP
2611	WITHIN NORMAL LIMITS ALOPECIA - EXTREMITIES/SNOUT		P P P P P P P P P P 2 2
2612	WITHIN NORMAL LIMITS		PPPPPPPPP

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX D

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL WEEKLY CLINICAL OBSERVATIONS

FEMALES 0	GROUP II 2000 MG/M3	
ANIMAL#	OBSERVATIONS	1 1 - 1 2 2 3 4 4 5 6 7 7 8 9 9 0 1 7 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2
2601	WITHIN NORMAL LIMITS ALOPECIA - EXTREMITIES/SNOUT	P P P P P P P P 2 2
2602	WITHIN NORMAL LIMITS ALOPECIA - EXTREMITIES/SNOUT	P P P P P P P P P 2 2 2 2
2603	WITHIN NORMAL LIMITS	P P P P P P P P P P P
2604	WITHIN NORMAL LIMITS	PPPPPPPPP
2605	WITHIN NORMAL LIMITS	PPPPPPPP
2606	WITHIN NORMAL LIMITS	PPPPPPPPP
2607	WITHIN NORMAL LIMITS	PPPPPPPPP
2608	WITHIN NORMAL LIMITS ALOPECIA - EXTREMITIES/SNOUT	P P P 3 3 3 3 3 3 3 3
2609	WITHIN NORMAL LIMITS INCISORS BROKEN/MISSING	P P P P P P P P P P P P
2610	WITHIN NORMAL LIMITS	PPPPPPPPP
2611	WITHIN NORMAL LIMITS ALOPECIA - EXTREMITIES/SNOUT	P P P P P P P P P P P P P P P P P P P
2612	WITHIN NORMAL LIMITS	PPPPPPPPP

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX D

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL WEEKLY CLINICAL OBSERVATIONS

FEMALES (GROUP II 2000 MG/M3	INDIVIDUAL WEEKLY	CLINICAL OBSERVATIONS
ANIMAL#	OBSERVATIONS		1 1 - 1 2 2 3 4 4 5 6 7 7 8 9 9 0 1 7 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2
2613	WITHIN NORMAL LIMITS		P
2614	WITHIN NORMAL LIMITS CHROMODACRYORRHEA - UNILATERAL INCISORS MALOCCLUDED INCISORS BROKEN/MISSING		P P P P P P P P P P P P P P P P P P P
2615	WITHIN NORMAL LIMITS		P P P P P P P P P P P
2616	WITHIN NORMAL LIMITS		P P P P P P P P P P
2617	WITHIN NORMAL LIMITS		PPPPPPPPP
2618	WITHIN NORMAL LIMITS		PPPPPPPPP
2619	WITHIN NORMAL LIMITS		PPPPPPPPP
2620	WITHIN NORMAL LIMITS		P
2621	WITHIN NORMAL LIMITS		P
2622	WITHIN NORMAL LIMITS		P
2623	WITHIN NORMAL LIMITS		P
2624	WITHIN NORMAL LIMITS		P
2625	WITHIN NORMAL LIMITS		P P P P P P P P P P P P

Sponsor Study No: 211-TAME-1G

APPENDIX D

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL WEEKLY CLINICAL OBSERVATIONS

FEMALES GROUP II 2000 MG/M3

DAY OF - 1 2 2 3 4 4 5 6 7 7 8 9 9 0 1 STUDY 7 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2

ANIMAL# OBSERVATIONS 7 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2

2626 WITHIN NORMAL LIMITS PPPP

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX D

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL WEEKLY CLINICAL OBSERVATIONS

FEMALES GROUP III 10000 MG/M3				
ANIMAL#	OBSERVATIONS		1 1 - 1 2 2 3 4 4 5 6 7 7 8 9 9 0 1 7 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2	
3601	WITHIN NORMAL LIMITS		P P P P P P P P P P P	
3602	WITHIN NORMAL LIMITS INCISORS BROKEN/MISSING			
3603	WITHIN NORMAL LIMITS		P P P P P P P P P P P	
3604	WITHIN NORMAL LIMITS		PPPPPPPPP	
3605	WITHIN NORMAL LIMITS		PPPPPPPP	
3606	WITHIN NORMAL LIMITS		PPPPPPPPP	
3607	WITHIN NORMAL LIMITS ALOPECIA - EXTREMITIES/SNOUT		P P P 3 3 3 3 3 3 3 3	
3608	WITHIN NORMAL LIMITS		PPPPPPPPP	
3609	WITHIN NORMAL LIMITS		PPPPPPPP	
3610	WITHIN NORMAL LIMITS SCABS TIP OF TAIL		PP PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	
3611	WITHIN NORMAL LIMITS SCABS TIP OF TAIL		PP PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	
3612	WITHIN NORMAL LIMITS		P P P P P P P P P P P P P P P P P P P	

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX D

PAGE 241

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL WEEKLY CLINICAL OBSERVATIONS

FEMALES GROUP III 10000 MG/M3				
ANIMAL#	OBSERVATIONS		1 1 - 1 2 2 3 4 4 5 6 7 7 8 9 9 0 1 7 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2	
3613	WITHIN NORMAL LIMITS		PPPPPPPPP	
3614	WITHIN NORMAL LIMITS		P P P P P P P P P P	
3615	WITHIN NORMAL LIMITS		PPPPPPPPP	
3616	WITHIN NORMAL LIMITS		PPPPPPPPP	
3617	WITHIN NORMAL LIMITS		PPPPPPPPP	
3618	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P P P P P P P P P P P P P P P P P P P	
3619	WITHIN NORMAL LIMITS		PPPPPPPPP	
3620	WITHIN NORMAL LIMITS		PPPPPPPP	
3621	WITHIN NORMAL LIMITS		PPPPPPPPP	
3622	WITHIN NORMAL LIMITS		PPPPPPPPP	
3623	WITHIN NORMAL LIMITS		PPPPPPPP	
3624	WITHIN NORMAL LIMITS		PPPPPPPPP	
3625	WITHIN NORMAL LIMITS ALOPECIA - EXTREMITIES/SNOUT		P P P P P P P P P P 2 2	
3626	WITHIN NORMAL LIMITS		P P P P P P P P P P P	

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX D

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL WEEKLY CLINICAL OBSERVATIONS

DAY OF - 1 2 2 3 4 4 5 6 7 7 8 9 9 0 1 ANIMAL# OBSERVATIONS STUDY 7 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2 4601 WITHIN NORMAL LIMITS PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	FEMALES	GROUP IV 20000 MG/M3	
4602 WITHIN NORMAL LIMITS 4603 WITHIN NORMAL LIMITS 4604 WITHIN NORMAL LIMITS 4605 WITHIN NORMAL LIMITS 4606 WITHIN NORMAL LIMITS 4607 WITHIN NORMAL LIMITS 4608 WITHIN NORMAL LIMITS 4609 WITHIN NORMAL LIMITS 4609 WITHIN NORMAL LIMITS 4609 WITHIN NORMAL LIMITS 4600 WITHIN NORMAL LIMITS 4600 WITHIN NORMAL LIMITS 4600 WITHIN NORMAL LIMITS 4600 WITHIN NORMAL LIMITS 4600 WITHIN NORMAL LIMITS 4600 WITHIN NORMAL LIMITS 4600 WITHIN NORMAL LIMITS 4600 WITHIN NORMAL LIMITS 4600 WITHIN NORMAL LIMITS 4600 WITHIN NORMAL LIMITS 4600 WITHIN NORMAL LIMITS 4600 WITHIN NORMAL LIMITS 4600 WITHIN NORMAL LIMITS 4600 WITHIN NORMAL LIMITS 4600 WITHIN NORMAL LIMITS 4600 WITHIN NORMAL LIMITS 4601 WITHIN NORMAL LIMITS 4602 WITHIN NORMAL LIMITS 4603 WITHIN NORMAL LIMITS 4604 P P P P P P P P P P P P P P P P P P P	ANIMAL#	OBSERVATIONS .	- 1 2 2 3 4 4 5 6 7 7 8 9 9 0 1
ACCIDENTAL 4603 WITHIN NORMAL LIMITS P P P P P P P P P P P P P P P P P P P	4601	WITHIN NORMAL LIMITS	P
4604 WITHIN NORMAL LIMITS P P P P P P P P P P P P P P P P P P P	4602		
4605 WITHIN NORMAL LIMITS PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	4603	WITHIN NORMAL LIMITS	p p p p p p p p p p p
4606 WITHIN NORMAL LIMITS P P P P P P P P P P P P P P P P P P P	4604	WITHIN NORMAL LIMITS	P P P P P P P P P P P
4607 WITHIN NORMAL LIMITS P P P P P P P P P P P P P P P P P P P	4605	WITHIN NORMAL LIMITS	PPPPPPPP
WITHIN NORMAL LIMITS PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	4606	WITHIN NORMAL LIMITS	PPPPPPPPP
4609 WITHIN NORMAL LIMITS PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	4607	WITHIN NORMAL LIMITS	PPPPPPPP
4610 WITHIN NORMAL LIMITS PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	4608	WITHIN NORMAL LIMITS	P
4611 WITHIN NORMAL LIMITS PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	4609	WITHIN NORMAL LIMITS	P
4612 WITHIN NORMAL LIMITS PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	4610	WITHIN NORMAL LIMITS	P P P P P P P P P
4613 WITHIN NORMAL LIMITS PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	4611	WITHIN NORMAL LIMITS	PPPPPPPPP
	4612	WITHIN NORMAL LIMITS	P
4614 WITHIN NORMAL LIMITS PPPPPPPPPPP	4613	WITHIN NORMAL LIMITS	PPPPPPPPP
	4614	WITHIN NORMAL LIMITS	 P P P P P P P P P P

Sponsor Study No: 211-TAME-1G

APPENDIX D

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL WEEKLY CLINICAL OBSERVATIONS

FEMALES (GROUP IV 20000 MG/M3		
		DAY OF	1 1 - 1 2 2 3 4 4 5 6 7 7 8 9 9 0 1
ANIMAL#	OBSERVATIONS	STUDY	7 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2
			
4615	WITHIN NORMAL LIMITS		P P P P P P P P P P P
4616	WITHIN NORMAL LIMITS		PPPPPPPPP
4617	WITHIN NORMAL LIMITS		PPPPPPPPP
4618	WITHIN NORMAL LIMITS		P
4619	WITHIN NORMAL LIMITS		PPPPPPPPPP
4620	WITHIN NORMAL LIMITS		PPPPPPPPPP
4621	WITHIN NORMAL LIMITS		PPPPPPPPPP
4622	WITHIN NORMAL LIMITS		PPPPPPPPP
4623	WITHIN NORMAL LIMITS		PPPPPPPPP
4624	WITHIN NORMAL LIMITS		P P P P P P P P P P P
4625	WITHIN NORMAL LIMITS		PPPPPPPPP
4626	WITHIN NORMAL LIMITS		P P P P P P P P P P P

Sponsor Study No: 211-TAME-1G

APPENDIX E

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL CLINICAL OBSERVATIONS DURING GESTATION

GROUP I	0 MG/M3						
FEMALE#	OBSERVATIONS	DAY OF GESTATION	0 1 2 3	1 4 5 6 7 8 9 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
1601	WITHIN NORMAL LIMITS		P	P	P	P	
1602	INCISORS MALOCCLUDED WITHIN NORMAL LIMITS		P	P	P	P	
1603	WITHIN NORMAL LIMITS		P	P	P	Р	
1604	INCISORS MALOCCLUDED		P	P	P	P	
1605	ALOPECIA - GENERAL		2	2	2	2	
1606	ALOPECIA - EXTREMITIES/SNOUT		2	2	2	2	
1607	WITHIN NORMAL LIMITS		P	P	P	P	
1608	WITHIN NORMAL LIMITS		P	P	P	P	
1609	TERMINAL SACRIFICE ALOPECIA - EXTREMITIES/SNOUT WITHIN NORMAL LIMITS		P	P	2	2	P
1610	WITHIN NORMAL LIMITS		P	P	P	P	
1611	WITHIN NORMAL LIMITS		P	P	P	P	
1612	WITHIN NORMAL LIMITS		P	P	P	P	
1613	SWOLLEN PAW(S) WITHIN NORMAL LIMITS		Р	P	P	P	
1614	WITHIN NORMAL LIMITS		P	Р	P	P	

Sponsor Study No: 211-TAME-1G

APPENDIX E

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL CLINICAL OBSERVATIONS DURING GESTATION

GROUP I		LLINICAL OBSER	VATIONS DURI	NG GESTATION			
FEMALE#		DAY OF GESTATION				1 1 2 2 2 2 2 2 8 9 0 1 2 3 4	
1615	WITHIN NORMAL LIMITS		P	P	P	P	
1616	WITHIN NORMAL LIMITS		Р	P	P	P	
1617	ALOPECIA - EXTREMITIES/SNOUT		2	2	2	2	
1618	WITHIN NORMAL LIMITS		Р	P	P	P	
1619	ALOPECIA - EXTREMITIES/SNOUT ALOPECIA - GENERAL		2 2	2 2	2 2	2 2	
1620	WITHIN NORMAL LIMITS		Р	P	P	P	
1621	ALOPECIA - EXTREMITIES/SNOUT		3	3	3	3	
1622	WITHIN NORMAL LIMITS		Р	P	P	P	
1623	WITHIN NORMAL LIMITS		P	P	P	P	
1624	WITHIN NORMAL LIMITS		P	P	P	P	
1625	TERMINAL SACRIFICE ALOPECIA - EXTREMITIES/SNOUT		2	2	3	3	Р
1626	WITHIN NORMAL LIMITS		P	Р	Р	P	

Sponsor Study No: 211-TAME-1G

APPENDIX E

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL CLINICAL OBSERVATIONS DURING GESTATION

GROUP II	2000 MG/M3	INDIVIDUAL CLINICAL OBSERVATIONS DURING GESTATION							
FEMALE#	OBSERVATIONS	DAY OF GESTATION	0 1 2 3	1 4 5 6 7 8 9 0	1 1 1 1 1 1 1 1 1 2 3 4 5 6	1 1 1 2 2 2 7 8 9 0 1 2	2 2 2 3 4 5		
2601	WITHIN NORMAL LIMITS		P	P	P	P			
2602	WITHIN NORMAL LIMITS		P	P	P	P			
2603	WITHIN NORMAL LIMITS		P	Р	P	P			
2604	WITHIN NORMAL LIMITS		P	Р	P	P			
2605	WITHIN NORMAL LIMITS		P	P	P	P			
2606	WITHIN NORMAL LIMITS		P	P	Р	P			
2607	WITHIN NORMAL LIMITS		P	P	P	P			
2608	ALOPECIA - EXTREMITIES/SNOUT		3	3	3	3			
2609	TERMINAL SACRIFICE INCISORS BROKEN/MISSING WITHIN NORMAL LIMITS		P	P	P	, P	Р		
2610	WITHIN NORMAL LIMITS		P	P	P	P			
2611	ALOPECIA - EXTREMITIES/SNOUT INCISORS BROKEN/MISSING		2	2 P	2 P	2			
2612	WITHIN NORMAL LIMITS		Р	Р	P	P			
2613	WITHIN NORMAL LIMITS		Р	P	P	P			
2614	INCISORS MALOCCLUDED INCISORS BROKEN/MISSING		P P	P P	P P	P P			

Sponsor Study No: 211-TAME-1G

APPENDIX E

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL CLINICAL OBSERVATIONS DURING GESTATION

GROUP II	2000 MG/M3						
FEMALE#	OBSERVATIONS	DAY OF GESTATION	0 1 2 3	1		. 1 1 2 2 2 2 2 2 ' 8 9 0 1 2 3 4 5	
2615	WITHIN NORMAL LIMITS		P	P	P	Р	
2616	WITHIN NORMAL LIMITS		P	P	P	P	
2617	WITHIN NORMAL LIMITS		P	P	P	P	
2618	WITHIN NORMAL LIMITS		P	P	P	P	
2619	WITHIN NORMAL LIMITS		P	P	P	P	
2620	WITHIN NORMAL LIMITS		P	P	P	P	
2621	WITHIN NORMAL LIMITS		P	P	P	P	
2622	WITHIN NORMAL LIMITS		P	P	P	P	
2623	WITHIN NORMAL LIMITS		P	P	P	P	
2624	WITHIN NORMAL LIMITS		P	P	P	P	
2625	WITHIN NORMAL LIMITS		P	P	P	P	
2626	ALOPECIA - EXTREMITIES/SNOUT		2	2	2	2	

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX E

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL CLINICAL OBSERVATIONS DURING GESTATION

ROUP III		JUAL CLINICAL OBSER					
FEMALE#	OBSERVATIONS	DAY OF GESTATION		1 4 5 6 7 8 9 0	1 1 1 1 1 1 1 1 1 2 3 4 5 6 7	1 1 2 2 2 2 8 9 0 1 2 3	2 2 4 5
3601	WITHIN NORMAL LIMITS		P	P	P	P	
3602	WITHIN NORMAL LIMITS		P	P	P	P	
3603	WITHIN NORMAL LIMITS		P	P	P	P	
3604	WITHIN NORMAL LIMITS		P	P	P	P	
3605	TERMINAL SACRIFICE WITHIN NORMAL LIMITS		P	P	Р	P	P
3606	WITHIN NORMAL LIMITS		P	P	P	Р	
3607	ALOPECIA - EXTREMITIES/SNOUT		3	3	3	3	
3608	WITHIN NORMAL LIMITS		P	P	P	P	
3609	WITHIN NORMAL LIMITS		P	P	P	P	
3610	WITHIN NORMAL LIMITS		P	Р	P	P	
3611	WITHIN NORMAL LIMITS		P	P	P	P	
3612	WITHIN NORMAL LIMITS		P	P	P	P	
3613	WITHIN NORMAL LIMITS		P	P	P	P	
3614	WITHIN NORMAL LIMITS		P	P	P	P	
3615	WITHIN NORMAL LIMITS		P	P	P	P	
3616	WITHIN NORMAL LIMITS		Р	P	Р	P	

Sponsor Study No: 211-TAME-1G

APPENDIX E

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL CLINICAL OBSERVATIONS DURING GESTATION

GROUP III 10000 MG/M3

FEMALE#	OBSERVATIONS	DAY OF GESTATION	0 1 2 3 4 5 6			2 2 2 2 2 2 2 0 1 2 3 4 5
3617	WITHIN NORMAL LIMITS		P	P	P	P
3619	WITHIN NORMAL LIMITS		P	P	P	P
3620	WITHIN NORMAL LIMITS		P	P	P	P
3621	WITHIN NORMAL LIMITS		P	P	P	Р
3622	WITHIN NORMAL LIMITS		P	P	P	Р
3623	WITHIN NORMAL LIMITS		P	P	Р	P
3624	WITHIN NORMAL LIMITS		P	P	P	P
3625	ALOPECIA - EXTREMITIES/SNOUT		2	2	2	2
3626	WITHIN NORMAL LIMITS		P	p	P	Р

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX E

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL CLINICAL OBSERVATIONS DURING GESTATION

GROUP IV	20000 MG/M3				_		
FEMALE#	OBSERVATIONS	DAY OF GESTATION	0 1 2 3		1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7		
4601	WITHIN NORMAL LIMITS		P	P	P	P	
4603	WITHIN NORMAL LIMITS		P	P	P	P	
4604	WITHIN NORMAL LIMITS		P	P	P	P	
4605	WITHIN NORMAL LIMITS		P	P	P	P	
4606	WITHIN NORMAL LIMITS		P	P	P	P	
4607	WITHIN NORMAL LIMITS		Р	P	P	P	·
4608	WITHIN NORMAL LIMITS		P	P	P	P	
4609	TERMINAL SACRIFICE WITHIN NORMAL LIMITS		P	P	P	P	P
4610	WITHIN NORMAL LIMITS		P	P	P	P	
4611	WITHIN NORMAL LIMITS		P	P	P	P	
4612	CHROMODACRYORRHEA - UNILATERAL INCISORS MALOCCLUDED ORAL SORE WITHIN NORMAL LIMITS		P	Р	Р Р Р	P P P	
4613	WITHIN NORMAL LIMITS		P	P	P	P	
4614	WITHIN NORMAL LIMITS		P	P	P	P	
4615	ALOPECIA - EXTREMITIES/SNOUT WITHIN NORMAL LIMITS		P	P	2	2	

Sponsor Study No: 211-TAME-1G

APPENDIX E

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL CLINICAL OBSERVATIONS DURING GESTATION

GROUP IV	20000 MG/M3						
FEMALE#	OBSERVATIONS	DAY OF GESTATION	0 1 2 3		1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7		
4616	WITHIN NORMAL LIMITS		P	P	P	P	
4617	TERMINAL SACRIFICE WITHIN NORMAL LIMITS		P	P	P	P	р
4618	WITHIN NORMAL LIMITS		P	P	P	P	
4619	WITHIN NORMAL LIMITS		Р	P	P	P	
4620	WITHIN NORMAL LIMITS		P	P	P	P	
4621	WITHIN NORMAL LIMITS		P	P	P	P	
4622	WITHIN NORMAL LIMITS		Р	P	P	P	
4623	WITHIN NORMAL LIMITS		P	P	P	P	
4624	WITHIN NORMAL LIMITS		P	P	P	P	
4625	WITHIN NORMAL LIMITS		P	P	P	P	
4626	WITHIN NORMAL LIMITS		P	P	P	P	

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX F

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL MATERNAL CLINICAL AND POST-DOSE OBSERVATIONS DURING LACTATION

EMALE#	OBSERVATIONS	DAY OF LACTATION	0 1 2	3 4 5	6 7		1 1 1 2 2 2 2 7 8 9 0 1 2 3	
1601	WITHIN NORMAL LIMITS		P	P	P	 P	P	P
	TERMINAL SACRIFICE							P
1602	TERMINAL SACRIFICE							P
	INCISORS MALOCCLUDED		P	P	P	P	P	P
	INCISORS BROKEN/MISSING							P
1603	WITHIN NORMAL LIMITS		P	P	P	P	P	Р
	TERMINAL SACRIFICE							P
1604	TERMINAL SACRIFICE							P
	INCISORS MALOCCLUDED		P	P	P	P	P	P
	INCISORS BROKEN/MISSING					P	P	P
1605	TERMINAL SACRIFICE							P
	ALOPECIA - GENERAL		2	2	2	2	2	2
1606	FOUND DEAD		P					
1607	WITHIN NORMAL LIMITS		P	P	P	P	P	P
	TERMINAL SACRIFICE							P
1608	WITHIN NORMAL LIMITS		P	P	P	P	P	P
	TERMINAL SACRIFICE							P
1610	WITHIN NORMAL LIMITS		Р	P	P	P	P	P
	TERMINAL SACRIFICE							P
1611	WITHIN NORMAL LIMITS		P	P		P	P	P
	TERMINAL SACRIFICE							P

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX F

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL MATERNAL CLINICAL AND POST-DOSE OBSERVATIONS DURING LACTATION

GROUP I 0 MG/M3

FEMALE#	OBSERVATIONS	DAY OF LACTATION	0 1 2	3 4 5		1 1 1 1 1 1 1 1 0 1 2 3 4 5 6 7		
1612	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	Р	Р	P P
1613	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		Р	P	P	P	Р	P P
1614	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	P	Р	P P
1615	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	Р	Р	P P
1616	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		Р	P	P	P	Р	P P
1617	TERMINAL SACRIFICE ALOPECIA - EXTREMITIES/SNOUT		2	2	3	3	3	P 3
1618	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	P	Р	P P
1619	TERMINAL SACRIFICE ALOPECIA - EXTREMITIES/SNOUT ALOPECIA - GENERAL		2 2	2 2	2 2	2 2	2 2	P 2 2
1620	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	Р	Р	P P
1621	TERMINAL SACRIFICE ALOPECIA - EXTREMITIES/SNOUT		3	3	3	3	3	P 3

Huntingdon Life Sciences 00-4202 PAGE 254

Sponsor Study No: 211-TAME-1G

APPENDIX F

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL MATERNAL CLINICAL AND POST-DOSE OBSERVATIONS DURING LACTATION

GROUP I	0 MG/M3								
FEMALE#	OBSERVATIONS	DAY OF LACTATION	0 1 2 3	3 4 5	6 7 8			1 1 2 2 2 2 2 3 8 9 0 1 2 3	
1622	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	Р]		P	P P
1623	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	1	9	Р	P P
1624	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		Р	P	P	1	?	Р	P P
1626	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	1	?	Р	P P

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX F

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL MATERNAL CLINICAL AND POST-DOSE OBSERVATIONS DURING LACTATION

FEMALE#	OBSERVATIONS	DAY OF LACTATION	0 1	2 3	4 5 6	7 8 9	1 1 1 1 1 1 1 1 1 1 9 0 1 2 3 4 5 6 7 8		
2601	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P		P	P	Р	P	P P
2602	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P		P	P	Р	P	P P
2603	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P		P	P	Р	P	P P
2604	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P		P	P	Р	P	P P
2605	WITHIN NORMAL LIMITS TERMINAL SACRIFICE MASS		Р		P	2	2	2	P 2
2606	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P		P	P	Р	P	P P
2607	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		Р		P	P	Р	P	P P
2608	TERMINAL SACRIFICE ALOPECIA - EXTREMITIES/SNOUT		3		3	3	3	3	P 3
2610	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		Р		P	P	Р	P	P P
2611	TERMINAL SACRIFICE ALOPECIA - EXTREMITIES/SNOUT YELLOW ANO-GENITAL STAINING		2		2	2	2	1	Р
	CHROMODACRYORRHEA - UNILATERAL LACRIMATION - UNILATERAL							1 P	P 2

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX F

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL MATERNAL CLINICAL AND POST-DOSE OBSERVATIONS DURING LACTATION

GROUP	ΙΊ	2000	MG/M3
-------	----	------	-------

								
FEMALE#	OBSERVATIONS	DAY OF LACTATION	0 1 2	3 4 5		1 1 1 1 1 1 1 1 1 1 0 1 2 3 4 5 6 7		
2611	INCISORS MALOCCLUDED INCISORS BROKEN/MISSING						P P	P P
2612	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	Р	Р	P	P P
2613	WITHIN NORMAL LIMITS TERMINAL SACRIFICE RED EXUDATE (GENERAL)		P	P	P	Р	Р	P P
2614	TERMINAL SACRIFICE INCISORS MALOCCLUDED INCISORS BROKEN/MISSING		P P	P P	P P	P P	P P	P P P
2615	WITHIN NORMAL LIMITS TERMINAL SACRIFICE INCISORS BROKEN/MISSING		P	P	P	P	Р	P P
2616	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	Р	Р	P P
2617	WITHIN NORMAL LIMITS TERMINAL SACRIFICE RED EXUDATE (GENERAL)		P	P	P	Р	Р	P P
2618	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	Р	P	P P
2619	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	Р	P	Р	P	P P

Huntingdon Life Sciences 00-4202 PAGE 257

Sponsor Study No: 211-TAME-1G

APPENDIX F

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL MATERNAL CLINICAL AND POST-DOSE OBSERVATIONS DURING LACTATION

GROUP II	2000 MG/M3	CHINICAL AND 1001 Do	DE OBBERVA		DOKING I	ACIATION		
FEMALE#	OBSERVATIONS	DAY OF LACTATION	0 1 2	3 4 5	6 7 8 9	1 1 1 1 1 1 1 1 1 0 1 2 3 4 5 6 7		
2620	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	Р	P	P P
2621	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		Р	P	P	P	P	P P
2622	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	Р	Þ	P	P P
2623	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	P	P	P P
2624	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		Р	P	P	Þ	P	P P
2625	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	P	P	P P
2626	TERMINAL SACRIFICE ALOPECIA - EXTREMITIES/SNOUT		2	3	3	3	3	P 3

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX F

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL MATERNAL CLINICAL AND POST-DOSE OBSERVATIONS DURING LACTATION

GROUP III 10000 MG/M3

FEMALE#	OBSERVATIONS	DAY OF LACTATION	0 1 2	3 4 5		1 1 1 1 1 1 1 1 0 1 2 3 4 5 6 7		
3601	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		Р	Р	P	P	Р	P P
3602	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		Р	P	Р	P	Р	P P
3603	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		Р	P	Р	P	Р	P P
3604	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		Р	P	Р	P	P	P P
3606	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		Р	P	P	P	P	P P
3607	TERMINAL SACRIFICE ALOPECIA - EXTREMITIES/SNOUT		2	2	2	2	2	P 2
3608	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		Р	Р	P	P	P	P P
3609	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	P	P	P P
3610	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		Р	P	P	P	P	P P
3611	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	Р	P	Р	P P

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX F

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL MATERNAL CLINICAL AND POST-DOSE OBSERVATIONS DURING LACTATION

GROUP	TTT	10000	MG/M3
GRUND	1 1 1	10000	IVIC+/IVI.3

FEMALE#	OBSERVATIONS	DAY OF LACTATION	0 1 2 3	3 4 5 6		1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 0	_	2 2
3612	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	Р	P	P P
3613	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	Р	P	P P
3614	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	Р	P	P P
3615	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	P	P	P P
3616	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	P	P	P P
3617	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	P	P	P P
3619	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	P	P	P P
3620	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	P	P	P P
3621	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	P	P	P P
3622	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	Р	P	P	P P

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX F

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL MATERNAL CLINICAL AND POST-DOSE OBSERVATIONS DURING LACTATION

	GROUP	III	10000	MG/	′M3
--	-------	-----	-------	-----	-----

FEMALE#	OBSERVATIONS	DAY OF LACTATION C) 1 2	3 4	5 6	7 8 9	1111111	1 1 1 2 2 2 2 2 7 8 9 0 1 2 3 4	
3623	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		Р	P)	Р	Р	P	P P
3624	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	•	P	P	P	P P
3625	TERMINAL SACRIFICE ALOPECIA - EXTREMITIES/SNOUT ALOPECIA - GENERAL		2	2		2 2	2 2	2 2	P 2 2
3626	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	·	P	p	P	P P

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX F

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL MATERNAL CLINICAL AND POST-DOSE OBSERVATIONS DURING LACTATION

FEMALE#	OBSERVATIONS	DAY OF LACTATION	0 1 2	3 4 5	6789	1 1 1 1 1 1 1 1 1 1 0 1 2 3 4 5 6 7		
4601	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	P	Р	P P
4603	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	P	P	P P
4604	WITHIN NORMAL LIMITS TERMINAL SACRIFICE RED ANO-GENITAL STAINING		2	P	P	Р	Р	P P
4605	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	Р	Р	P P
4606	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	Р	P	₽	P	P P
4607	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	P	Р	Р Р
4608	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	Р	P	P	Р	P P
4610	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	P	P	P P
4611	WITHIN NORMAL LIMITS TERMINAL SACRIFICE ALOPECIA - EXTREMITIES/SNOUT		P	P	2	2	2	P P
4612	TERMINAL SACRIFICE CHROMODACRYORRHEA - UNILATERAL		P		P	P		Р
	LACRIMATION - UNILATERAL INCISORS MALOCCLUDED		2 P	P	2 P	2 P	P	P

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX F

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL MATERNAL CLINICAL AND POST-DOSE OBSERVATIONS DURING LACTATION

GROUP IV	20000 MG/M3							
FEMALE#	OBSERVATIONS	DAY OF LACTATION	0 1 2	3 4 5	678	1 1 1 1 1 1 1 1 1 9 0 1 2 3 4 5 6 7		
4612	ORAL SORE		Р					
4613	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	Р	Р	P P
4614	WITHIN NORMAL LIMITS TERMINAL SACRIFICE ALOPECIA - GENERAL		P	2	P	P	P	P P
4615	WITHIN NORMAL LIMITS TERMINAL SACRIFICE ALOPECIA - EXTREMITIES/SNOUT		Р	2	P	P	P	P P
4616	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	Р	P	P	P P
4618	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	Р	P	P P
4619	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	P	P	P P
4620	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	Р	P	P	P P
4621	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	Р	P	P P
4622	WITHIN NORMAL LIMITS TERMINAL SACRIFICE		P	P	P	P	P	P P

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX F

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL MATERNAL CLINICAL AND POST-DOSE OBSERVATIONS DURING LACTATION

	GROUP	ΙV	20000	MG/	′ M3
--	-------	----	-------	-----	-------------

		1 2 3	4 5 6				
N NORMAL LIMITS NAL SACRIFICE		Р	Р	Р	P	Р	P P
N NORMAL LIMITS NAL SACRIFICE		P	P	P	P	P	P P
N NORMAL LIMITS NAL SACRIFICE		P	P	P	P	P	P P
N NORMAL LIMITS NAL SACRIFICE		P	P	р	P	Р	P P
	VATIONS N NORMAL LIMITS NAL SACRIFICE N NORMAL LIMITS NAL SACRIFICE N NORMAL LIMITS NAL SACRIFICE N NORMAL LIMITS NAL SACRIFICE	N NORMAL LIMITS NAL SACRIFICE N NORMAL LIMITS NAL SACRIFICE N NORMAL LIMITS NAL SACRIFICE N NORMAL LIMITS NAL SACRIFICE	VATIONS LACTATION 0 1 2 3 N NORMAL LIMITS NAL SACRIFICE N NORMAL LIMITS NAL SACRIFICE N NORMAL LIMITS NAL SACRIFICE N NORMAL LIMITS NAL SACRIFICE N NORMAL LIMITS P	VATIONS LACTATION 0 1 2 3 4 5 6 N NORMAL LIMITS N NORMAL LIMITS NAL SACRIFICE N NORMAL LIMITS NAL SACRIFICE N NORMAL LIMITS NAL SACRIFICE N NORMAL LIMITS P P P	VATIONS LACTATION 0 1 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ATTIONS LACTATION 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VATIONS LACTATION O 1 2 3 4 5 6 7 8 9 0 1 2 1 2 3 4 5 6 7 8 9 0 1 2 1 2 3 4 5 6 7 8 9 0 1 2 1 2 3 4 5 6 7 8 9 0 1 2 1 2 3 4 5 6 7 8 9 0 1 2 1 2 3 4 5 6 7 8 9 0 1 2 1 2 3 4 5 6 7 8 9 0 1 2 1 2 3 4 5 6 7 8 9 0 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX G

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

	DAY	OF ST	JDY													
ANIMAL#	-14	-7	0	7	14	21	28	35	42	49	56	63	69	77	84	91
1101	150	205	271	317	358	390	427	446	472	479	504	524	536	552	570	576
1102	135	186	241	282	318	342	348	362	383	395	413	419	431	443	460	457
1103	145	210	278	327	369	400	409	441	456	476	492	499	517	524	548	550
1104	155	220	286	334	365	392	413	438	454	466	482	500	500	515	528	532
1105	148	211	279	333	371	409	436	464	486	509	531	549	557	564	578	581
1106	140	198	239	267	297	332	356	373	399	407	428	450	464	466	474	482
1107	163	235	293	334	377	415	422	452	484	499	520	529	546	546	570	561
1108	163	229	293	335	374	414	444	455	474	494	508	536	551	554	563	557
1109	153	214	279	326	366	406	424	452	463	478	500	502	508	518	527	526
1110	145	202	261	299	334	363	372	392	404	418	435	451	459	474	488	489
1111	160	221	289	334	382	421	436	446	463	481	486	514	516	523	539	534
1112	141	191	247	276	307	331	335	347	365	380	394	404	412	419	432	443
1113	157	224	294	341	380	428	430	441	467	499	521	540	545	563	584	587
1114	143	210	280	329	377	417	432	458	470	463	447	479	514	543	577	577
1115	162	220	282	321	352	376	405	424	437	452	472	474	502	502	521	524
1116	151	214	277	319	353	389	407	419	448	458	489	498	513	519	539	549
1117	149	201	260	305	331	358	385	409	421	436	457	466	480	487	512	520
1118	142	210	281	326	366	398	425	448	465	475	491	502	516	521	546	551
1119	128	188	250	285	320	341	359	374	390	399	422	424	444	441	464	465
1120	168	231	295	333	356	394	402	425	437	443	449	455	469	484	503	514
1121	157	219	279	320	361	389	408	422	438	455	473	491	495	508	522	532
1122	133	190	250	292	327	363	387	406	425	438	457	466	472	482	494	496
1123	155	219	281	330	369	404	435	449	472	488	513	528	541	559	573	588
1124	153	224	288	331	367	401	422	443	462	472	505	517	535	528	539	548
1125	156	223	289	332	361	388	416	431	449	461	479	480	498	498	515	524
1126	137	205	273	325	362	387	388	410	420	435	454	462	476	478	479	490
EAN	150	211	274	317	354	386	405	424	443	456	474	487	500	508	525	529
.D.	10.3	13.5	17.0	20.9	23.7	27.8	30.0	31.9	32.8	34.5	36.1	38.7	38.4	39.6	41.4	40.5
N	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26

Huntingdon Life Sciences 00-4202 PAGE 265

Sponsor Study No: 211-TAME-1G

APPENDIX G GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

TALES (GROUP II	2000 MG	/мз			11.01 110	01111 1011		is (GRA	110 /						
	DAY	OF ST	UDY													
ANIMAL#	-14	-7	0	7	14	21	28	35	42	49	56	63	69	77	84	91
2101	126	191	260	310	357	393	423	439	461	473	496	507	524	531	538	541
2102	136	199	259	315	355	389	421	447	472	496	503	533	534	550	561	568
2103	153	219	289	333	377	407	431	458	476	494	475 -	513	532	553	580	585
2104	154	204	265	306	343	369	380	404	417	442	459	464	470	477	489	498
2105	135	196	259	301	339	372	402	421	444	465	483	498	512	517	527	524
2106	148	208	272	317	356	384	410	431	449	468	491	505	513	518	535	541
2107	141	196	260	295	322	353	383	403	423	435	456	464	466	467	478	465
2108	145	211	281	335	389	432	450	470	501	519	531	552	567	583	606	614
2109	159	219	278	315	351	385	403	427	445	467	487	501	506	521	539	533
2110	165	226	291	337	372	400	420	443	456	474	498	501	508	529	540	558
2111	157	217	278	317	350	370	394	404	429	433	452	456	467	463	465	462
2112	151	214	273	307	348	390	410	433	458	476	488	503	511	517	533	533
2113	133	191	245	280	311	342	354	376	395	411	429	431	444	450	454	469
2114	153	214	280	314	351	384	379	399	414	428	451	459	455	480	482	506
2115	138	182	236	272	294	316	340	362	377	390	408	416	429	436	441	448
2116	145	206	279	325	358	384	405	420	443	451	468	469	474	490	498	509
2117	152	213	278	327	369	403	429	449	466	476	499	513	515	513	541	549
2118	163	218	281	320	357	391	420	446	472	489	491	520	533	540	563	566
2119	159	225	296	347	385	431	444	468	491	510	525	529	531	539	550	561
2120	164	246	323	376	414	445	481	502	520	536	550	560	575	573	582	593
2121	150	210	272	303	336	367	390	409	428	437	464	470	473	487	509	518
2122	162	217	283	326	358	399	398	416	433	441	460	472	483	493	509	519
2123	142	199	262	292	327	354	375	392	407	417	425	437	439	425	441	438
2124	143	198	251	279	313	347	359	370	387	392	408	415	422	424	431	440
2125	156	217	284	319	347	379	409	432	451	460	481	488	502	508	521	533
2126	157	218	287	328	360	388	420	424	446	456	460	473	487	492	512	512
EAN	149	210	274	315	351	384	405	425	445	459	474	486	495	503	516	522
.D.	10.4	13.6	17.7	22.2	25.6	28.5	31.0	32.2	34.1	36.6	34.9	38.6	40.1	42.7	46.3	47.4
N	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX G

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

	DAY	OF ST	YDY													
ANIMAL#	-14	- 7	0	7	14	21	28	35	42	49	56	63	69	77	84	91
3101	140	202	263	305	343	369	392	401	419	440	456	457	463	466	477	464
3102	137	202	281	334	380	408	427	443	470	482	500	521	535	531	550	556
3103	157	212	269	316	352	379	403	423	433	449	472	482	482	488	510	515
3104	146	194	258	302	338	379	406	435	463	482	501	526	536	539	553	567
3105	159	224	292	336	371	398	424	442	451	472	500	515	526	534	544	554
3106	139	204	281	328	368	403	419	440	434	450	484	496	520	522	547	544
3107	151	216	279	324	371	397	419	436	456	476	491	504	524	502	541	523
3108	146	204	271	319	357	387	410	423	445	463	484	513	521	528	530	515
3109	152	215	285	343	398	438	467	496	514	523	545	569	581	602	615	605
3110	164	228	296	357	410	438	477	491	514	539	562	573	589	600	619	609
3111	143	200	265	313	348	382	413	430	452	462	496	497	507	517	532	531
3112	135	191	251	277	302	321	344	351	358	367	380	388	397	413	422	424
3113	163	216	273	304	328	348	365	384	391	396	412	416	430	439	448	449
3114	157	221	286	329	361	393	417	436	451	461	478	493	506	521	522	532
3115	143	203	259	300	340	371	398	421	438	457	479	488	506	515	523	529
3116	153	218	288	328	354	373	393	403	408	424	434	443	452	450	451	450
3117	128	180	242	277	311	339	355	372	387	402	414	424	444	449	465	468
3118	153	215	276	315	343	376	393	404	420	432	456	471	484	476	503	510
3119	125	186	251	307	354	387	414	433	448	472	487	506	517	516	522	532
3120	162	223	287	328	368	399	424	442	463	483	500	517	526	534	550	554
3121	161	218	271	295	323	345	359	368	369	369	381	387	391	389	392	389
3122	155	220	286	339	380	418	440	464	482	493	512	528	535	552	559	560
3123	142	205	271	307	332	353	359	369	385	389	407	409	424	428	435	442
3124	148	213	274	318	355	391	413	429	445	452	484	504	519	528	537	545
3125	154	226	290	335	370	408	422	446	465	493	509	527	527	545	556	563
3126	164	225	289	326	368	391	413	433	455	478	492	506	523	537	545	554
EAN	149	210	274	318	355	384	406	424	439	454	474	487	499	505	517	519
.D.	10.8	12.8	14.2	19.1	24.8	28.1	31.7	35.1	39.2	42.9	45.4	49.8	50.5	52.8	55.1	55.0
N	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX G

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

	DAY	OF ST	UDY													
ANIMAL#	-14	-7 	0	7	14	21	28	35	42	49	56	63	69	77	84	91
4101	131	185	241	269	299	321	337	348	360	372	389	393	402	406	411	415
4102	134	186	244	275	310	337	361	375	392	411	429	435	455	464	470	469
4103	162	219	281	311	338	369	387	403	417	432	445	451	465	472	482	471
4104	147	201	266	312	346	380	399	403	425	429	445	464	455	461	474	462
4105	161	228	294	342	377	412	437	456	478	492	507	527	547	551	559	565
4106	125	187	250	280	295	326	352	369	383	399	421	442	454	452	470	466
4107	156	214	276	310	346	374	394	413	423	443	460	475	481	485	498	489
4108	154	231	312	365	412	454	489	519	543	566	595	619	632	641	664	656
4109	152	208	269	305	338	365	396	412	429	445	456	461	473	491	503	505
4110	157	230	296	350	385	411	441	466	484	494	512	529	535	544	556	565
4111	143	200	259	294	330	363	384	399	423	432	450	462	471	478	480	475
4112	149	207	270	300	332	364	383	400	423	433	454	468	490	489	504	503
4113	152	214	276	318	364	395	418	437	448	469	503	519	527	528	542	549
4114	141	202	262	303	329	353	378	394	411	429	446	451	459	475	486	511
4115	154	203	263	299	333	355	376	395	409	420	435	447	451	465	475	482
4116	164	227	295	331	371	405	433	453	482	506	539	551	568	576	58 7	594
4117	159	223	289	333	373	404	421	431	443	450	473	503	511	526	539	536
4118	144	211	277	299	328	347	349	355	350	401	426	425	433	438	453	451
4119	140	199	265	304	333	347	354	363	383	389	419	446	459	460	468	482
4120	146	206	262	291	326	345	377	383	404	417	421	443	446	470	471	471
4121	140	208	282	337	383	409	425	445	455	469	500	521	522	529	540	542
4122	155	210	274	317	351	370	393	413	436	454	478	485	503	503	508	530
4123	151	211	272	314	345	356	371	385	402	414	427	446	455	461	468	475
4124	162	222	284	313	347	380	405	425	440	452	472	479	490	498	494	499
4125	137	197	257	296	329	354	379	398	410	430	458	470	484	497	497	518
4126	165	230	301	333	361	384	411	427	446	457	473	477	489	503	512	523
EAN	149	210	274	311	345	372	394	410	427	442	463	477	487	495	504	508
.D.	10.6	13.6	17.4	22.8	27.0	30.7	34.0	38.0	41.0	40.7	43.8	46.5	47.8	47.8	50.2	50.6
N	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26

Huntingdon Life Sciences 00-4202 PAGE 268

Sponsor Study No: 211-TAME-1G

APPENDIX G GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

	DAY	OF ST	UDY													
ANIMAL#	-14	-7	0	7	14	21	28	35	42	49	56	63	69	77	84	91
1601	106	154	189	212	235	248	266	267	287	279	303	329	322			
1602	119	163	187	214	234	251	257	268	279	277	284	286	292			
1603	104	147	181	206	228	231	255	270	273	263	303	294	289			
1604	113	152	179	207	228	250	258	272	285	275	294	301	297			
1605	118	160	184	201	227	235	258	253	270	268	273	279	278			
1606	116	144	165	194	202	228	241	245	260	263	267	264	276			
1607	109	150	180	199	222	243	260	260	269	280	290	282	296			
1608	93	131	167	194	212	227	243	247	248	253	259	260	255			
1609	120	172	210	236	251	278	291	294	303	311	315	326	323			
1610	108	143	168	196	208	218	239	246	253	249	264	279	294			
1611	113	146	170	187	211	217	235	231	249	253	255	254	264			
1612	105	150	178	206	233	247	259	267	283	281	287	290	296			
1613	107	150	189	211	227	252	268	273	270	274	281	280	290			
1614	110	160	185	206	225	240	250	263	271	279	290	290	285			
1615	110	152	182	205	221	242	250	264	268	262	280	279	272			
1616	123	171	203	227	255	270	278	295	302	306	309	317	320			
1617	115	162	193	217	238	246	263	265	272	287	292	295	297			
1618	116	155	194	214	236	258	265	280	285	291	299	312	316			
1619	115	157	193	208	229	248	261	267	274	273	290	294	290			
1620	105	149	182	199	223	238	245	251	264	275	281	280	286			
1621	120	159	194	209	238	250	264	273	280	284	291	293	292			
1622	97	133	163	182	206	226	239	244	254	272	266	282	287			
1623	98	134	155	170	197	211	220	233	243	244	252	258	258			
1624	102	145	181	207	226	241	281	269	276	278	280	297	294			
1625	124	166	205	236	259	267	279	298	296	294	317	317	318			
1626	101	136	167	181	207	220	227	241	251	256	260	275	268			
EAN	110	151	182	205	226	242	256	263	272	274	284	289	291			
.D.	8.2	11.1	13.5	15.4	15.7	16.6	16.9	17.6	16.3	16.2	18.0	19.8	18.8			
N	26	26	26	26	26	26	26	26	26	26	26	26	26			

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX G

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

	DAY	OF ST	YCU													
ANIMAL#	-14	-7 	0	7	14	21	28	35	42	49	56	63	69	77	84	9
2601	102	. 140	175	194	210	229	255	265	270	277	289	291	300			
2602	125	166	196	223	249	257	283	291	309	308	315	316	322			
2603	119	155	191	216	238	248	262	267	279	279	286	288	291			
2604	115	165	213	239	288	307	310	334	346	351	355	372	377			
2605	102	133	154	181	200	208	222	235	244	237	258	276	259			
2606	112	157	183	201	209	238	251	252	250	271	279	321	293			
2607	121	166	205	234	255	264	283	291	297	287	309	311	305			
2608	108	147	170	200	221	230	251	263	268	276	280	284	292			
2609	105	144	174	188	218	227	252	251	268	266	280	306	301			
2610	93	138	172	198	216	234	242	245	253	255	266	267	266			
2611	109	149	182	205	224	250	272	274	284	293	303	296	314			
2612	105	151	189	212	231	249	264	266	277	280	277	286	289			
2613	120	175	209	239	266	293	304	311	323	333	348	368	358			
2614	97	145	169	196	221	241	247	266	272	261	275	283	280			
2615	116	162	198	215	235	255	255	273	282	288	286	295	302			
2616	111	160	197	221	244	266	281	293	298	304	311	310	311			
2617	103	146	185	210	225	240	255	268	274	281	284	296	297			
2618	113	158	186	213	229	242	242	254	264	269	265	297	288			
2619	116	164	201	229	252	272	287	295	308	308	330	345	369			
2620	115	153	188	202	225	240	249	266	264	285	280	288	288			
2621	99	136	171	190	208	227	243	244	260	260	264	268	280			
2622	106	151	197	221	250	262	286	294	294	309	330	320	327			
2623	118	169	206	217	233	243	259	269	278	277	288	298	295			
2624	123	179	216	242	268	291	304	330	320	310	325	341	333			
2625	109	153	184	209	231	237	257	270	277	279	286	291	286			
2626	105	145	174	198	223	243	244	262	271	277	288	326	306			
EAN	110	154	188	211	233	250	264	274	282	285	294	305	305			
.D.	8.4	12.0	15.5	16.6	20.8	22.5	22.1	24.7	24.2	24.5	25.9	27.4	28.7			
N	26	26	26	26	26	26	26	26	26	26	26	26	26			

Huntingdon Life Sciences 00-4202 PAGE 270

Sponsor Study No: 211-TAME-1G

APPENDIX G

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

	DAY	OF ST	UDY													
ANIMAL#	-14	-7	0	7	14	21	28	35	42	49	56	63	69	77	84	91
3601	106	146	172	182	208	223	233	236	248	257	261	259	272			
3602	112	149	183	201	221	233	247	255	254	269	273	275	274			
3603	108	151	186	208	231	243	265	277	285	279	293	294	286			
3604	101	142	176	193	208	219	233	240	251	248	264	270	262			
3605	113	158	197	222	240	251	268	278	281	277	286	291	283			
3606	104	144	161	191	200	219	230	234	242	246	253	251	248			
3607	106	145	174	194	208	225	244	246	261	266	280	275	280			
3608	124	167	203	233	234	266	282	272	284	291	311	332	346			
3609	117	160	202	218	250	268	287	296	303	314	317	322	328			
3610	116	161	194	219	226	247	262	261	277	284	290	288	293			
3611	99	134	162	167	185	195	208	214	221	231	240	240	247			
3612	105	144	172	192	212	227	235	244	253	257	261	268	276			
3613	114	158	187	201	227	249	244	256	261	267	265	270	268			
3614	119	161	193	212	233	238	263	266	282	292	302	303	312			
3615	104	155	186	205	223	244	256	269	275	277	281	287	296			
3616	122	166	200	225	244	255	268	276	292	301	304	300	309			
3617	108	151	174	200	229	239	252	260	270	274	274	283	287			
3618	95	136	168	183	200	220	237	237	248	266	280	287	296	291	312	329
3619	125	171	197	222	242	259	270	285	291	298	300	304	308			
3620	120	163	199	208	243	245	269	282	288	300	308	309	305			
3621	110	154	183	213	241	247	263	271	277	284	284	297	299			
3622	116	170	203	224	238	262	276	282	283	298	305	311	310			
3623	97	134	165	188	205	213	228	241	248	244	262	266	265			
3624	116	153	179	185	203	214	252	237	237	247	266	266	269			
3625	109	150	184	208	225	240	251	258	258	270	289	284	283			
3626	103	143	168	184	193	204	220	224	228	232	243	244	244			
EAN	110	152	183	203	222	236	252	258	265	272	280	284	286	291	312	329
.D.	8.3	10.6	13.5	16.5	18.0	19.3	19.7	20.9	21.4	22.3	20.9	22.9	24.7	0.0	0.0	0.0
N	26	26	26	26	26	26	26	26	26	26	26	26	26	1	1	1

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-IG

APPENDIX G

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

	DAY	OF ST	JDY													
ANIMAL#	-14	-7	0	7	14	21	28	35	42	49	56	63	69	77	84	91
4601	116	164	200	213	219	251	260	274	286	278	299	298	299			
4602	99	140	165	191	205	221	241	253	245	259	277	264				
4603	117	158	189	223	232	250	268	271	289	283	308	309	311			
4604	120	160	194	211	236	250	260	274	273	282	287	298	301			
4605	110	143	179	206	213	232	248	252	249	260	265	266	276			
4606	104	143	173	188	199	220	230	244	248	252	253	261	265			
4607	114	167	203	226	238	268	288	293	291	299	307	316	317			
4608	98	141	172	188	205	216	234	244	251	255	261	266	265			
4609	113	157	192	207	232	252	266	273	276	288	287	297	305			
4610	105	153	185	207	225	245	257	262	266	272	296	288	290			
4611	102	143	175	186	214	229	250	251	257	263	261	273	273			
4612	106	154	186	211	235	253	270	266	282	278	277	291	285			
4613	109	153	185	212	220	251	266	265	282	278	297	302	306			
4614	124	167	202	222	242	255	275	280	297	303	300	314	318			
4615	111	159	198	213	237	249	259	267	277	281	281	287	292			
4616	98	136	173	188	214	232	242	251	258	266	273	273	280			
4617	97	139	174	192	214	225	243	249	253	251	266	274	272			
4618	115	166	194	204	232	247	260	258	274	284	284	287	292			
4619	121	162	200	217	227	235	247	260	266	267	276	285	282			
4620	104	138	169	185	197	209	222	235	236	240	247	249	250			
4621	107	157	192	216	234	243	258	270	269	279	295	293	302			
4622	108	151	188	197	209	225	231	247	255	266	282	308	301			
4623	118	172	203	218	240	251	256	274	275	285	299	290	305			
4624	124	168	196	216	238	244	262	256	270	278	276	281	282			
4625	109	149	184	204	230	234	248	258	270	269	280	283	284			
4626	119	165	216	233	254	259	281	288	295	296	328	322	334			
EAN	110	154	188	207	225	240	255	262	269	273	283	287	292			
.D.	8.1	10.9	12.8	13.5	14.8	14.8	16.0	14.0	16.4	15.3	18.6	18.5	19.4			
N	26	26	26	26	26	26	26	26	26	26	26	26	25			

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

PAGE 272

APPENDIX G

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

			
ANIMAL#	DAY 98	OF STUDY 105	
1101	580	594	
1102	463	472	
1103	563	554	
1104	541	551	
1105	603	611	
1106	479	484	
1107	569	581	
1108	555	560	
1109	535	534	
1110	501	506	
1111	543	535	
1112	454	462	
1113	602	599	
1114	586	596	
1115	539	533	
1116	555	565	
1117	532	548	
1118	554	554	
1119	469	478	
1120	516	525	
1121	551	553	
1122	505	514	
1123	597	609	
1124	564	561	
1125	539	540	
1126	489	503	
EAN	538	543	
.D.	42.7	42.0	
N	26	26	

Huntingdon Life Sciences 00-4202

Sponsor Study No: 211-TAME-1G

APPENDIX G

PAGE 273

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

MATEC	CROUD II	2000 MG/M2	INDIVIDUAL BODY WEIGHTS (GRAMS)
MALES	GROUP II		
	DA	Y OF STUDY	
ANIMAL#	98		
2101			
2102	566	582	
2103	590	608	
2104	499	506	
2105	526	549	
2106	553	562	
2107	477	498	
2108	630	634	
2109	528	544	
2110	551	559	
2111	467	468	
2112	541	551	
2113	484	487	
2114	514	523	
2115	456	461	
2116	514	520	
2117	557	563	
2118	571	578	
2119	578	589	
2120	598	603	
2121	530	540	
2122	529	540	
2123	458	467	
2124	451	452	
2125			
2126			
MEAN	530	539	
5.D.	46.1		
N	26	26	

MALES

Huntingdon Life Sciences 00-4202 PAGE 274

Sponsor Study No: 211-TAME-1G

GROUP III 10000 MG/M3

APPENDIX G

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

		OF STUDY
ANIMAL#	98	105
	482	492
	571	585
	427	413
	580	413 589
	557	588
	55 <i>7</i> 555	570
	527	570 554
		531
3108	525	636
	618 630	640
	540	552
	427	434
3112	472	434 478
3113	548	
		557
3115 3116	532	542 467
	463	
	484	498
	512	528
	536	546
	556	560
	404 570	409
	449	586
		451
	552	569
	573 571	576
3126	571	574
MEAN	525	536
S.D.		62.8
N	26	26
21	20	20

Huntingdon Life Sciences 00-4202

Sponsor Study No: 211-TAME-1G

APPENDIX G

PAGE 275

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

MALES	GROUP IV 2	20000 MG/M3	INDIVIDUAL BODY WEIGHTS (GRAMS)
			·
	DAY		
	98	105	
4101	431	441	
4102	479	491	
4103	480	494	
4104	475	494	
4105	571	586	
4106	482	492	
4107	507	507	
4108	688	697	
4109	516	514	
4110	567	571	
4111	489	488	
4112	516	528	
4113	562	571	
4114	522	528	
4115	488	491	
4116	597	606	
4117	547	559	
4118	463	478	
4119	500	515	
4120	477	481	
4121	554	570	
4122	545	559	
4123	488	491	
4124	507	516	
4125	526	536	
4126	541	540	
MEAN	520	528	
S.D.	51.9	52.2	
N	26	26	
	20		

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

PAGE 276

APPENDIX G

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

FEMALES GROUP I	. 0	MG/M3	
ANIMAL#	DAY 98	OF STUDY 105	_
1611		300	 -
MEAN S.D. N	0 0.0 1	300 0.0 1	

Huntingdon Life Sciences 00-4202 PAGE 277
Sponsor Study No: 211-TAME-1G

APPENDIX G

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

FEMALES GR	OUP III 10	000 MG/M3	
ANIMAL#		OF STUDY	·
3618	343	338	·
MEAN S.D. N	343 0.0 1	338 0.0 1	

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX H

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ANIMAL#	DAY -147	OF STUD	Y 0-7	7-14	14-21	21-28	28-35	35-42	42-49	49-56	56-63	63-69	69-77	77-84	84-91	91-98
-	,															
1101	55	66	46	40	32	37	20	26	6	26	20	12	17	18	6	4
1102	51	55	41	36	23	6	14	22	11	19	6	12	12	17	-3	5
1103	65	68	49	42	31	10	32	15	20	16	7	18	7	24	2	12
1104	65	66	48	32	27	21	25	16	13	16	18	0	14	14	4	9
1105	63	68	54	38	38	28	27	23	23	22	18	8	7	14	3	22
1106	58	42	27	30	35	24	17	26	8	20	22	14	2	8	7	-3
1107	72	59	41	43	38	8	30	32	15	21	9	18	0	23	-9	8
1108	65	65	42	40	40	29	12	19	20	14	28	15	3	9	-6	-2
1109	61	65	47	40	40	18	27	11	15	21	3	6	10	8	-1	9
1110	58	58	39	35	29	9	19	12	14	17	16	8	15	13	1	12
1111	61	67	46	48	38	15	10	17	18	5	28	2	7	16	-6	9
1112	50	56	29	31	25	3	12	19	15	14	10	8	7	13	11	11
1113	66	70	47	39	48	2	11	26	32	22	20	4	18	22	3	14
1114	67	70	49	48	40	15	26	12	-6	-16	31	35	29	34	1	9
1115	58	63	38	32	23	29	20	13	15	21	2	28	0	19	3	14
1116	63	64	42	34	37	17	13	29	10	31	8	16	6	20	10	6
1117	53	58	45	26	28	27	23	13	15	21	8	14	7	25	8	11
1118	68	71	45	40	31	28	22	18	9	17	10	15	5	25	5	3
1119	60	62	35	35	22	17	15	16	9	23	2	20	- 3	23	1	3
1120	63	64	37	23	38	8	23	12	6	6	6	14	15	20	11	1
1121	62	61	40	42	27	19	14	15	18	17	18	4	14	14	10	19
1122	57	60	42	35	36	24	19	19	13	20	9	6	10	12	2	9
1123	65	62	49	39	35	31	14	23	15	25	15	13	19	14	14	9
1124	71	64	43	36	34	22	21	19	10	32	12	18	-8	12	9	16
1125	67	66	43	29	26	28	15	19	12	18	1	18	-1	18	9	14
1126	68	67	53	36	25	1	22	10	16	18	8	13	2	2	11	-2
EAN	62	63	43	36	33	18	19	19	13	18	13	13	8	17	4	9
.D.	5.9	6.1	6.3	6.0	6.7	10.1	6.1	5.9	6.8	9.2	8.5	7.8	7.9	6.8	5.9	6.2
N	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26

Huntingdon Life Sciences 00-4202 PAGE 279

Sponsor Study No: 211-TAME-1G

APPENDIX H GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

MALES	GROUP II		2000 MG/	МЗ		IND	IVIDOAL			ND) NIA							
	DA	 Y	OF STUD	Y						-	· 						
ANIMAL#	-14	7	-7-0	0-7	7-14	14-21	21-28	28-35	35-42	42-49	49-56	56-63	63-69	69-77	77-84	84-91	91-98
2101	6	6	68	51	47	36	30	15	23	12	23	11	18	6	8	3	3
2102	6	3	60	56	40	35	32	26	24	24	6	30	2	16	11	7	- 3
2103	6	7	69	44	45	29	24	27	18	18	-19	38	19	22	27	5	5
2104	5	0	61	42	37	26	11	24	13	26	16	5	7	7	11	10	1
2105	6	1	64	42	38	33	30	19	23	21	18	15	14	4	11	-4	2
2106	6	0	64	45	39	28	27	21	19	18	23	15	8	5	17	6	12
2107	5	5	65	35	26	32	30	20	19	12	21	8	3	1	11	-13	12
2108	6	6	70	54	54	42	19	19	32	18	13	21	15	15	23	8	17
2109	6	0	59	36	36	34	18	24	19	21	21	14	5	15	18	-6	- 5
2110	6	1	65	46	35	28	20	23	12	18	24	3	8	21	11	18	-7
2111	6	0	61	39	33	20	24	10	25	4	20	4	11	- 4	3	-4	5
2112	6	3	59	34	41	42	21	23	25	17	12	15	8	6	16	-1	8
2113	5	8	54	36	31	30	12	22	20	16	17	2	13	7	4	14	15
2114	6	1	66	34	38	33	-5	20	15	14	23	8	-4	25	2	25	8
2115	4	4	54	36	22	22	24	22	16	13	18	8	13	7	5	7	8
2116	6	2	73	46	33	26	21	16	23	8	17	2	5	16	8	11	5
2117	6	2	65	49	42	34	27	20	17	10	23	14	2	-2	28	7	8
2118	5	5	63	40	36	34	29	26	26	18	1	30	13	6	23	3	5
2119	6	6	71	51	37	47	13	24	23	19	15	4	2	8	11	11	17
2120	8	2	77	53	38	32	36	20	19	16	14	10	15	-2	8	11	5
2121	6	0	62	32	33	32	22	19	19	9	28	5	3	14	22	10	12
2122	5	5	66	43	32	41	-1	19	17	7	20	12	11	10	16	10	10
2123	5	7	63	30	36	27	22	17	15	10	8	12	3	-14	16	-3	20
2124	5	5	53	28	34	34	12	10	18	4	16	7	7	2	8	8	11
2125	6	1	68	35	28	33	30	22	20	9	21	6	14	6	13	11	15
2126	6	1	69	42	32	28	32	4	22	10	4	13	14	5	21	0	15
EAN	6	0	64	41	36	32	21	20	20	14	15	12	9	8	14	6	8
.D.	6.	8	5.8	7.7	6.5	6.1	10.0	5.3	4.5	5.8	9.6	9.1	5.8	8.6	7.3	8.0	6.8
N	2	6	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX H

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

	DAY	OF STUI	Ϋ́													
ANIMAL#	-147	-7-0	0-7	7-14	14-21	21-28	28-35	35-42	42-49	49-56	56-63	63-69	69-77	77-84	84-91	91-98
1101	55	66	46	40	32	37	20	26	6	26	20	12	17	18	6	4
1102	51	55	41	36	23	6	14	22	11	19	6	12	12	17	-3	5
1103	65	68	49	42	31	10	32	15	20	16	7	18	7	24	2	12
1104	65	66	48	32	27	21	25	16	13	16	18	0	14	14	4	9
1105	63	68	54	38	38	28	27	23	23	22	18	8	7	14	3	22
1106	58	42	27	30	35	24	17	26	8	20	22	14	2	8	7	- 3
1107	72	59	41	43	38	8	30	32	15	21	9	18	0	23	-9	8
1108	65	65	42	40	40	29	12	19	20	14	28	15	3	9	-6	-2
1109	61	65	47	40	40	18	27	11	15	21	3	6	10	8	-1	9
1110	58	58	39	35	29	9	19	12	14	17	16	8	15	13	1	12
1111	61	67	46	48	38	15	10	17	18	5	28	2	7	16	-6	9
1112	50	56	29	31	25	3	12	19	15	14	10	8	7	13	11	11
1113	66	70	47	39	48	2	11	26	32	22	20	4	18	22	3	14
1114	67	70	49	48	40	15	26	12	-6	-16	31	35	29	34	1	9
1115	58	63	38	32	23	29	20	13	15	21	2	28	0	19	3	14
1116	63	64	42	34	37	17	13	29	10	31	8	16	6	20	10	6
1117	53	58	45	26	28	27	23	13	15	21	8	14	7	25	8	11
1118	68	71	45	40	31	28	22	18	9	17	10	15	5	25	5	3
1119	60	62	35	35	22	17	15	16	9	23	2	20	-3	23	1	3
1120	63	64	37	23	38	8	23	12	6	6	6	14	15	20	11	1
1121	62	61	40	42	27	19	14	15	18	17	18	4	14	14	10	19
1122	57	60	42	35	36	24	19	19	13	20	9	6	10	12	2	9
1123	65	62	49	39	35	31	14	23	15	25	15	13	19	14	14	9
1124	71	64	43	36	34	22	21	19	10	32	12	18	-8	12	9	16
1125	67	66	43	29	26	28	15	19	12	18	1	18	- 1	18	9	14
1126	68	67	53	36	25	1	22	10	16	18	8	13	2	2	11	- 2
EAN	62	63	43	36	33	18	19	19	13	18	13	13	8	17	4	9
.D.	5.9	6.1	6.3	6.0	6.7	10.1	6.1	5.9	6.8	9.2	8.5	7.8	7.9	6.8	5.9	6.2
N	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX H

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

	DAY	OF STUE	Υ													
ANIMAL#	-147	-7-0	0 - 7	7-14	14-21	21-28	28-35	35-42	42-49	49-56	56-63	63-69	69-77	77-84	84-91	91-98
2101	66	68	51	47	36	30	15	23	12	23	11	18	6	8	3	3
2102	63	60	56	40	35	32	26	24	24	6	30	2	16	11	7	- 3
2103	67	69	44	45	29	24	27	18	18	-19	38	19	22	27	5	5
2104	50	61	42	37	26	11	24	13	26	16	5	7	7	11	10	1
2105	61	64	42	38	33	30	19	23	21	18	15	14	4	11	-4	2
2106	60	64	45	39	28	27	21	19	18	23	15	8	5	17	6	12
2107	55	65	35	26	32	30	20	19	12	21	8	3	1	11	-13	12
2108	66	70	54	54	42	19	19	32	18	13	21	15	15	23	8	17
2109	60	59	36	36	34	18	24	19	21	21	14	5	15	18	-6	- 5
2110	61	65	46	35	28	20	23	12	18	24	3	8	21	11	18	-7
2111	60	61	39	33	20	24	10	25	4	20	4	11	-4	3	-4	5
2112	63	59	34	41	42	21	23	25	17	12	15	8	6	16	-1	8
2113	58	54	36	31	30	12	22	20	16	17	2	13	7	4	14	15
2114	61	66	34	38	33	-5	20	15	14	23	8	- 4	25	2	25	8
2115	44	54	36	22	22	24	22	16	13	18	8	13	7	5	7	8
2116	62	73	46	33	26	21	16	23	8	17	2	5	16	8	11	5
2117	62	65	49	42	34	27	20	17	10	23	14	2	-2	28	7	8
2118	55	63	40	36	34	29	26	26	18	1	30	13	6	23	3	5
2119	66	71	51	37	47	13	24	23	19	15	4	2	8	11	11	17
2120	82	77	53	38	32	36	20	19	16	14	10	15	-2	8	11	5
2121	60	62	32	33	32	22	19	19	9	28	5	3	14	22	10	12
2122	55	66	43	32	41	- 1	19	17	7	20	12	11	10	16	10	10
2123	57	63	30	36	27	22	17	15	10	8	12	3	-14	16	-3	20
2124	55	53	28	34	34	12	10	18	4	16	7	7	2	8	8	11
2125	61	68	35	28	33	30	22	20	9	21	6	14	6	13	11	15
2126	61	69	42	32	28	32	4	22	10	4	13	14	5	21	0	15
EAN	60	64	41	36	32	21	20	20	14	15	12	9	8	14	6	8
.D.	6.8	5.8	7.7	6.5	6.1	10.0	5.3	4.5	5.8	9.6	9.1	5.8	8.6	7.3	8.0	6.8
N	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26

Huntingdon Life Sciences 00-4202 PAGE 282

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX H

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

	DAY	OF STUI	Υ													
ANIMAL#	-147	-7-0	0-7	7-14	14-21	21-28	28-35	35-42	42-49	49-56	56-63	63-69	69-77	77-84	84-91	91-98
3101	62	60	42	38	26	22	9	18	21	15	1	6	3	11	-13	18
3102	66	79	53	46	29	18	16	27	12	19	21	14	- 5	19	6	14
3103	55	57	47	36	27	24	20	11	16	23	10	0	6	21	5	-87
3104	48	64	44	36	41	27	29	28	19	19	25	10	4	14	14	13
3105	65	68	44	35	27	26	18	9	21	28	15	11	8	11	10	3
3106	65	76	47	40	35	16	21	-6	17	34	12	24	2	25	- 3	11
3107	65	63	46	47	25	22	17	21	20	15	13	20	-22	39	-17	4
3108	58	67	48	38	30	23	13	23	18	21	29	8	7	3	-15	10
3109	63	70	58	55	40	29	29	19	9	22	24	12	21	13	-10	14
3110	64	69	60	54	28	39	14	23	25	23	10	17	10	19	-10	21
3111	57	65	48	35	34	31	18	22	10	34	1	10	10	15	- 1	8
3112	56	60	26	26	19	23	7	7	9	13	8	9	16	9	2	3
3113	53	57	31	24	20	18	18	7	6	16	4	14	8	9	1	24
3114	64	65	43	32	32	24	19	15	10	17	15	13	15	1	11	16
3115	59	56	41	41	31	27	23	17	19	22	9	18	9	9	6	3
3116	65	70	40	27	18	20	11	5	16	10	8	9	-2	1	-1	13
3117	52	62	35	34	29	16	17	15	15	13	10	20	6	16	3	16
3118	62	62	39	28	33	17	11	16	13	24	14	13	-7	27	7	1
3119	60	65	56	48	33	27	19	15	24	15	19	11	-1	6	10	4
3120	62	64	41	40	31	25	18	21	20	17	17	8	8	16	4	3
3121	57	53	25	27	22	14	9	1	0	12	6	4	-3	3	- 3	15
3122	65	66	53	41	38	23	24	18	11	19	16	7	17	7	1	10
3123	63	66	36	25	21	6	10	16	4	18	3	15	4	7	7	7
3124	65	61	44	. 37	36	22	15	16	8	31	21	15	9	9	8	7
3125	72	64	45	35	38	14	25	19	28	16	18	0	17	12	7	10
3126	61	64	37	42	23	23	19	22	23	15	14	17	14	8	8	17
EAN	61	64	43	37	29	22	17	15	15	20	13	12	6	13	1	7
.D.	5.2	5.8	8.8	8.4	6.5	6.4	5.9	7.9	7.0	6.4	7.4	5.8	9.1	8.7	8.5	20.2
N	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX H

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ALES	GROUP IV	2	20000 MG/	/M3													
	DAY	ľ	OF STUDY	Z.													
ANIMAL#	-147	7	-7-0	0-7	7-14	14-21	21-28	28-35	35-42	42-49	49-56	56-63	63-69	69-77	77-84	84-91	91-98
4101	54	4	56	28	30	21	16	12	11	13	17	4	9	4	5	4	16
4102	52	2	58	31	35	26	25	14	17	19	18	6	20	8	7	-1	10
4103	56	5	62	30	27	31	18	16	14	16	12	7	14	7	10	-12	10
4104	5.5	5	65	47	34	34	19	4	22	3	16	19	- 9	7	12	-12	13
4105	68	3	66	48	35	35	25	18	22	14	16	19	20	4	9	5	7
4106	62	2	63	30	15	31	26	17	14	16	22	22	12	- 2	18	- 3	16
4107	58	3	62	34	36	28	20	19	11	20	16	15	6	3	13	-9	19
4108	73	7	81	54	46	42	36	29	24	23	29	24	14	8	23	- 9	33
4109	55	5	61	36	33	27	31	17	17	16	11	5	12	18	12	2	11
4110	73	3	65	54	35	27	29	26	18	10	18	18	6	9	12	9	2
4111	53	7	59	35	36	34	21	15	24	9	17	13	8	8	2	-5	14
4112	58	3	63	30	32	32	18	17	23	10	21	14	22	-2	16	-1	13
4113	62	2	62	41	47	30	24	18	12	21	34	16	8	1	15	6	1.
4114	60	0	61	41	26	24	25	17	17	17	17	6	8	16	11	25	1:
4115	4.9	9	60	36	34	22	21	18	14	11	16	12	4	14	10	7	6
4116	63	3	69	36	40	34	28	20	29	24	33	12	17	9	11	7	
4117	65	5	65	44	40	31	17	11	12	7	23	30	9	15	13	-3	1.1
4118	68	В	66	22	29	19	2	6	-6	51	26	-1	8	5	15	-2	12
4119	60	0	66	39	29	15	7	9	20	6	30	28	13	1	8	14	18
4120	60	0	56	29	35	19	32	6	21	13	4	22	2	25	1	-1	6
4121	68	В	74	55	46	26	16	20	10	14	31	21	1	7	11	2	12
4122	55	5	64	43	34	19	23	21	23	18	24	8	18	-1	6	22	19
4123	63	1	61	42	32	11	15	14	17	12	13	20	9	6	8	7	10
4124	60	0	62	29	34	34	25	20	15	13	19	7	12	7	-4	5	
4125	60	0	60	38	34	25	25	19	13	20	28	12	14	13	0	22	
4126	6	5	71	33	27	24	27	16	19	10	17	4	12	14	9	11	18
EAN	6:	1	64	38	34	27	22	16	17	16	20	14	10	8	10	3	12
.D.	6.4	4	5.3	8.7	6.7	7.1	7.4	5.8	6.7	8.9	7.3	8.0	6.6	6.4	5.9	9.7	6.3
N	26	6	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX H

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL BODY WEIGHT GAIN (GRAMS)

FEMALES GROUP I 0 MG/M3 DAY OF STUDY ANIMAL# -14--7 -7-0 0-7 7-14 14-21 21-28 28-35 35-42 42-49 49-56 56-63 63-69 69-77 77-84 84-91 91-98 -9 -7 -2 22 3 3 -10 - 5 21 22 13 -11 -3 - 5 -2 -1 -4 23 21 17 0 - 8 18 15 16 4 6 1 - 5 14 28 12 3 4 11 -3 -4 -4 -1 13 8 -2 -3 4 11 13 - 5 -6 -1 - 7 21 9 22 22 7 15 13 6 - 1 -4 - 1 - 1 - 1 -12 -3 -2 - 3 -7 MEAN S.D. 5.7 5.5 5.1 5.1 6.3 7.3 7.4 5.7 7.1 9.4 8.3 6.8

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX H

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL BODY WEIGHT GAIN (GRAMS)

FEMALES GROUP II 2000 MG/M3 DAY OF STUDY -14-7 -7-0 0-7 7-14 14-21 21-28 28-35 35-42 42-49 49-56 56-63 63-69 69-77 77-84 84-91 91-98ANIMAL# _______ -1 -7 -17 -2 -29 -9 -7 - 1 -2 - 5 -7 -3 10 -10 -11 -3 -2 - 1 - 4 -8 - 1 -1 - 5 - 1 -10 -4 -10 -11 -8 -5 -20 MEAN S.D. 5.9 6.3 5.2 7.3 6.5 7.8 7.3 6.3 8.2 7.9 12.7 11.3 N

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX H

PAGE 286

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL BODY WEIGHT GAIN (GRAMS)

FEMALES GROUP III 10000 MG/M3 DAY OF STUDY ANIMAL# -14--7 -7-0 $0-7 \quad 7-14 \quad 14-21 \quad 21-28 \quad 28-35 \quad 35-42 \quad 42-49 \quad 49-56 \quad 56-63 \quad 63-69 \quad 69-77 \quad 77-84 \quad 84-91 \quad 91-98$ -2 -1 - 1 -6 - 3 - 8 -4 -8 - 3 - 3 -5 1 32 17 -11 7 11 -2 -1 -5 -2 15 10 - 3 11 18 17 0 -4 -4 - 1 -15 - 4 - 1 MEAN - 5 S.D. 4.1 5.4 6.9 7.7 6.7 7.3 6.9 4.9 6.1 6.5 5.7 6.2 0.0 0.0 0.0

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX H

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

	DAY	OF STUI	PΥ												
ANIMAL#	-147	-7-0	0-7	7-14	14-21	21-28	28-35	35-42						84-91	91-98
4601	48	35	14	6	32	9	14	12	-8	21	-1	1	 		
4602	41	25	26	14	16	20	12	-9	14	18	-12				
4603	41	31	34	9	18	19	3	19	-7	25	1	2			
4604	40	34	17	25	14	10	14	0	9	5	12	3			
4605	33	36	27	6	19	16	4	- 3	10	6	1	10			
4606	39	30	15	11	21	10	14	5	4	1	8	4			
4607	53	36	23	12	30	20	5	-2	8	8	10	1			
4608	43	31	16	16	11	18	10	7	4	6	5	-1			
4609	44	35	15	25	20	13	8	3	12	0	10	8			
4610	48	32	22	18	19	12	5	3	6	24	-8	3			
4611	40	32	11	27	16	21	1	5	7	-2	12	0			
4612	48	32	25	24	18	17	- 4	16	- 4	-2	15	-6			
4613	43	33	26	9	31	15	- 1	17	-4	19	5	4			
4614	44	35	20	20	13	20	5	17	7	-3	14	5			
4615	48	39	15	25	12	9	8	10	4	0	7	5			
4616	39	37	15	25	18	10	9	7	8	6	0	8			
4617	42	35	19	21	12	17	7	4	-2	15	8	-2			
4618	51	28	10	28	15	13	-3	17	10	1	2	6			
4619	41	38	17	10	8	12	13	7	1	9	9	-3			
4620	34	31	16	12	12	13	13	1	5	6	3	1			
4621	50	35	24	18	9	15	11	-1	10	16	-2	9			
4622	43	38	8	13	16	6	15	8	11	17	26	-7			
4623	54	31	15	22	12	4	18	1	10	15	- 9	15			
4624	44	28	20	21	6	18	-6	14	8	-2	5	2			
4625	40	36	20	26	4	14	10	12	-1	11	3	2			
4626	46	51	17	21	5	22	7	7	1	32	- 5	12			
EAN	44	34	19	18	16	14	7	7	5	10	4	3			
.D.	5.2	4.9	5.9	7.0	7.2	4.7	6.3	7.1	5.9	9.7	8.3	5.2			
N	26	26	26	26	26	26	26	26	26	26	26	25			

MALES

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

0 MG/M3

GROUP I

APPENDIX H

PAGE 288

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

	DAY	OF STU	IDY
ANIMAL#	98-105	0-69	0-105
1101	13	265	323
1102	10	189	231
	-8	239	276
1104	10	214	265
1105	8	278	332
1106	8 5	225	245
1107	11	253	287
1108	6	258	267
1109	0	229	256
1110	5	199	246
1111	-8	227	246
1112	8	165	215
1113	-3	251	304
1114	10	234	316
1115	-6	220	250
1116	10	236	287
1117	17	220	288
1118	-1	235	273
1119	9	194	228
1120	10	173	230
1121	10 3	216	274
1122	9	222	264
1123	13	260	329
1124	-2	247	273
1125	1	209	250
1126	14	203	230
MEAN	6	225	
S.D.	7.0		
N	26	26	26

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX H

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

4ALES	GROUP II	2000 MC	•	INDIVIDUAL BODI WEIGHI GAIN (GRAMS)
	DAY			·
	98~105	0-69	0-105	
2101				·
2102	16	275	322	
2103	18	243	319	
2104	7	206	242	
2105	24	253	290	
2106	10	241	290	
2107	22	206	238	
2108	4	286	353	
2109	16	228	266	
2110	9	217	269	
2111	2	189	190	
2112	10	238	278	
2113	3		242	
2114	. 10	175	243	
2115	5	193	225	
2116	6	195	241	
2117	6	237	285	
2118	8	253	298	
2119	11	235	293	
2120	5	252	280	
2121	10	201	268	
2122	11	200	257	
2123	9	178	206	
2124	1		201	
2125	7	218	271	
2126	1	200	241	
MEAN	9	221	265	
5.D.	5.8	31.6	38.4	
N	26	26	26	

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX H

PAGE 290

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

MALES	GROUP III			INDIVIDUAL BODI WEIGHT GAIN (GRANG)
		OF ST		
	98-105	0-69	0-105	
3101				
3102	15	254	304	
3103	-14	213	145	
3104	10	278	331	
3105	31	. 233	296	
3106	16	240	290	
3107	27	246	276	
3108	-	250	260	
3109	17	296	351	
3110	10	293	344	
3111	12	242	287	
3112	7	146	183	
3113	6	158	205	
3114	g	220	271	
3115	10	247	283	
3116	4	164	179	
3117	15	202	257	
3118	16	207	252	
3119	10	267	295	
3120	4	238	273	
3121	į	120	138	
3122	16	249	301	
3123	3	153	180	
3124	16	244	294	
3125	4	237	286	
3126	3	234	285	
MEAN	10	224	261	
S.D.	8.5	45.1	57.5	
N	26	26	26	

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX H

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

MALES			20000 M		INDIVIDUAL BODI WEIGHI GAIN (GRAMS)
			OF STU		·
ANIMAL#		98-105	0-69	0-105	
4101		10		200	·
4102		13	211	247	
4103		13		213	
4104		20	189	229	
4105		15	252	292	
4106		10	204	242	
4107	,	0	205	231	
4108	:	9	321	386	
4109)	-2	205	245	
4110)	4	240	275	
4111		- 1	211	229	
4112		12	220	257	
4113		9	250	294	
4114		6	197	266	
4115	;	3	188	228	
4116	i	9	273	311	
4117	,	12	223	270	
4118	1	14	156	201	
4119)	15	194	250	
4120)	5	184	220	
4121		16	241	288	
4122	!	13	229	284	
4123		3	183	219	
4124		9	207	232	
4125	;	10	226	279	
4126		-1	188	239	
MEAN		9	213	255	
S.D.		5.9		40.2	
N		26		26	

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX H

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

FEMALES GR				**
	DAY			
	98-105	0-69		
1601				
1602		105		
1603		108		
1604		119		
1605		94		
1606		112		
1607		116		
1608		88		
1609		113		
1610		126		
1611	300	94	129	
1612		117		
1613		101		
1614		100		
1615		90		
1616		118		
1617		105		
1618		122		
1619		97		
1620		104		
1621		98		
1622		124		
1623		103		
1624		114		
1625		114		
1626		102		
MEAN	300	108	129	
S.D.	0.0	11.8	0.0	
N	1	26	1	

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX H

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ANIMAL# 2601 2602 2603 2604	DAY OF STUDY 98-105 0-69 0-105	
2601 2602 2603	98-105 0-69 0-105 	
2601 2602 2603	126 126 100 165	
2602 2603	126 126 100 165	
2603	100 165	
	100 165	
2604		
	105	
2605	103	
2606	110	
2607	100	
2608	122	
2609	127	
2610	95	
2611	132	
2612	100	
2613	149	
2614	111	
2615	104	
2616	114	
2617	111	
2618	102	
2619	168	
2620	100	
2621	108	
2622	130	
2623	88	
2624	117	
2625	102	
2626	132	
MEAN	117	
S.D.	20.2	
N	26	

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX H

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

FEMALES GR	OUP III	10000 M	•	
	DAY			
ANIMAL#	98-105		0-105	
3601		100		
3602		91		
3603		101		
3604		86		
3605		86		
3606		87		
3607		105		
3608		143		
3609		126		
3610		99		
3611		85		
3612		104		
3613		81		
3614		119		
3615		110		
3616		108		
3617		113		
3618	-4	128	170	
3619		111		
3620		106		
3621		117		
3622		107		
3623		100		
3624		90		
3625		99		
3626		76		
MEAN	-4	103	170	
S.D.	0.0	15.7	0.0	
N	1	26	1	

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX H

PAGE 295

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

FEMALES	GROUP IV	20000 MG	:/M3	INDIVIDUAL BODI WITCHI CAIN (CHAND)
	DAY	OF STUD	Ϋ́	
ANIMAL#	98-105	0-69		
4601		100		***************************************
4603		122		
4604		107		
4605		97		
4606		92		
4607		115		
4608		93		
4609		113		
4610		105		
4611		98		
4612		99		
4613		120		
4614		116		
4615		94		
4616		107		
4617		98		
4618		98	•	
4619		82		
4620		81		
4621		110		
4622		113		
4623		102		
4624		86		
4625		100		
4626		118		
MEAN		103		
S.D.		11.4		
N		25		

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX I

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL GESTATION BODY WEIGHTS (GRAMS)

		DAY	OF GESTAT	CION		
ANIMAL#	0	4	7	14	20	
1601	313	336	347	386	466	
1602	296	303	315	336	402	
1603	294	317	326	361	437	
1604	303	326	336	362	438	
1605	281	305	314	347	419	
1606 DIED	276	301	309	345	410	
1607	285	318	326	371	439	
1608	259	288	292	314	391	
1609x NP	328	343	363	358	359	
1610	289	300	307	335	384	
1611 TLL	264	289	298	324	336	
1612	289	312	323	356	423	
1613	281	325	337	375	453	
1614	292	316	330	355	442	
1615	278	295	312	346	357	
1616	317	349	365	397	470	
1617	297	311	320	345	414	
1618	303	332	341	372	430	
1619	294	310	318	340	396	
1620	281	311	312	355	424	
1621	296	315	324	357	432	
1622	288	297	311	341	402	
1623	263	278	288	306	360	
1624	296	321	332	358	419	
1625x NP	323	346	349	347	335	
1626	276	290	305	327	394	
1EAN	288	310	320	350	414	
3.D.	14.6	16.8	17.7	21.5	33.2	
N	24	24	24	24	24	

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX I

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL GESTATION BODY WEIGHTS (GRAMS)

GROUP II	200	00 MG/M3			IND.	IVIDUAL G.	ESTATION BODY WEIGHTS (GRAMS)
			DAV	OF GESTA	rton		
ANIMAL#		0	4	7	14	20	
2601		300	322	331	357	403	
2602		317	346	360	376	439	
2603		291	308	319	348	416	
2604		372	404	417	455	517	
2605		265	288	295	320	392	
2606		289	326	334	362	434	
2607		309	333	357	385	457	
2608		288	306	318	341	436	
2609x	NP	302	319	323	325	318	
2610		262	276	287	307	371	
2611		303	332	326	359	413	
2612		290	307	316	339	407	
2613		354	375	383	408	470	
2614		281	312	323	357	381	
2615		300	327	337	358	424	
2616		314	333	339	378	455	
2617		294	310	317	346	424	
2618		283	304	311	352	427	
2619		347	366	374	400	481	
2620		278	302	319	344	382	
2621		276	281	288	318	382	
2622		316	337	347	375	459	
2623		297	318	326	360	446	
2624		326	355	365	381	450	
2625		299	310	322	346	430	
2626		301	319	335	369	434	
MEAN		302	324	334	362	429	
S.D.		26.4	29.2	29.8	30.6	34.4	
N		25	25	25	25	25	

NP=NOT PREGNANT x=EXCLUDED FROM MEAN

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX I

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL GESTATION BODY WEIGHTS (GRAMS)

			DAY	OF GESTAT	CION		
ANIMAL#		0	4	7	14	20	
3601		262	284	295	326	411	
3602		272	303	312	340	399	
3603		286	311	320	350	432	
3604		264	285	302	327	403	
3605x	NP	281	315	323	328	347	
3606		253	272	281	311	371	
3607		280	295	304	332	391	
3608		325	346	360	390	476	
3609		321	344	358	384	431	
3610		290	321	334	361	418	
3611		249	271	278	304	348	
3612		268	295	305	330	394	
3613		279	296	309	326	397	
3614		307	334	359	386	465	·
3615		292	310	320	356	432	
3616		304	327	336	375	466	
3617		286	305	317	342	412	
3618x	NP						
3619		312	328	336	373	471	
3620		298	332	337	378	442	
3621		294	312	324	347	434	
3622		312	345	341	375	430	
3623		260	282	285	316	361	
3624		267	298	305	343	410	
3625		284	302	314	342	387	
3626		241	261	269	300	350	
1EAN		283	307	317	346	414	
S.D.		23.0	24.3	25.3	26.8	36.2	
N		24	24	24	24	24	

NP=NOT PREGNANT

x=EXCLUDED FROM MEAN

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX I

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL GESTATION BODY WEIGHTS (GRAMS)

		DAY	OF GESTA	TION		
ANIMAL#	0	4	7	14	20	
4601	305	329	345	378	404	·
4602xNPAD						
4603	312	344	352	384	447	
4604	293	319	327	346	423	
4605	273	297	306	342	414	
4606	258	281	291	320	394	
4607	318	346	353	388	426	
4608	276	297	315	341	419	
4609x NP	303	303	308	317	316	
4610	285	303	309	345	432	
4611	267	288	299	330	401	
4612	292	323	339	324	399	
4613	305	324	340	363	428	
4614	311	340	349	381	442	
4615	290	310	330	366	440	
4616	273	286	298	321	382	
4617x NP	265	283	290	307	295	
4618	293	319	328	360	426	
4619	282	304	319	340	395	
4620	239	259	266	290	351	
4621	302	327	343	379	456	
4622	297	315	325	353	432	
4623	314	332	346	361	431	
4624	282	310	312	342	423	
4625	287	305	314	341	408	
4626	330	355	367	399	477	
EAN	291	314	325	352	419	
D.	21.0	23.1	23.9	26.1	26.6	
N	23	23	23	23	23	

NP=NOT PREGNANT NPAD=ACCIDENTAL DEATH, NOT PG x=EXCLUDED FROM MEAN

DIED=FOUND DEAD

NP=NOT PREGNANT

TLL=TOTAL LITTER LOSS

PAGE 300

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-IG

APPENDIX J

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL GESTATION BODY WEIGHT GAIN (GRAMS)

	DAY	OF GESTAT	ION		
ANIMAL#				14 - 20	0 - 20
			38	81	153
1602	7	13	21	66	106
1603	23	8	35	77	144
1604		10	26	76	135
1605		9	33	72	138
1606 DIED	26	8	36	65	134
1607	33	8	46	68	154
1608	29	4	22	77	132
1609x NP	15	20	-5	1	31
1610	10	7	28	49	95
1611 TLL	25	9	26	12	73
1612	23	11	34	66	134
1613	44	13	37	78	172
1614	23	15	24	88	150
1615	16	17	34	11	78
1616	32	16	32	73	153
1617	1.5	9	24	69	117
1618	29	9	31	58	127
1619	16	8	22	56	102
1620	30	1	44	. 69	143
1621	19	9	34	74	136
1622	9	14	30	61	114
1623	15	10	18	55	98
1624	25	11	26	61	123
1625x NP	24	3	-2	-12	13
1626	14	15	21	68	118
MEAN	22	10	30	64	126
S.D.	8.6	3.7	7.3	18.4	24.8
N	24	24	24	24	24

x=EXCLUDED FROM MEAN

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX J

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL GESTATION BODY WEIGHT GAIN (GRAMS)

GROUP II	20	000 MG/M3			INDIV	IDOILL GEOIL	TION DODE WILDING (ORLIN)
		DAY (OF GESTAT	ON			
ANIMAL#		0 - 4			14 - 20		
2601		22	9	26	46	103	
2602		28	14	17	62	121	
2603		17	11	28	68	125	
2604		32	13	38	62	145	
2605		24	6	26	72	128	
2606		38	8	27	73	146	
2607		24	24	28	71	148	
2608		18	13	23	95	148	
2609x	NP	17	4	2	-8	15	
2610		14	11	21	64	109	
2611		29	-6	33	53	110	
2612		16	9	23	68	117	
2613		21	8	24	62	115	
2614		31	12	34	24	100	
2615		27	10	21	66	124	
2616		19	6	39	77	141	
2617		16	7	29	78	130	
2618		20	7	41	74	143	
2619		19	8	26	82	135	
2620		23	18	25	38	104	
2621		5	8	30	64	106	
2622		21	10	28	84	142	
2623		21	8	34	86	150	
2624		28	10	16	69	124	
2625		11	12	24	84	130	
2626		19	16	34	65	133	
MEAN		22	10	28	67	127	
S.D.		7.1	5.2	6.5	15.4	15.8	
N		25	25	25	25	25	

NP=NOT PREGNANT

x=EXCLUDED FROM MEAN

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-IG

APPENDIX J

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL GESTATION BODY WEIGHT GAIN (GRAMS)

GROUP	TTT	10000	MG/M3	

	DAY	OF GESTAT	ION		
ANIMAL#				14 - 20	0 - 20
3601		11	31		149
3602		9	28	59	127
3603	25	9	30	82	147
3604	21	17	25	76	139
3605x NP	34	9	4	20	67
3606	19	10	30	60	119
3607	15	8	29	59	111
3608	21	14	30	87	152
3609	22	14	26	47	110
3610	31	13	26	57	128
3611	22	7	26	44	99
3612	27	10	25	64	127
3613	17	13	17	72	119
3614	27	25	27	80	159
3615	18	10	36	75	140
3616	24	8	40	91	162
3617	20	11	25	70	126
3618xNNMD					
3619	16	9	37	97	159
3620	34	5	41	64	144
3621	18	12	23	86	140
3622	33	- 4	34	55	118
3623	22	3	31	45	101
3624	31	8	38	66	143
3625	19	11	29	45	103
3626	20	8	31	51	109
MEAN	23	10	30	67	130
S.D.	5.7	5.3	5.7	15.8	19.4
N	24	24	24	24	24

NP=NOT PREGNANT NNMD=NOT PREG., NO MATING DATE x=EXCLUDED FROM MEAN

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX J

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL GESTATION BODY WEIGHT GAIN (GRAMS)

		DAY O	F GESTAT	ON			
ANIMAL#		0 - 4			14 - 20	0 - 20	
4601		24	15	33	26	98	
4602xN	PAD						
4603		32	8	32	64	135	
4604		26	8	18	77	130	
4605		24	9	36	73	141	
4606		23	10	29	74	136	
4607		28	7	35	38	107	
4608		22	18	26	78	144	
4609x	ΝP	0	5	9	-1	13	
4610		18	7	36	87	147	
4611		22	11	31	71	134	
4612		31	17	-16	75	107	
4613		19	15	24	64	122	
4614		29	9	32	61	131	
4615		20	20	36	74	150	
4616		13	11	24	60	109	
4617x	NP	18	7	17	-13	29	
4618		26	10	32	66	134	
4619		22	15	21	56	114	
4620		20	7	24	61	112	
4621		25	16	36	77	154	
4622		18	10	29	78	135	
4623		18	14	15	71	117	
4624		28	2	30	80	141	
4625		18	9	27	67	121	
4626		26	12	32	78	147	
EAN		23	11	27	68	129	
.D.		4.7	4.3	11.0	13.8	15.9	
N		23	23	23	23	23	

Sponsor Study No: 211-TAME-1G

APPENDIX K

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL MATERNAL LACTATION BODY WEIGHTS (GRAMS)

			DAY OF L	ACTATION			
nimal No.	1						
1601	334	336	362	391	396	366	
1602	320	341	342	377	361	338	
1603	315	333	352	378	348	325	
1604	331	350	353	386	371	322	
1605	313	340	354	375	361	302	
1606 DIED							
1607	328	344	340	355	352	317	
1608	277	300	318	339	328	302	
1609x NP							
1610	286	310	320	347	351	292	
1611 TLL	299	293					
1612	323	335	350	371	372	331	
1613	322	324	354	379	359	343	
1614	302	325	336	354	385	365	
1615	306	345	352	372	366	333	
1616	364	388	397	409	400	354	
1617	313	327	365	375	368	360	
1618	332	338	365	374	366	350	
1619	310	324	342	355	360	338	
1620	296	314	334	354	349	337	
1621	336	367	367	392	326	340	
1622	307	310	324	326	332	305	
1623	267	290	296	307	315	283	
1624	325	350	372	390	381	345	
1625x NP							
1626	299	307	325	333	342	321	
EAN	313	330	346	365	359	330	
.D.	21.1	23.3	22.1	24.5	21.8	23.2	
N	23	23	22	22	22	22	

DIED=FOUND DEAD NP=NOT PREGNANT TLL=TOTAL LITTER LOSS x=EXCLUDED FROM MEAN

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX K

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL MATERNAL LACTATION BODY WEIGHTS (GRAMS)

			DAY OF LA	ACTATION			
Animal No.	1	4	7	14	21	28	
2601	312	313	317	346	335	297	
2602	332	325	352	374	366	360	
2603	314	298	350	384	366	347	
2604	401	399	402	392	410	370	
2605	282	292	314	328	325	288	
2606	321	328	346	363	372	337	
2607	356	368	388	414	407	344	•
2608	313	318	340	349	351	328	
2609x NP							
2610	291	299	314	327	272	298	
2611	324	328	337	356	295	331	
2612	287	292	327	344	359	325	
2613	358	365	378	409	395	376	
2614	318	341	344	362	341	333	
2615	330	341	362	364	377	336	•
2616	347	353	363	384	309	307	
2617	320	331	325	351	353	314	
2618	297	288	321	344	356	305	
2619	348	361	375	391	399	368	
2620	298	311	337	347	358	339	
2621	285	305	323	340	334	302	
2622	344	351	370	380	374	346	
2623	336	354	365	398	393	360	
2624	315	329	371	285	382	370	
2625	317	326	328	348	362	319	
2626	326	335	360	371	371	326	
MEAN	323	330	348	362	358	333	
S.D.	27.1	27.6	24.4	28.8	33.8	25.5	
N	25	25	25	25	25	25	

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX K

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL MATERNAL LACTATION BODY WEIGHTS (GRAMS)

			/	
GROUP	TTT	10000	MG/M3	

DAY OF LACTATION _____ Animal No. _______ 3605x NP 3618x NP MEAN 23.6 23.3 22.3 25.3 25.3 25.5 S.D. N

NP=NOT PREGNANT x=EXCLUDED FROM MEAN

Sponsor Study No: 211-TAME-1G

APPENDIX K

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL MATERNAL LACTATION BODY WEIGHTS (GRAMS)

GROUP IV 20	0000 MG/M3						
			DAY OF L	ACTATION			
Animal No.	1		7			28	
4601	360	364	369	379	376	344	
4602xNPAD							
4603	350	378	393	402	409	384	
4604	301	312	332	349	355	324	
4605	292	316	328	353	351	333	
4606	297	312	320	333	355	311	
4607	333	348	370	391	373	352	
4608	311	323	329	354	350	309	
4609x NP							
4610	312	332	344	354	346	329	
4611	307	322	328	351	356	313	
4612	308	335	330	373	372	337	
4613	316	335	333	368	350	348	
4614	323	331	359	377	387	356	
4615	326	324	369	377	387	323	
4616	295	298	311	325	328	299	
4617x NP							
4618	321	306	353	373	386	345	
4619	315	314	333	365	361	301	
4620	236	251	232	295	307	296	
4621	343	349	366	390	390	352	
4622	321	336	345	361	362	331	
4623	331	348	372	385	381	339	
4624	309	328	351	364	377	323	
4625	291	315	331	346	349	329	
4626	356	360	392	409	401	365	
MEAN	315	328	343	364	366	332	
S.D.	26.2	25.8	33.0	25.5	23.5	22.1	
N	23	23	23	23	23	23	

NP=NOT PREGNANT NPAD=ACCIDENTAL DEATH, NOT PG x=EXCLUDED FROM MEAN

Sponsor Study No: 211-TAME-1G

APPENDIX L

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL MATERNAL LACTATION BODY WEIGHT GAIN (GRAMS)

GROUP I	0 MG	•		11121			CIAIION BO	DI WEIGHI GAIN (GRAND)
			OF LACTAT:	ION				
FEMALE#		1 - 4	4 - 7	7 - 14	14 - 21	21 - 28	1 - 28	
1601		2	27	28	5	-30	32	·····
1602		21	1	35	-17	-23	17	
1603		18	19	26	-30	-24	10	
1604		19	3	33	-14	-50	-10	
1605		27	14	21	-13	-60	-11	
1606 DIE	ED							
1607		16	-4	15	-3	-35	-11	
1608		23	18	22	-11	-26	25	
1609x N	1P							
1610		24	11	27	4	-59	6	
1611 TI	L	- 5					_	
1612		12	14	22	0	-41	8	
1613		2	30	24	-20	-17	21	
1614		23	11	18	30	-19	64	
1615		38	7	20	-6	-33	27	
1616		25	9	12	-8	-46	- 9	
1617		14	38	10	-8	- 8	47	
1618		6	27	8	- 8	-16	18	·
1619		14	18	13	5	-22	28	
1620		18	21	19	-5	-12	41	
1621		31	0	24	-65	13	4	
1622		3	14	2	6	-27	-2	
1623		23	6	11	8	-32	15	
1624		25	22	19	-10	-36	21	
1625x N	IP							
1626		8	18	8	9	-21	22	
MEAN		17	15	19	-7	-28	17	
S.D.		10.5	10.5	8.4	18.1	16.8	19.5	
N		23	22	22	22	22	22	

DIED=FOUND DEAD NP=NOT PREGNANT TLL=TOTAL LITTER LOSS x=EXCLUDED FROM MEAN

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX L

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL MATERNAL LACTATION BODY WEIGHT GAIN (GRAMS)

GROUP II	2000	MG/M3						
		DAY	OF LACTATI	ON				
FEMALE#	:	1 - 4			14 - 21	21 - 28	1 - 28	
2601		 1	3	 29	-11	-38	-15	
2602		-7	27	22	-8	-6	29	
2603		-15	52	34	-18	-19	33	
2604		-2	3	-10	18	-39	-30	
2605		11	22	14	-2	-38	6	
2606		7	18	17	9	-34	16	
2607		12	20	26	-7	-63	-12	
2608		5	23	9	2	-23	15	
2609x	NP							
2610		9	15	13	-55	26	7	
2611		4	10	18	-60	35	7	
2612		5	35	17	15	-34	38	
2613		7	13	31	-14	-19	18	
2614		23	3	18	-21	-8	15	
2615		11	21	1	14	-41	7	
2616		6	10	20	-75	- 1	-39	
2617		11	-6	26	2	-39	-6	
2618		- 9	33	23	13	-51	8	
2619		13	13	16	8	-31	20	
2620		13	26	10	11	-19	41	
2621		20	18	17	-6	-33	17	
2622		6	19	10	-6	-28	2	
2623		18	11	32	- 5	-33	24	
2624		13	43	-86	96	-12	55	
2625		10	2	19	15	-44	2	
2626		9	24	11	1	-45	0	
MEAN		7	18	14	-3	-25	10	
S.D.		8.8	13.3	22.9	31.6	22.3	21.3	
N		25	25	25	25	25	25	

NP=NOT PREGNANT x=EXCLUDED FROM MEAN

Sponsor Study No: 211-TAME-1G

APPENDIX L

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL MATERNAL LACTATION BODY WEIGHT GAIN (GRAMS)

GROUP
I P

	DAY C	OF LACTATI	ON				
FEMALE#				14 - 21	21 - 28	1 - 28	
3601	22	19	26	-3	-50	14	·
3602	10	16	42	-20	-31	16	
3603	16	15	20	7	-39	17	
3604	15	23	6	14	-35	23	
3605x NP							
3606	22	16	20	-7	-34	17	
3607	8	12	35	-15	-27	13	
3608	3	25	36	- <u>4</u>	-25	34	
3609	29	18	31	-13	-20	45	
3610	21	28	20	3	-52	21	
3611	22	12	9	-12	-19	13	
3612	12	15	12	-10	-17	11	
3613	13	16	18	3	-37	13	
3614	13	5	19	- 9	-24	5	
3615	19	14	17	0	-49	1	
3616	3	37	16	-2	-15	39	
3617	24	12	30	-14	-21	31	
3618x NP							
3619	35	-10	32	16	-60	11	
3620	0	26	17	-6	-21	15	
3621	8	22	28	- 3	-41	14	
3622	24	29	17	-8	-61	1	
3623	13	21	9	14	-28	28	
3624	20	20	24	18	-43	40	
3625	17	14	30	-17	-12	32	
3626	21	30	20	-12	-40	20	
EAN	16	18	22	-3	-33	20	
.D.	8.4	9.3	9.2	10.7	14.1	12.0	
N	24	24	24	24	24	24	

NP=NOT PREGNANT x=EXCLUDED FROM MEAN

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX L

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL MATERNAL LACTATION BODY WEIGHT GAIN (GRAMS)

		DAY (OF LACTAT	ION			
FEMALE#		1 - 4	4 - 7	7 - 14	14 - 21	21 - 28	1 - 28
4601		4	 5	10	-3	-33	-17
4602xN	IPAD						
4603		28	15	9	6	-25	34
4604		11	20	18	5	-31	23
4605		25	12	25	-1	-18	42
4606		15	9	13	22	-44	14
4607		15	22	21	-18	-21	19
4608		13	6	25	-4	-41	-2
4609x	NP						
4610		20	12	9	-7	-17	17
4611		15	6	23	5	-43	6
4612		28	-5	43	-1	-35	29
4613		19	-2	35	-18	-2	32
4614		8	28	18	10	-31	33
4615		-2	45	8	10	-64	-3
4616		3	13	15	3	-29	4
4617x	NP		*				
4618		-15	47	20	13	-41	24
4619		-1	19	33	-5	-60	-14
4620		16	-20	63	13	-11	61
4621		6	17	24	-1	-38	9
4622		16	9	16	1	-32	10
4623		17	25	12	-4	-41	8
4624		19	23	13	13	-54	15
4625		24	16	15	3	-20	38
4626		5	31	17	- 8	-36	9
MEAN		12	15	21	2	-33	17
S.D.		10.3	14.8	12.7	9.7	15.0	18.3
N		23	23	23	23	23	23

NP=NOT PREGNANT NPAD=ACCIDENTAL DEATH, NOT PG x=EXCLUDED FROM MEAN

Sponsor Study No: 211-TAME-1G

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

APPENDIX M

INDIVIDUAL FEED CONSUMPTION (GRAMS/KG/DAY)

	DAY	OF STU	DY													
ANIMAL#	-7	0	7	14	21	28	35	42	49	56	63	69	91	98	105	112
1101	130	108	96	84	81	80	70	70	63	64	65	61	53	52	53	
1102	127	113	97	90	83	73	71	70	66	63	60	59	54	53	47	
1103	140	106	93	80	77	67	66	64	61	57	55	53	52	53	41	
1104	130	105	93	82	75	72	66	62	59	57	55	52	50	49	48	
1105	134	109	97	83	79	71	67	63	63	60	55	53	50	50	48	
1106	123	93	86	80	79	72	71	71	66	65	63	61	54	53	48	
1107	125	100	90	86	76	66	71	70	62	61	57	58	50	51	45	
1108	128	108	87	81	78	71	66	66	63	57	60	55	52	50	50	
1109	122	98	89	83	77	66	67	62	64	63	55	53	46	48	44	
1110	134	106	96	86	81	72	70	69	69	66	61	59	52	53	52	
1111	127	104	90	83	77	66	64	64	62	59	57	55	46	45	41	
1112	129	105	89	84	75	63	64	69	70	65	58	59	52	53	52	
1113	126	107	91	80	79	66	66	72	66	62	62	58	55	55	45	
1114	132	108	95	90	81	73	74	65	56	38	72	64	53	53	49	
1115	121	100	89	80	74	69	68	66	62	62	57	54	51	53	47	
1116	130	121	106	SF	93	77	77	80	74	72	62	61	52	53	48	
1117	126	104	100	85	80	77	71	68	66	67	63	60	54	55	52	
1118	133	110	94	86	80	73	68	68	70	63	60	58	52	52	48	
1119	138	116	103	94	86	76	72	68	69	66	63	58	55	54	51	
1120	125	103	88	77	78	69	74	71	64	61	58	57	56	53	51	
1121	131	109	96	87	80	69	67	68	63	62	61	55	53	55	50	
1122	136	113	99	91	86	79	75	71	68	66	62	58	55	55	52	
1123	128	106	95	84	77	73	68	68	65	61	59	56	52	52	49	
1124	133	103	89	84	76	69	65	66	51	62	61	56	50	51	46	
1125	134	110	95	86	84	79	73	70	70	64	61	58	55	54	49	
1126	140	116	104	89	81	69	68	68	64	63	60	56	53	51	51	
EAN	130	107	94	85	80	71	69	68	64	62	60	57	52	52	48	
.D.	5.3	6.0	5.3	4.1	4.1	4.5	3.4	3.9	4.7	5.9	3.7	2.9	2.5	2.4	3.2	
N	26	26	26	25	26	26	26	26	26	26	26	26	26	26	26	

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX M

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL FEED CONSUMPTION (GRAMS/KG/DAY)

	DAY	OF STU	DY													
ANIMAL#	-7	0	7	14	21	28	35	42	49	56	63	69 	91	98 	105	112
2101	138	111	97	92	83	79	73	71	65	62	56	59	51	51	47	
2102	130	101	91	85	76	75	70	66	60	55	54	53	49	46	47	
2103	127	102	93	82	73	68	65	64	61	53	64	60	53	51	49	
2104	117	96	86	79	72	71	63	61	60	56	55	56	49	48	46	
2105	133	108	90	82	75	70	65	68	62	59	55	57	48	47	49	
2106	130	106	91	84	77	71	67	65	61	60	59	58	54	52	50	
2107	133	109	101	81	82	75	75	71	68	67	64	56	52	54	53	
2108	123	106	93	82	75	63	62	67	58	54	56	53	46	47	45	
2109	129	103	89	80	74	68	69	67	68	61	58	56	48	46	48	
2110	120	99	85	72	70	63	63	63	60	58	53	54	51	48	46	
2111	129	102	89	79	73	68	63	63	61	61	55	58	49	53	49	
2112	121	96	85	78	80	67	63	68	64	59	64	62	52	51	50	
2113	132	106	92	80	78	70	65	67	70	67	58	66	56	56	49	
2114	124	99	86	75	72	60	65	60	61	60	57	51	52	51	46	
2115	127	105	94	78	76	71	68	64	64	60	58	60	49	49	46	
2116	132	111	93	81	76	67	65	64	62	59	54	57	50	50	47	
2117	131	104	90	79	75	68	64	60	61	59	57	57	49	48	46	
2118	119	99	89	80	74	68	68	66	61	58	57	58	48	48	45	
2119	133	108	88	87	76	63	63	61	59	58	55	55	47	49	45	
2120	147	116	100	84	75	72	68	66	63	62	58	59	53	52	47	
2121	127	SF	92	90	87	72	70	69	65	64	58	57	52	53	50	
2122	125	101	87	77	72	62	65	62	36	61	58	58	53	53	50	
2123	127	104	92	84	79	79	70	69	66	64	65	59	49	62	52	
2124	130	106	89	83	78	69	66	65	62	60	56	57	52	51	48	
2125	130	108	90	77	75	70	65	63	66	63	59	62	54	34	49	
2126	131	108	94	78	75	73	66	64	62	54	57	61	52	52	46	
EAN	129	105	91	81	76	69	66	65	62	60	58	58	51	50	48	
.D.	6.3	4.9	4.0	4.3	3.8	4.8	3.2	3.1	6.0	3.6	3.3	3.3	2.4	4.8	2.3	
N	26	25	26	26	26	26	26	26	26	26	26	26	26	26	26	

Sponsor Study No: 211-TAME-1G

APPENDIX M

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL FEED CONSUMPTION (GRAMS/KG/DAY)

	DAY	OF STU	DY													
ANIMAL#	-7	0	7	14	21	28	35	42	49	56	63	69	91	98	105	112
3101	134	116	90	83	74	66	63	62	60	58	55	58	44	52	. 49	
3102	138	115	97	89	78	66	66	67	66	63	63	60	49	58	52	
3103	124	106	85	79	72	67	64	64	58	57	52	61	48	35	15	
3104	129	113	89	82	82	74	71	72	64	60	59	56	46	53	49	
3105	132	108	89	78	70	61	62	57	59	61	55	55	45	50	51	
3106	137	120	97	87	80	68	68	66	60	68	64	64	51	57	52	
3107	128	113	91	85	75	68	65	68	65	62	59	61	48	51	53	
3108	135	112	93	85	74	68	63	71	63	61	60	57	41	49	46	
3109	128	109	87	80	71	64	60	61	54	53	51	51	42	45	45	
3110	131	111	90	83	75	66	65	63	62	60	56	56	44	51	46	
3111	137	117	96	87	80	73	69	79	68	66	59	59	47	53	51	
3112	133	116	93	84	78	72	67	95	63	63	63	61	55	57	52	
3113	118	101	76	71	69	63	63	89	61	61	59	60	50	58	51	
3114	127	108	89	77	70	62	61	61	57	56	58	58	48	54	48	
3115	130	104	82	76	72	67	64	63	59	56	55	57	45	48	47	
3116	137	115	90	79	76	73	SF	66	66	59	64	60	50	53	47	
3117	133	118	90	83	76	68	66	67	42	61	59	62	49	55	50	
3118	134	118	92	81	76	68	67	97	66	63	60	61	58	50	45	
3119	142	124	98	88	77	72	67	65	64	59	59	58	52	53	47	
3120	134	113	88	82	75	69	64	74	41	59	57	58	49	53	48	
3121	128	113	90	80	75	69	67	66	61	61	61	62	58	66	55	
3122	139	118	90	81	74	67	65	59	58	55	53	56	46	47	45	
3123	142	125	94	83	81	67	68	66	68	66	63	65	56	55	49	
3124	139	115	91	79	74	71	63	63	60	62	59	57	51	51	50	
3125	137	115	91	80	75	66	65	64	35	60	58	54	50	46	45	
3126	129	109	83	78	70	66	67	62	61	58	57	57	45	51	46	
EAN	133	114	90	81	75	68	65	69	59	60	58	59	49	52	47	
.D.	5.6	5.5	4.8	4.0	3.6	3.3	2.6	10.3	8.2	3.5	3.5	3.2	4.5	5.5	7.2	
N	26	26	26	26	26	26	25	26	26	26	26	26	26	26	26	

Sponsor Study No: 211-TAME-1G

APPENDIX M GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL FEED CONSUMPTION (GRAMS/KG/DAY) MALES GROUP IV 20000 MG/M3 DAY OF STUDY ANIMAL# -7 SF SF SF SF MEAN S.D. 6.5 6.4 5.1 6.0 3.9 4.8 3.8 6.0 3.9 3.7 4.5 4.1 4.6 3.0 2.3

SF=Spilled Feeder

N

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX M

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL FEED CONSUMPTION (GRAMS/KG/DAY)

	DAY	OF STU	IDA													
ANIMAL#	-7	0	7	14	21	28	35	42	49	56	63	69	91	98	105	112
1601	138	115	94	93	85	88	83	84	75	82	89	75				
1602	128	105	96	90	84	79	77	74	66	65	67	70				
1603	137	111	99	92	88	89	80	75	74	81	74	71				
1604	137	116	107	100	91	93	87	82	76	75	71	73				
1605	133	SF	100	101	98	96	87	90	83	74	76	80				
1606	128	104	108	98	99	98	90	85	73	73	69	78				
1607	140	117	102	103	93	89	83	83	76	71	66	80				
1608	141	121	108	96	92	85	81	80	80	71	71	88				
1609	128	SF	104	101	100	89	82	87	80	68	76	77				
1610	140	115	104	92	95	94	84	85	81	76	76	88				
1611	125	102	94	95	86	84	87	93	81	73	73	76				57
1612	144	112	109	101	98	96	90	91	80	75	73	75				
1613	141	117	96	91	87	82	77	78	74	71	71	81				
1614	136	114	91	91	86	87	85	84	80	75	75	81				
1615	133	108	96	87	86	84	79	74	69	68	63	76				
1616	136	108	100	94	85	87	83	81	73	71	70	76				
1617	133	107	97	93	86	89	81	78	74	70	70	77				
1618	140	119	108	106	100	92	89	84	83	74	76	81				
1619	128	109	95	91	87	81	77	71	68	67	72	74				
1620	137	112	95	94	90	83	85	83	78	72	74	79				
1621	132	112	97	96	88	85	83	78	73	70	75	80				
1622	146	115	103	99	100	93	87	83	82	69	77	82				
1623	139	111	102	105	98	92	89	84	79	76	77	82				
1624	149	120	105	104	96	90	81	84	83	81	81	84				
1625	134	115	106	104	100	92	83	78	79	79	74	83				
1626	146	124	114	112	100	102	100	86	89	7 9	80	80				
EAN	137	113	101	97	92	89	84	82	77	73	74	79				57
.D.	6.2	5.6	5.8	6.0	6.0	5.6	5.0	5.4	5.3	4.4	5.1	4.6				0.0
N	26	24	26	26	26	26	26	26	26	26	26	26				1

Huntingdon Life Sciences 00-4202

PAGE 317

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX M GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

	DAY	OF STU	ЛDY													
ANIMAL#	-7	0	7	14	21	28	35	42	49	56	63	69	91	98	105	112
2601	130	112	96	94	93	89	83	84	79	 78	73	82				
2602	126	105	90	89	81	84	78	79	70	66	69	69				
2603	134	115	100	100	89	84	83	83	78	76	77	81				
2604	140	124	101	109	99	82	85	79	76	70	72	71				
2605	132	110	99	91	90	87	84	79	74	79	88	68				
2606	140	106	88	90	91	85	81	81	84	72	86	68				
2607	136	111	95	88	82	87	78	75	75	74	72	70				
2608	136	109	98	89	86	89	87	83	78	72	72	72				
2609	138	114	96	97	85	88	84	84	74	72	82	69				
2610	142	119	98	89	85	81	75	78	72	69	70	68				
2611	131	110	88	91	86	81	73	78	43	70	65	71				
2612	146	120	89	96	88	84	81	80	79	68	77	7 7				
2613	146	119	100	96	92	90	84	85	78	77	83	74				
2614	151	123	109	100	94	87	88	80	72	70	76	80				
2615	141	114	91	85	79	76	78	68	65	66	69	68				
2616	134	112	94	91	91	83	80	76	70	64	68	69				
2617	151	134	107	98	92	88	83	74	77	76	74	73				
2618	145	120	97	89	80	78	78	73	68	68	76	69				
2619	136	118	100	94	89	86	84	76	75	73	69	79				
2620	133	114	93	86	87	80	SF	72	75	62	69	68				
2621	141	125	96	95	91	87	76	82	71	65	71	77				
2622	145	127	100	97	90	84	74	74	71	73	65	65				
2623	143	123	89	92	91	86	82	80	76	70	71	75				
2624	137	117	94	94	91	85	84	66	62	63	76	70				
2625	144	116	100	96	94	90	83	79	76	76	71	66				
2626	145	122	106	102	95	87	78	76	73	70	80	73				
EAN	139	117	97	94	89	85	81	78	73	71	74	72				
.D.	6.5	6.9	5.7	5.4	4.8	3.7	3.9	4.8	7.6	4.7	6.0	4.9				
N	26	26	26	26	26	26	25	26	26	26	26	26				

INDIVIDUAL FEED CONSUMPTION (GRAMS/KG/DAY)

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX M

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL FEED CONSUMPTION (GRAMS/KG/DAY)

	DAY	OF STU	IDY													
ANIMAL#	-7	0	7	14	21	28	35	42	49	56	63	69	91	98	105	112
3601	131	106	92	94	85	80	78	79	72	70	65	70				
3602	126	CF	90	88	86	84	79	78	82	75	71	75				
3603	136	111	97	89	87	85	76	74	70	70	63	62				
3604	142	115	92	92	85	84	79	76	74	74	67	66				
3605	141	117	96	88	90	81	78	87	75	70	68	65				
3606	136	112	101	88	88	81	77	78	77	72	67	68				
3607	128	110	95	88	83	84	77	77	76	73	65	70				
3608	127	111	89	81	84	82	74	7 7	80	74	71	78				
3609	134	114	85	91	78	77	73	70	71	67	62	65				
3610	138	113	97	87	89	82	82	86	77	74	75	74				
3611	133	SF	92	95	85	84	83	79	82	75	72	82				
3612	SF	129	108	102	93	SF	SF	82	78	73	76	74				
3613	SF	SF	SF	SF	83	SF	81	73	75	64	75	69				
3614	135	111	94	87	80	86	78	72	71	65	63	71				
3615	145	116	96	85	85	82	75	72	67	65	63	65				
3616	133	111	96	88	82	81	80	77	71	70	68	69				
3617	139	SF	110	106	96	SF	SF	91	74	70	74	82				
3618	146	128	98	98	89	96	85	83	83	84	78	80	78	77	55	
3619	134	109	90	88	84	84	79	74	73	69	66	69				
3620	126	109	91	93	79	81	77	78	75	67	65	70				
3621	140	116	99	95	87	85	80	90	77	72	69	71				
3622	140	114	90	91	87	79	76	86	75	70	66	67				
3623	136	115	96	90	87	SF	77	74	72	71	68	70				
3624	133	SF	92	89	83	95	67	71	78	83	SF	75				
3625	139	115	SF	94	88	79	77	76	76	74	65	74				
3626	140	113	96	89	87	80	73	76	72	73	69	74				
EAN	136	114	95	91	86	83	78	78	75	72	68	71	78	77	55	
.D.	5.6	5.5	5.7	5.4	4.0	4.5	3.7	5.8	3.9	4.7	4.5	5.3	0.0	0.0	0.0	
N	24	21	24	25	26	22	24	26	26	26	25	26	1	1	1	

CF=Contaminated Feeder SF=Spilled Feeder

Sponsor Study No: 211-TAME-1G

APPENDIX M

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL FEED CONSUMPTION (GRAMS/KG/DAY)

	DAY	OF STU	JDY													
ANIMAL#	-7	0	7	14	21	28	35	42	49	56	63	69	91	98	105	112
4601	144	126	103	105	106	103	94	102	97	94	91	82				
4602	142	123	101	99	90	88	84	77	85	76	72					
4603	139	119	101	91	85	85	78	81	74	76	73	64				
4604	136	115	91	86	82	78	78	70	70	73	73	68				
4605	137	122	102	87	90	84	81	79	76	74	70	68				
4606	145	124	96	95	93	91	89	84	84	78	77	74				
4607	141	127	97	96	102	85	81	82	79	72	80	78				
4608	145	123	95	98	93	87	82	81	103	74	69	73				
4609	135	118	94	93	88	84	77	76	78	67	69	70				
4610	150	132	102	SF	90	94	81	SF	87	80	70	69				
4611	137	122	94	95	90	91	82	78	77	72	71	72				
4612	149	126	100	97	91	84	78	81	78	70	74	71				
4613	145	126	103	93	94	83	81	82	77	74	68	69				
4614	144	125	91	86	82	84	75	76	71	65	76	67				
4615	141	121	90	85	79	78	73	72	71	66	66	68				
4616	154	134	107	102	94	89	83	82	82	73	69	73				
4617	147	124	97	89	86	84	76	72	71	74	70	71				
4618	143	111	91	92	83	80	78	81	75	70	70	75				
4619	138	120	91	87	84	85	77	74	74	73	70	71				
4620	130	112	95	88	85	80	78	71	73	70	67	65				
4621	157	134	108	103	96	93	93	94	91	83	80	85				
4622	143	124	95	91	85	83	82	79	80	77	81	73				
4623	149	124	95	93	90	84	SF	78	75	78	68	76				
4624	135	118	95	93	88	86	74	81	71	68	70	73				
4625	156	138	107	102	94	94	86	82	79	46	69	74				
4626	155	129	94	94	89	85	77	76	75	81	76	67				
EAN	144	124	98	94	89	86	81	80	79	73	73	72				
D.	7.1	6.4	5.3	5.7	6.1	5.5	5.3	6.9	8.3	8.2	5.6	4.9				
N	26	26	26	25	26	26	25	25	26	26	26	25				

Sponsor Study No: 211-TAME-1G

APPENDIX N

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL GESTATION FEED CONSUMPTION -- (GRAMS/KG/DAY)

		ESTATION				
ANIMAL# 		4 - 7	7 - 14	14 - 20		
1601	81	86	82	68		-
1602	64	67	64	58		
1603	85	82	81	67		
1604	74	76	74	68		
1605	83	85	80	70		
1606 DIED	77	76	75	67		
1607	81	85	83	68		
1608	89	85	77	71		
1609x NP	79	82	73	64		
1610	71	79	71	59		
1611 TLL	87	88	87	73		
1612	80	79	81	69		
1613	86	86	83	69		
1614	85	83	81	65		
1615	74	82	76	60		
1616	78	81	79	68		
1617	71	72	72	64		
1618	77	83	80	68		
1619	69	69	69	64		
1620	85	72	79	69		
1621	76	74	75	65		
1622	70	79	73	65		
1623	77	79	75	65		
1624	89	83	82	71		
1625x NP	87	80	71	56		
1626	74	82	78	67		
EAN	79	80	77	67		
.D.	6.8	5.7	5.2	3.8		
N	24	24	24	24		

Sponsor Study No: 211-TAME-1G

APPENDIX N

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL GESTATION FEED CONSUMPTION -- (GRAMS/KG/DAY)

ROUP II		00 MG/M3			
			GESTATION		
ANIMAL#			4 - 7	7 - 14	14 - 20
2601		85	82	 78	60
2602		74	74	64	56
2603		86	86	81	70
2604		77	77	76	58
2605		80	80	79	70
2606		80	79	77	67
2607		83	80	77	64
2608		78	79	75	69
2609x	NP	74	69	65	49
2610		69	75	71	63
2611		72	69	72	65
2612		84	83	73	64
2613		78	78	78	59
2614		90	85	82	68
2615		72	70	68	63
2616		73	75	72	63
2617		72	75	73	64
2618		72	76	79	65
2619		70	70	66	57
2620		70	77	75	62
2621		62	70	72	63
2622		70	72	72	67
2623		75	73	79	66
2624		74	73	68	57
2625		80	87	79	69
2626		76	84	75	67
IEAN		76	77	74	64
B.D.		6.4	5.3	4.7	4.2
N		25	25	25	25

NP≒NOT PREGNANT x=EXCLUDED FROM MEAN

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX N

PAGE 322

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL GESTATION FEED CONSUMPTION -- (GRAMS/KG/DAY)

GROUP	TTT	10000	MG/M3

		DAY OF G	ESTATION		
ANIMAL#			4 - 7	7 - 14	14 - 20
3601		81	82	80	75
3602		87	80	80	69
3603		71	73	73	64
3604		77	81	73 74	67
3605x	NP	76	84	74 77	64
3606	NP	76 76	77		70
3607		76 73	71	75 70	
				70	63
3608		110	74	69	57
3609		69	71	66	58
3610		81	82	79	64
3611		80	77	77	65
3612		94	89	78	67
3613		78	79	73	67
3614		74	77	71	62
3615		69	63	65	61
3616		77	72	74	66
3617		73	70	69	61
3618x	NP				
3619		71	69	70	66
3620		76	75	75	64
3621		70	71	69	63
3622		76	71	82	63
3623		75	74	75	61
3624		88	89	86	81
3625		78	83	73	66
3626		108	76	73	67
MEAN		0.0	76	74	
		80		74	65
S.D.		10.8	6.4	5.1	5.0
N		24	24	24	24

NP=NOT PREGNANT x=EXCLUDED FROM MEAN

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX N

PAGE 323

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL GESTATION FEED CONSUMPTION -- (GRAMS/KG/DAY)

	DAY OF	GESTATION			
ANIMAL#		4 - 7	7 - 14		
4601	84		 78	74	
4602xNPAD					
4603	79	74	74	61	
4604	75	74	69	62	
4605	82	76	73	65	
4606	81	80	78	69	
4607	84	86	82	59	
4608	82	84	77	69	
4609x NP	67	67	64	62	
4610	72	78	75	68	
4611	76	80	79	73	
4612	84	77	64	58	
4613	74	78	72	62	
4614	70	66	67	55	
4615	74	77	71	66	
4616	71	78	77	72	
4617x NP	68	68	71	57	
4618	77	77	74	67	
4619	77	76	75	73	
4620x EX	62	67	67	62	
4621	92	94	88	71	
4622	76	76	74	69	
4623	74	76	70	63	
4624	78	75	75	67	
4625	74	79	77	69	
4626	71	75	73	65	
AN	78	78	75	66	
D.	5.4	5.5	5.3	5.2	
N	22	22	22	22	

Sponsor Study No: 211-TAME-1G

APPENDIX O GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL MATERNAL LACTATION FEED CONSUMPTION -- (GRAMS/KG/DAY)

GROUP I	0 1	MG/M3		110111011			N FEED CONSONETTON (GRAND/RG/DAT/
		DAY OF	LACTATION				
ANIMAL#			4 - 7		14 - 21	21 - 28	
1601		84	104	144	166	301	
1602		100	122	161	204	380	
1603		107	131	156	183	338	
1604		111	111	153	195	IW	
1605		120	119	159	205	EF	
1606 D	IED						
1607		141	88	154	186	332	
1608		119	133	160	199	354	
1609x	NP						
1610		102	121	164	205	IW	
1611	TLL						
1612		116	107	151	180	325	
1613		95	121	144	176	310	
1614		96	121	155	186	287	
1615		115	126	146	174	341	
1616		100	109	129	174	346	
1617		96	123	135	167	300	
1618		85	107	128	170	319	
1619		108	123	138	177	313	
1620		100	115	146	168	308	
1621		113	115	144	192	380	
1622		75	109	127	188	360	
1623		102	123	149	203	369	
1624		115	126	146	196	323	
1625x	NP						
1626		107	131	152	200	344	
MEAN		105	118	147	186	333	
S.D.		14.2	10.6	10.8	13.4	27.3	
N		22	22	22	22	19	

DIED=FOUND DEAD NP=NOT PREGNANT TLL=TOTAL LITTER LOSS IW=Invalid Weight: Feed left greater than feed fed weight

x=EXCLUDED FROM MEAN EF=Empty Feeder Huntingdon Life Sciences 00-4202

Sponsor Study No: 211-TAME-1G

APPENDIX O

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL MATERNAL LACTATION FEED CONSUMPTION -- (GRAMS/KG/DAY)

GROUP II	2000 MG/M3	•	1110111011	in initiation	L LICIATION	FEED CONSUMPTION (GRAMS/ NG/ DAI)
	DAY OF	LACTATION		· -		
ANIMAL#		4 - 7	7 - 14	14 - 21	21 - 28	
2601	67	91	135	171	EF	
2602	66	102	132	161	310	
2603	SF	130	155	176	343	
2604	49	79	102	129	220	
2605	126	121	152	189	358	
2606	99	96	131	169	312	
2607	91	107	134	157	304	
2608	86	125	126	187	329	
2609x	NP					
2610	111	120	150	201	382	
2611	74	92	111	155	EF	
2612	85	97	143	182	335	
2613	91	98	136	170	309	
2614	112	118	153	200	338	
2615	95	105	99	166	EF	
2616	86	101	129	159	359	
2617	97	102	165	167	312	
2618	62	125	150	178	354	
2619	84	106	140	182	307	
2620	95	127	140	183	336	
2621	97	115	138	187	333	
2622	85	111	147	182	339	
2623	95	109	148	177	EF	
2624	81	106	128	180	292	
2625	96	92	132	176	303	
2626	100	120	145	183	337	
MEAN	89	108	137	175	324	
S.D.	16.9	13.2	15.7	15.2	32.9	
N	24	25	25	25	21	

NP=NOT PREGNANT EF=Empty Feeder x=EXCLUDED FROM MEAN SF=Spilled Feeder

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX O

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL MATERNAL LACTATION FEED CONSUMPTION -- (GRAMS/KG/DAY)

GROUP	TTT	10000	MG/	M3

	DAY OF	LACTATION				
ANIMAL#		4 - 7	7 - 14	14 - 21	21 - 28	
	· 					
	124	142	160	192	347	
3602	92	104	155	166	324	
3603	90	116	144	179	309	
3604	105	113	146	178	BF	
3605x NP						
3606	88	108	145	171	IW	
3607	105	114	141	165	321	
3608	63	107	140	174	301	
3609	89	95	126	146	244	
3610	89	112	136	177	351	
3611	127	128	152	189	362	
3612	117	114	139	181	345	
3613	84	108	139	162	EF	
3614	91	100	137	167	301	
3615	94	105	129	158	EF	
3616	99	123	141	183	322	
3617	105	113	142	160	308	
3619	112	104	142	195	344	
3620	78	99	132	179	316	
3621	109	121	145	185	323	
3622	91	109	130	159	304	
3623	101	119	140	196	314	
3624	85	111	147	184	324	
3625	86	113	134	171	285	
3626	111	116	141	174	EF	
MEAN	97	112	141	175	318	
S.D.	14.9	9.9	7.9	12.6	26.8	
N	24	24	24	24	19	

NP=NOT PREGNANT

x=EXCLUDED FROM MEAN

BF=Broken Feeder IW=Invalid Weight: Feed left greater than feed fed weight

EF=Empty Feeder

PAGE 326

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX O

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL MATERNAL LACTATION FEED CONSUMPTION -- (GRAMS/KG/DAY)

GROUP IV	20	0000 MG/M3		11.01.11001		in micrimitor	TEED CONSUMPTION (GRAPH) NO DAT!
		DAY OF	LACTATION				
ANIMAL#		1 - 4			14 - 21	21 - 28	
4601		 59	75	100	130	IW	
4603		109	108	139	183	312	
4604		75	104	131	169	274	
4605		117	126	150	197	334	
4606		106	122	148	169	286	
4607		77	110	117	151	270	
4608		104	99	146	186	332	
4609x	NP						
4610		117	104	139	172	320	
4611		110	114	147	187	337	
4612		116	119	142	175	307	
4613		104	105	142	182	IW	
4614		84	114	135	169	308	
4615		89	106	136	155	276	
4616		84	104	136	193	369	
4617x	NP						
4618		89	127	138	158	286	
4619		77	102	127	158	SF	
4620x	EX	101	111	139	151	247	
4621		122	121	143	173	307	
4622		115	123	136	182	319	
4623	•	119	107	135	166	300	
4624		120	113	126	176	293	
4625		85	109	131	164	263	
4626		92	114	131	155	283	
MEAN		99	110	135	170	304	
S.D.		18.1	11.3	11.1	15.6	27.2	
N		22	22	22	22	19	

NP=NOT PREGNANT EX=EXCLUDED FROM TABLE x=EXCLUDED FROM MEAN IW=Invalid Weight: Feed left greater than feed fed weight SF=Spilled Feeder

Individual Estrous Cycle and Mating Data	
Preface	Appendix P

Table of Contents:

Pre-Mating	329
Mating	333

Estrous Stage Codes:

D = Diestrus

P = Proestrus

E = Estrus

M = Metestrus

Ps = Pseudopregnancy

C = Copulatory plug under cage

S = Sperm in vaginal smear

Cycle Codes:

NC = Number of cycles (days)

 C_n = Length of cycles (days)

ML = Mean length of cycle

X = Persistent diestrus, length not determined

Y = Persistent estrus, length not determined

Mating and Pregnancy Codes:

F = Number of failed mating opportunities

PS = Pregnancy status

P = Pregnant

NP = Not pregnant

Notes:

Estrous cycles were evaluated for 21 days and then up to successful mating. / = point from which the number of days in the estrous cycle is counted. /C, C, /S or S = evidence of mating

1601 / 1602 1603 / 1604 / 1605 / 1606 1607 1608	1 /E D /E /E	2 D D E	3 D	4	5	6			Pre	-Mati	ing P	eriod															
1601 / 1602 / 1603 / 1604 / 1605 / 1606 / 1607 / 1608	/E D /E /E	D D	D	4	5	6			Pre	-Mat	ing P	ariad															
1601 / 1602 / 1603 / 1604 / 1605 / 1606 / 1607 / 1608	/E D /E /E	D D	D	4	5	6					0	enou										С	ycle	S			
1601 / 1602 1603 / 1604 / 1605 / 1606 1607 1608	/E D /E /E	D D	D	4	5	6																					
1602 1603 1604 1605 1606 1607 1608	D /E /E	D				υ	7	8	9	10	11	12	13	14	15	16	17	18 ′	19 20	21	C ₁	C_2	C_3	C ₄	C ₅	ML	NC
1602 1603 1604 1605 1606 1607 1608	D /E /E	D		D	D	/E	D	D	D	D	D	D	D	D	D	D	D	/E	E C) D	5	Ps				5.0	1
1603 // 1604 // 1605 // 1606 1607 1608	/E /E		/E	D	D	D L	/E	D	D	D	/E	D	D	D			_		D /E		4	4	4	5		4.3	4
1604 / 1605 / 1606 1607 1608	/E		D	D	D	D	D	D	D	D	D	D	D	D			_	_	D [Ps	•	•	Ü		-	
1605 / 1606 1607 1608		D	D	D	D	/E	D	D	D	D	D	D	/E	D		_			D D		5	7	Ps			6.0	2
1606 1607 1608	/E	Ε	D	D	D	/E	D	D	D	D	D	/E	D	D					D D		5	6	4	5		5.0	4
1607 1608	D	D	/E	D	D	D	/E	D	D	D	/E	D	D	D				D /	ΈΞ	D	4	4	4	4		4.0	4
	D	/E	D	D	D	D	/E	D	D	/E	D	D	D	D	/E	М	D	D /	Έ	D	5	3	5	4		4.3	4
1609	D	/E	D	D	D	/E	D	D	D	/E	D	D	D	/E	M	D	D .	/E	M D) D	4	4	4	4		4.0	4
	D	/E	D	D	D	D	/E	D	D	D	/E	D	D	D	D	/E	Ε	M	D D) /E	5	4	5	5		4.8	4
1610	/E	D	D	D	/E	D	D	D	/E	D	D	D	/E	D		D	D	D	D D	<u>D</u>	4	4	4	Ps		4.0	3
1611	D	D	/E	D	D	D	/E	D	D	D	/E	D	D	D	/E	M	D	D/	ΈΕ) D	4	4	4	4		4.0	4
1612	D	D	/E	D	D	D	/E	D	D	D	/E	D	D	D	/E	D	D	D /	ΈN	l D	4	4	4	4		4.0	4
1613	D	/E	D	D	D	/E	Ε	D	D	D	/E	D	D	D			D	D /	ΈN	l D	4	5	4	4		4.3	4
-	D	D	/E	D	D	D	/E	D	D	D	/E	D	D	D	Р	/E	M	D	D /E	M	4	4	5	4		4.3	4
1615	/E	D	D	D	/E	D	D	D	/E	D	D	D	/E	D	D	D	/E	M	D D) /E	4	4	4	4	4	4.0	5
	D	/E	D	D	D	/E	D	/E	D	/E	D	/E	D	D	D	/E	M	D	D /E	D	4	2	2	2	4	2.8	6
-	D	D		/E	D	D	D	/E	D	D	D	D	/E	D	_				M C		4	5	5			4.7	3
	/E	D	D	D	/E	D	D	D	D	D	D	D	D	D		_	_	_	D D		4	Ps				4.0	1
	/E	D	D	D	D	D	D	D	D	D	D	D	D	D					D /E		Ps	4				4.0	1
	D	D	/E	D	D	D	/E	D	D	D	/E	D	D	D					ΈN		4	4	4	4		4.0	4
-	D	D		/E	D	D	D	/E	D	/E	D	D	D	D				_	P /E		4	2	5	5		4.0	4
-	D	D	/E	D	D	D	/E	D	D	D	/E	D	D	D					ΈN		4	4	4	4		4.0	4
	D	D		/E	D	D	D	/E	D	D	D	/E	D	D					D /E		4	4	4	4		4.0	4
-	D	D	/E	D	D	D	D	/E	D	D	D	D	/E	D					D [5	5	5			5.0	3
	/E D	D D	D D	D /E	/E D	D D	D D	D /E	/E D	D D	D D	D /E	/E M	D D			_	_	D [D /E) /E E M	4	4	4 4	4	4	4.0	5 4

Mean	4.2	3.6
S.D.	0.6	1.2
n	25	25

Pr	e-M	atin	ıg					Inc	livid	ual	Estr	ous	Су	cle	an	d N	/lat	ing	j Da	ata					Apı	pend	ix P	
Group 2: 2000) mg/r	m ³																										
									Pre	-Mat	ing P	erioc											С	ycle	es			
Animal No.																												
	١,	_	•		_	•	_	•	•	40		40	40		4-	40	4-7	40	40	00.			_	_	_	_		NO
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20 2	21	C ₁	C_2	C ₃	C_4	C_5	ML	NC
2601	D	D	D	D	D	/E	D	D	D	/E	D	D	D	/E	D	D	D	/E	D	D	D	4	4	4			4.0	3
2602	D	/E	E	D	D	D L	/E	D	D	D	/E	D	D	D	/E	D	D			_	D	5	4	4	4		4.3	4
2603	D	D	D	D	Æ/E	D	D	D	/E	D	D	D	Р	/E	D	D	D	/E		_	D	4	5	4	7		4.3	3
2604	D	/E	D	D		/E	Ē	D		D	D	D	_ <u>-</u> /E	D	D	D	Р			_	D	4	7	5			5.3	3
2605	/E	D	D	D	/E	D	D	D	D	D	D	D	D	D	D	D	D	/E			<u>D</u>	4	, Ps	J			4.0	1
2606	D	/E	D	D	D	/E	D	D	D	D	D	D	D	D	D	D	D	/E	_	_	D	4	Ps				4.0	1
2607	/E	D	D	D	/E	D	D	D	/E	D	D	D	/E	D	D	D	/E	D	_	_	Æ	4	4	4	4	4	4.0	5
2608	D	/E	E	D	D	D	D	/E	D	D	D	D	D	D	D	D	D	_			D	6	11	•	•	•	8.5	2
2609	/E	D	D	D	/E	D	D	D	D	D	D	D	D	D	D	D	D				D	4	Ps				4.0	1
2610	D	D	D	/E	D	D	D	/E	D	D	D	D	D	D		/E	М				D	4	8	4			5.3	3
2611	D	/E	D	D	D	/E	D	D	D	/E	D	D	D	/E	М	D	D	/E			D	4	4	4	4		4.0	4
2612	D	/E	Е	D	D	D	D	/E	D	D	D	D	/E	D	D	D	Р	/E	D	D	D	6	5	5			5.3	3
2613	D	D	D	D	/E	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D /	Æ	Ps					-	-
2614	D	D	D	D	D	D	D	D	/E	D	D	D	/E	D	D	D	/E	М	D	D /	Æ	4	4	4			4.0	3
2615	D	D	D	/E	D	D	D	/E	D	D	D	/E	D	D	D	/E	Μ	D	D .	/E	D	4	4	4	4		4.0	4
2616	D	/E	D	D	D	/E	D	D	D	/E	D	D	D	/E	D	D	D	/E	М	D	D	4	4	4	4		4.0	4
2617	D	/E	Ε	D	D	D	D	/E	D	D	D	D	/E	D	D	D	/E	Ε	D	D	D	6	5	4			5.0	3
2618	D	D	D	/E	D	D	D	/E	D	D	D	D	D	D	D	D	D	D	D.	/E	M	4	Ps				4.0	1
2619	/E	D	D	D	/E	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	4	Ps				4.0	1
2620	D	D	/E	Е	D	D	D	D	D	D	D	D	/E	D	D	D	D	/E	D	D	D	10	5				7.5	2
2621	D	/E	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D /	Æ	Ps					-	-
2622	D	D	D	D	/E	D	D	D	D	D	/E	D	D	/E	D	D	D	/E	D	D	D	6	3	4			4.3	3
2623	/E	М	D	D	/E	D	D	D	/E	D	D	D	/E	D	D	D	/E	M	D	D /	Æ	4	4	4	4	4	4.0	5
2624	/E	М	D	D	/E	D	D	D	D	D	D	D	D	D	D	D	D	D	D	_	D	4	Ps				4.0	1
2625	/E	М	D	D	/E	D	D	D	/E	D	D	D	/E	D	D	D	/E			D /	Æ	4	4	4	4	2	3.6	5
2626	D	D	D	/E	Ε	D	D	D	D	D	D	D	D	D	D	D	D	/E	D	D	D	Ps					-	-

Mean	4.6	2.8
S.D.	1.2	1.4
n	23	23

F	⊃re-l	Mati	ing	g Individual Estrous Cycle and Mating Data								ata			ļ	Арре	endix	r P								
Froup 3: 1000)0 ma	g/m ³																								
									Pre	-Mat	ing P	eriod									С	ycles	S			
Animal No.																										
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 16	6 17	' 18	19	20 21	C ₁	C_2	C_3	C ₄ C ₅	5	ML	NC
3601	D	D	/E	D	D	D	/E	D	D	D	/E	D	D	D	/E N	1 D	D	/E	M D	4	4	4	4		4.0	4
3602	D	/E	D	D	D	/E	D	D	D	/E	D	D	D	/E	M D		_		D D	4	4	4	4		4.0	4
3603	/E	D	D	D	/E	D	D	D	/E	D	D	D	/E	D	D D	_			D /E	4	4	4	4 4	,	4.0	5
3604	/E	D	D	D	/E	D	D	D	/E	D	D	D	/E	D	D D	_			D /E	4	4	4	4 4		4.0	5
3605	/E	D	D	D	/E	D	D	D	/E	D	D	D	/E	D	D D				D /E	4	4	4	4 4		4.0	5
3606	/E	D	D	D	/E	Ε	D	D	D	D	/E	D	D	D	/E E	D	D	D .	/E E	4	6	4	5		4.8	4
3607	D	/E	M	D	D	/E	D	D	D	/E	D	D	D	/E	МС	D	/E	D	D D	4	4	4	4		4.0	4
3608	D	D	D	/E	D	D	D	D	/E	D	D	D	D	D	D D	D	D	D	D D	5	Ps				5.0	1
3609	D	D	D	D	D	D	/E	D	D	D	D	D	/E	D	D D	D	/E	D	D D	6	5				5.5	2
3610	D	D	/E	D	D	D	/E	D	D	D	/E	D	D	D	/E D) D	D	/E	D D	4	4	4	4		4.0	4
3611	D	/E	D	D	D	/E	D	D	D	/E	D	D	D	/E	M C	D	/E	M	D D	4	4	4	4		4.0	4
3612	D	/E	D	/E	D	D	D	/E	D	D	D	/E	M	D	D /E	E M	D	D .	/E M	2	4	4	4 4		3.6	5
3613	D	D	D	D	/E	D	D	D	/E	D	D	D	/E	D	D D) /E	D	D	D /E	4	4	4	4		4.0	4
3614	D	D	D	D	D	D	/E	D	D	D	D	/E	D	D	D D) /E	D	D	D /E	5	5	4			4.7	3
3615	D	D	/E	D	/E	D	D	D	/E	D	D	D	/E	Е	D D	D	Р	/E	M D	2	4	4	6		4.0	4
3616	D	D	D	D	D	D	/E	D	D	D	/E	D	D	D	/E M		D	/E	M D	4	4	4			4.0	3
3617	D	D	D	/E	D	D	D	/E	D	D	D	/E	D	D	D /E		D		/E D	4	4	4	4		4.0	4
3618	/E	ĻΕ	Ε	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	E E		D		ΕE	Y					-	-
3619	D	D	D	/E	D	D	D	/E	D	D	D	/E	D	D	<u>D</u> /E		_	_	/E D	4	4	4	4		4.0	4
3620	D	/E	D	D	D	/E	D	D	D	/E	D	D	D	/E	D D		/E	_	D D	4	4	4	4		4.0	4
3621	D	/E	Е	D	D	D	D	/E	D	D	D	D	/E	D	D D		/E		D D	6	5	5			5.3	3
3622	D	/E	D	D	D	/E	D	D	D	/E	D	D	D	/E	D D	_	/E		D D	4	4	4	4		4.0	4
3623	/E	M	D	D	/E	D	D	D	D	/E	D	D	D	/E	D D		/E	_	D D	4	5	4	4		4.3	4
3624	D	D	D	D	D	D	D	D	D	/E	D	D	D	/E	D D		Р		M D	4	5				4.5	2
3625	D	/E	D	D	D	/E	D	D	D	/E	D	D	D	/E	D D		/E		D D	4	4	4	4		4.0	4
3626	D	/E	D	D	D	/E	D	D	D	/E	D	D	D	/E	D D	D	/E	D	D D	4	4	4	4		4.0	4

Mean	4.2	3.8
S.D.	0.5	1.0
n	25	25

		Τ			
Pre-Mating	Individual Estrous Cycle and Mating Data	Appendix P			
Group 4: 20000 mg/m ³					
	Pre-Mating Period	Cycles			
Animal No.					
	4 5 0 7 0 0 40 44 40 40 44 45 40 47 40 40 00 04		MI NO		
1 2 3	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	C ₁ C ₂ C ₃ C ₄ C ₅	ML NC		
4601 /E D D	D /E D D D /E E D D D D D /E E D	4 5 9	6.0 3		
4602 D /E D	D D /E D D D /E D D D /E M D D a	4 4 5	4.3 3		
4603 /E D D	D D D D D D D D D D /E D D /E M	Ps 4	4.0 1		
4604 D D D	/E D D /E E D D D /E D D D /E D D D /E D	3 5 4 4	4.0 4		
4605 D /E D	D D /E D D /E D D D /E D D D	4 4 4 4	4.0 4		
4606 D D D	/E D D /E E D D D /E D D D /E M	3 5 4 4	4.0 4		
4607 D /E D	D D /E D D /E D D D /E M D D /E D D D	4 4 4 4	4.0 4		
4608 /E D D	D /E D D /E E D D D /E D D D /E	4 3 5 4 4	4.0 5		
4609 D D D	D D D /E D D D /E E E D D D /E E D D	4 6	5.0 2		
4610 D D D	$ D \ D \ D \ D \ D \ D \ D \ D \ D \ D \ D \ D \ D \ D \ D \ D $	X	- -		
4611 D /E E	D D D /E E D D D D /E D D D P /E D D	5 6 6	5.7 3		
4612 /E E E	E	7 4 4 5	5.0 4		
4613 /E D D	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 4 4 4	4.3 4		
4614 D D D	/E D D D D D D /E E D D D P /E D D D	8 6	7.0 2		
4615 D D D	/E D D D /E D D /E M D D /E M D D /E D	4 4 4 4	4.0 4		
4616 D /E E	D D /E D D /E D D D /E D D /E M D D	4 4 4 4	4.0 4		
4617 /E D D	D /E D D /E D D /E D D /E D D /E	4 4 4 4 4	4.0 5		
4618 D D /E	D D D /E D D /E D D D /E D D	4 4 4 4	4.0 4		
4619 /E D D	D /E D D /E D D /E D D /E D D /E	4 4 4 4 4	4.0 5		
4620 /E D D	D /E E D D D /E D /E D D /E M D D /E M	4 6 2 3 4	3.8 5		
4621 D /E D	D D /E D D D /E D D D /E D D D	4 4 4 4	4.0 4		
4622 D D D	D /E D D D D D D D D /E E D D	Ps			
4623 D D D	D /E D D D /E D D D /E M D D P /E D	5 5 5	5.0 3		
4624 D D D		4 4 4 4	4.0 4		
4625 /E D D 4626 /E D D	D /E D D /E D D D /E D D /E M D D /E D /E D D D /E D D D /E M D	4 4 4 4 4 4 4 4 4 4 6 4	4.0 5 4.5 4		
4020 /E D D	D /E D D D /E D D D D /E D D D /E M D	4 4 0 4	4.5 4		

^aAccidental Death-Not Pregnant

Mean	4.4	3.8
S.D.	0.8	1.0
n	24	24

Mating	Individual Estrous Cycle and Mating Data	Appendix P

Group 1: 0 mg/m³

									Matir	ng						
Animal No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	F	PS
4004	_	/0														
1601 1602	D D	/C D	/C												0	P P
1603	/C	D	/C												0	P
1604		D	D	D	/E	С									0	P
1605	C		U		/ 🗀	C									0	P
1606	D	/C													0	P
1607	D	/C													0	P
1608	/S	,0													0	P
1609	D	D	D	/C											Ö	NP
1610		D	D	D	D	/C									0	P
1611	D	/C													0	P
1612	D	/C													0	Р
1613	D	/C													0	Р
1614	D	D	/C												0	Р
1615	M	D	D	/C											0	Р
1616	D	D	/C												0	Р
1617	Р	/C													0	Р
1618	/E	С													0	Р
1619	D	Р	/C												0	Р
1620	D	/C		_											0	P
1621	D	D	/E	С											0	P
1622	D	/C	'												0	P
1623	D	D	/C												0	Р
1624	Р	/C	_	10											0	P
1625 1626	D D	D D	D /C	/C											0	NP P
1020	U	U	/C													

Females passing ≥ 1 estrus without mating	0
Number of pregnant females	24

Mating	Individual Estrous Cycle and Mating Data	Appendix P

Group 2: 2000 mg/m³

									М	ating						
Animal No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	F	PS
2004	/C														0	0
2601	/S	10													0	P
2602	D	/C													0	Р
2603	/E	C													0	Р
2604	D	/C													0	Р
2605	/S														0	Р
2606	/S	_	_												0	Р
2607	D	D	D	/S											0	Р
2608	D	/C													0	Р
2609	/C														0	NP
2610	D	D	/C												0	Р
2611	/S														0	Р
2612	Ρ	/C													0	Р
2613	D	/C													0	Р
2614	M	D	D	/C											0	Р
2615	D	D	/C												0	Р
2616	/S														0	Р
2617	/E	С													0	Р
2618	D	D	/C												0	Р
2619	D	D	/C												0	Р
2620	/S]												0	Р
2621	S														Ö	P
2622	/E	С													0	P
2623	M	Ď	D	/C											ő	Р
2624	D	D	/C	, 0											ő	Р
2625	D	D	D,	/C											0	P
2626	D	/S	J	,0											0	P
2020	<i>D</i>	,0														ļ.

Females passing ≥ 1 estrus without mating	0
Number of pregnant females	25

Mating	Individual Estrous Cycle and Mating Data	Appendix P	

Group 3: 10000 mg/m³

									Matir	ng						
Animal No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	F	PS
3601	D	/S													0	Р
3602	/C	/3													0	P
3603	D	D	D	/S											0	P
3604	D	D	D	/C											ő	P
3605	Č	_	_	, 0											ő	NP
3606	D	D	D	/E	С										0	Р
3607	/C														0	Р
3608	D	/S													0	Р
3609	/C	_													0	Р
3610	D	/S													0	Р
3611	/C														0	Р
3612	D	D	/C												0	Р
3613	D	D	D	/C											0	Р
3614	С	′0													0	Р
3615	D	/S													0	P P
3616 3617	D D	/S D	/C												0	P
3618	E	E	E	Е	Е	Е	Е	Е	Е	Е	Е	Ε	Е	Е	0	NP
3619	D	D	/C	_	_	_	_	_	_	_	_	_	_	_	Ö	P
3620	/C		, 0												ő	Р
3621	/E	С													Ö	P
3622	/C	-													Ö	P
3623	/C														0	Р
3624	D	/C													0	Р
3625	/C														0	Р
3626	/C														0	Р

Females passing > 1 estrus without mating	0
Number of pregnant females	24

Mating	Individual Estrous Cycle and Mating Data	Appendix P

Group 4: 20000 mg/m³

Animal									Matir	ıg						
No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	F	PS
No. 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621	D D D /S D D /S D D D D D D D D		3 D /C /C /C D E /C D D /C	4 D /C C /C D	5 D	6 D	7 /C			-	11	12	13	14	0 0 0 0 0 0 0 0 0 0 0	P
4622 4623 4624 4625 4626	D D D D	/S D D D /C	P /C D	/C /S											0 0 0 0	P P P P

Females passing > 1 estrus without mating	1
Number of pregnant females	23

PAGE 337

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX Q

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL MATING ASSIGNMENTS

						·
Female No.	Male No.	Sperm/Plug	Outcome	Date of Cohabitation	Date of Insemination	Date of Parturition
1601	1101	+	P	30-OCT-01	1-NOV-01	23-NOV-01
1602	1102	+	P	30-OCT-01	2-NOV-01	25-NOV-01
1603	1103	+	P	30-OCT-01	31-OCT-01	22-NOV-01
1604	1104	+	P	30-OCT-01	5-NOV-01	27-NOV-01
1605	1105	+	P	30-OCT-01	31-OCT-01	22-NOV-01
1606	1106	+	DIED	30-OCT-01	1-NOV-01	23-NOV-01
1607	1107	+	P	30-OCT-01	1-NOV-01	23-NOV-01
1608	1108	+	P	30-OCT-01	31-OCT-01	22-NOV-01
1609	1109	+	NP	30-OCT-01	3-NOV-01	22 401 02
1610	1110	+	P	30-OCT-01	5-NOV-01	27-NOV-01
1611	1111	+	TLL	30-OCT-01	1-NOV-01	24-NOV-01
1612	1112	+	P	30-OCT-01	1-NOV-01	23-NOV-01
1613	1113	+	P	30-OCT-01	1-NOV-01	23-NOV-01
1614	1114	+	P	30-OCT-01	2-NOV-01	23-NOV-01
1615	1115	+	P	30-OCT-01	3-NOV-01	25-NOV-01
1616	1116	+	P	30-OCT-01	2-NOV-01	24-NOV-01
1617	1117	+	P	30-OCT-01	1-NOV-01	23-NOV-01
1618	1118	+	P	30-OCT-01	1-NOV-01	23-NOV-01
1619	1119	+	P	30-OCT-01	2-NOV-01	24-NOV-01
1620	1120	+	P	30-OCT-01	1-NOV-01	23-NOV-01
1621	1121	+	P	30-OCT-01	3-NOV-01	25-NOV-01
1622	1122	+	P	30-OCT-01	1-NOV-01	23-NOV-01
1623	1123	+	P	30-OCT-01	2-NOV-01	25-NOV-01
1624	1124	+	P	30-OCT-01	1-NOV-01	23-NOV-01
1625	1125	· +	NP	30-OCT-01 30-OCT-01		23-MO4-01
1626	1126	· ·	P	30-OCT-01	3-NOV-01 2-NOV-01	24-NOV-01

^{+ =} Sperm/Plug Positive - = Sperm/Plug Negative N = Not Mated

DIED=FOUND DEAD NP=NOT PREGNANT TLL=TOTAL LITTER LOSS P=PREGNANT

Sponsor Study No: 211-TAME-IG

APPENDIX O

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL MATING ASSIGNMENTS

GROUP II	2000 MG/M3	INDIVIDUAL MATIN	IG ASSIGNMENTS			
Female No.	Male No.	Sperm/Plug	Outcome	Date of Cohabitation	Date of Insemination	Date of Parturition
2601	2101	+	P	30-OCT-01	31-OCT-01	22-NOV-01
2602	2102	+	P	30-OCT-01	1-NOV-01	23-NOV-01
2603	2103	+	P	30-OCT-01	1-NOV-01	23-NOV-01
2604	2104	+	P	30-OCT-01	1-NOV-01	23-NOV-01
2605	2105	+	P	30-OCT-01	31-OCT-01	22-NOV-01
2606	2106	+	P	30-OCT-01	31-OCT-01	21-NOV-01
2607	2107	+	P	30-OCT-01	3-NOV-01	25-NOV-01
2608	2108	+	P	30-OCT-01	1-NOV-01	23-NOV-01
2609	2109	+	NP	30-OCT-01	31-OCT-01	25 1101 01
2610	2110	+	P	30-OCT-01	2-NOV-01	24-NOV-01
2611	2111	+	P	30-OCT-01	31-OCT-01	22-NOV-01
2612	2112	+	P	30-OCT-01	1-NOV-01	23-NOV-01
2613	2113	+	P	30-OCT-01	1-NOV-01	23-NOV-01
2614	2114	+	P	30-OCT-01	3-NOV-01	25-NOV-01
2615	2115	+	P	30-OCT-01	2-NOV-01	24-NOV-01
2616	2116	+	P	30-OCT-01	31-OCT-01	21-NOV-01
2617	2117	+	P	30-OCT-01	1-NOV-01	23-NOV-01
2618	2118	+	P	30-OCT-01	2-NOV-01	23-NOV-01
2619	2119	+	P	30-OCT-01	2-NOV-01	24-NOV-01
2620	2120	+	P	30-OCT-01	31-OCT-01	22-NOV-01
2621	2121	+	P	30-OCT-01	31-OCT-01	22-NOV-01
2622	2122	+	P	30-OCT-01	1-NOV-01	23-NOV-01
2623	2123	+	P	30-OCT-01	3-NOV-01	25-NOV-01
2624	2124	+	P	30-OCT-01	2-NOV-01	24-NOV-01
2625	2125	+	P	30-OCT-01	3-NOV-01	25-NOV-01
2626	2126	+	P	30-OCT-01	1-NOV-01	23-NOV-01

+ = Sperm/Plug Positive - = Sperm/Plug Negative N = Not Mated

NP=NOT PREGNANT P=PREGNANT

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX Q

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL MATING ASSIGNMENTS

GROUP III 10000 MG/M3

emale No.	Male No.	Sperm/Plug	Outcome	Date of Cohabitation	Date of Insemination	Date of Parturition
3601	3101	+	P	30-OCT-01	1-NOV-01	23-NOV-01
3602	3102	+	P	30-OCT-01	31-OCT-01	22-NOV-01
3603	3103	+	P	30-OCT-01	3-NOV-01	25-NOV-01
3604	3104	+	P	30-OCT-01	3-NOV-01	24-NOV-01
3605	3105	+	NP	30-OCT-01	31-OCT-01	
3606	3106	+	P	30-OCT-01	4-NOV-01	26-NOV-01
3607	3107	+	P	30-OCT-01	31-OCT-01	22-NOV-01
3608	3108	+	P	30-OCT-01	1-NOV-01	22-NOV-01
3609	3109	+	P	30-OCT-01	31-OCT-01	22-NOV-01
3610	3110	+	P	30-OCT-01	1-NOV-01	23-NOV-01
3611	3111	+	P	30-OCT-01	31-OCT-01	22-NOV-01
3612	3112	+	P	30-OCT-01	2-NOV-01	24-NOV-01
3613	3113	+	P	30-OCT-01	3-NOV-01	24-NOV-01
3614	3114	+	P	30-OCT-01	31-OCT-01	22-NOV-03
3615	3115	+	P	30-OCT-01	1-NOV-01	22-NOV-01
3616	3116	+	P	30-OCT-01	1-NOV-01	2:3 - NOV - 01
3617	3117	+	P	30-OCT-01	2-NOV-01	23-NOV-01
3618	3118	_	NP	30-OCT-01		
3619	3119	+	P	30-OCT-01	2-NOV-01	24-NOV-03
3620	3120	+	P	30-OCT-01	31-OCT-01	22-NOV-01
3621	3121	+	P	30-OCT-01	1-NOV-01	23-NOV-01
3622	3122	+	P	30-OCT-01	31-OCT-01	22-NOV-01
3623	3123	+	P	30-OCT-01	31-OCT-01	23-NOV-01
3624	3124	+	P	30-OCT-01	1-NOV-01	23-NOV-01
3625	3125	+	P	30-OCT-01	31-OCT-01	22-NOV-0
3626	3126	+	P	30-OCT-01	31-OCT-01	22-NOV-0

+ = Sperm/Plug Positive - = Sperm/Plug Negative N = Not Mated

NP=NOT PREGNANT P=PREGNANT

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX Q

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL MATING ASSIGNMENTS

GROUP IV	20000 MG/M3	INDIVIDUAL MATIF	NG ASSIGNMENTS			
Female No.	Male No.	Sperm/Plug	Outcome	Date of Cohabitation	Date of Insemination	Date of Parturition
4601	4101	+	P	30-OCT-01	6-NOV-01	29-NOV-01
4602		N	NPAD			
4603	4103	+	P	30-OCT-01	2-NOV-01	24-NOV-01
4604	4104	+	P	30-OCT-01	2-NOV-01	23-NOV-01
4605	4105	+	P	30-OCT-01	31-OCT-01	22-NOV-01
4606	4106	+	P	30-OCT-01	2-NOV-01	24-NOV-01
4607	4107	+	P	30-OCT-01	31-OCT-01	23-NOV-01
4608	4108	+	P	30-OCT-01	3-NOV-01	25-NOV-01
4609	4109	+	NP	30-OCT-01	3-NOV-01	
4610	4110	+	P	30-OCT-01	31-OCT-01	22-NOV-01
4611	4111	+	P	30-OCT-01	2-NOV-01	24-NOV-01
4612	4112	+	P	30-OCT-01	3-NOV-01	25-NOV-01
4613	4113	+	P	30-OCT-01	4-NOV-01	26-NOV-01
4614	4114	+	P	30-OCT-01	1-NOV-01	23-NOV-01
4615	4115	+	P	30-OCT-01	2-NOV-01	23-NOV-01
4616	4116	+	P	30-OCT-01	1-NOV-01	23-NOV-01
4617	4117	+	NP	30-OCT-01	31-OCT-01	
4618	4118	+	P	30-OCT-01	1-NOV-01	23-NOV-01
4619	4119	+	P	30-OCT-01	3-NOV-01	24-NOV-01
4620	4120	+	P	30-OCT-01	1-NOV-01	23-NOV-01
4621	4121	+	P	30-OCT-01	1-NOV-01	23-NOV-01
4622	4122	+	P	30-OCT-01	1-NOV-01	23-NOV-01
4623	4123	· +	P	30-OCT-01	3-NOV-01	25-NOV-01
4624	4124	+	P	30-OCT-01	2-NOV-01	24-NOV-01
4625	4125	+	P	30-OCT-01	3-NOV-01	25-NOV-01
4626	4126	+	P	30-OCT-01	1-NOV-01	23-NOV-01

+ = Sperm/Plug Positive - = Sperm/Plug Negative N = Not Mated

NP=NOT PREGNANT NPAD=ACCIDENTAL DEATH, NOT PG P=PREGNANT

Huntingdon Life Sciences 00-4202

Sponsor Study No: 211-TAME-1G

PAGE 341

APPENDIX R

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL DELIVERY AND LITTER DATA

GROUP I 0 MG/M3

	LITTE	R DEL	IVERED				NUM	BER OF	LIV AYS	E PUPS						TOTAL IMPLAN-	DURATION OF GESTATION
	LIVE	DEAD	TOTAL		1		4		7	1	L4		21		28	TATIONS	(DAYS)
FEMALE#	N	N	N	M	F	М	F	М	F	M	F	M	F	M	F	N	N
1601	18	0	18	8	10	8	9	6	4	6	4	6	4	6	4	16	22
1602	13	0	13	8	4	8	4	6	4	6	4	6	4	6	4	15	23
1603	13	0	13	9	4	9	4	6	4	6	4	6	4	6	4	13	22
1604	16	0	16	10	6	10	6	5	5	5	5	5	5	5	5	17	22
1605	15	0	15	14	1	14	1	9	1	9	1	9	1	9	1	15	22
1606x DPP	14	1	15	10	4	0	0	0	0	0	0	0	0	0	0	15	22
1607	16	0	16	6	10	6	10	5	5	5	5	5	5	5	5	16	22
1608	15	0	15	8	7	8	7	6	4	6	4	6	4	6	4	16	22
1609x NP																	
1610	14	0	14	4	10	4	10	4	6	4	6	4	6	4	6	15	22
1611 TLL	1	1	2	1	0	0	0	0	0	0	0	0	0	0	0	3	23
1612	13	0	13	7	6	7	6	5	5	5	5	5	5	5	5	14	22
1613	19	0	19	5	13	5	13	5	5	5	5	5	5	5	5	19	22
1614	17	0	17	10	7	10	7	5	5	5	5	5	5	5	5	17	21
1615	12	0	12	5	7	5	7	5	5	5	5	5	5	5	5	13	22
1616	13	0	13	6	7	6	7	5	5	5	5	5	5	5	5	15	22
1617	15	0	15	7	8	5	7	5	5	5	5	5	5	5	5	19	22
1618	14	0	14	5	9	5	9	5	5	5	5	5	5	5	5	16	22
1619	14	0	14	7	7	7	7	5	5	5	5	5	5	5	5	14	22
1620	16	0	16	6	10	6	10	3	6	3	6	3	6	3	6	15	22
1621	17	0	17	10	7	10	7	5	5	5	5	5	5	5	5	17	22
1622	12	0	12	6	5	6	5	5	5	5	5	5	5	5	5	13	22
1623	11	0	11	4	7	4	7	4	6	4	6	4	6	4	6	13	23
1624	14	0	14	5	9	5	9	5	5	5	5	5	5	5	5	14	22
1625x NP																	
1626	13	0	13	2	11	2	11	2	8	2	8	2	8	2	8	14	22
MEAN	14.0	0.0	14.0	6.7	7.2	6.8	7.4	5.0	4.9	5.0 4	. 9	5.0	4.9	5.0	4.9	14.7	22.1
S.D.	3.5	0.2	3.3	2.9	3.1	2.7	2.6	1.3	1.2	1.3 1	2	1.3	1.2	1.3	1.2	3.1	0.4
N.	23	23	23	23	23	22	22	22	22	22	22	22	22	22	22	23	23

NP=NOT PREGNANT DPP=DIED POST PARTUM TLL=TOTAL LITTER LOSS x=EXCLUDED FROM MEAN

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX R

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL DELIVERY AND LITTER DATA

GROUP II 2000 MG/M3

	LITTE	R DELI	IVERED				NUM	BER OF	LIVI AYS	E PUPS						TOTAL IMPLAN-	DURATION OF GESTATION
	LIVE	DEAD	TOTAL		1		4		7	14	Ŀ	2	1		28	TATIONS	(DAYS)
FEMALE#	N	N	N	М	F	М	F	М	F	М	F	М	F	M	F	N	N
2601	10	0	10	7	3	7	3	7	3	7	3	7	3	7	3	17	22
2602	15	0	15	7	7	7	7	5	5	5	5	5	5	5	5	17	22
2603	15	0	15	6	9	6	9	5	5	5	5	5	5	5	5	16	22
2604	17	0	17	6	11	6	7	5	5	5	4	5	4	4	4	17	22
2605	13	0	13	6	7	6	7	5	5	5	5	5	5	5	5	14	22
2606	14	0	14	7	7	7	7	5	5	5	5	5	5	5	5	15	21
2607	16	0	16	10	6	10	6	5	5	5	5	5	5	5	5	18	22
2608	16	0	16	8	8	8	8	5	5	5	5	5	5	5	5	17	22
2609x NP																	
2610	14	0	14	5	9	5	9	5	5	5	5	5	5	5	5	14	22
2611	12	0	12	7	5	7	5	5	5	5	5	5	5	5	5	16	22
2612	13	0	13	8	5	8	5	5	5	5	5	5	5	5	5	14	22
2613	15	0	15	6	9	6	9	5	5	5	5	5	5	5	5	15	22
2614	14	0	14	9	5	9	5	5	5	5	5	5	5	5	5	16	22 .
2615	14	0	14	5	9	5	9	5	5	5	5	5	5	5	5	15	22
2616	15	0	15	8	7	8	7	5	5	5	5	5	5	5	5	17	21
2617	15	1	16	5	10	5	10	5	5	5	5	4	5	4	5	16	22
2618	14	0	14	8	6	8	6	5	5	5	5	5	5	5	5	13	21
2619	17	0	17	10	7	10	7	5	5	5	5	5	5	5	5	20	22
2620	10	0	10	4	6	4	6	4	6	4	6	4	6	4	6	15	22
2621	13	0	13	3	10	3	10	3	7	3	7	3	7	3	7	15	22
2622	13	0	13	7	6	7	6	5	5	5	5	5	5	5	5	13	22
2623	15	0	15	8	7	8	7	5	5	5	5	5	5	5	5	16	22
2624	18	0	18	10	8	10	8	5	5	5	5	5	5	5	5	18	22
2625	19	0	19	8	9	8	9	5	5	5	5	5	5	5	5	19	22
2626	13	0	13	4	8	4	8	4	6	4	6	4	6	4	6	15	22
MEAN	14.4	0.0	14.4	6.9	7.4	6.9	7.2	4.9	5.1	4.9 5.	0 4	4.9 5	.0	4.8	5.0	15.9	21.9
S.D.	2.1	0.2	2.2	1.9	1.9	1.9	1.7	0.6	0.6	0.6 0.	7 (0.7 0	.7	0.7	0.7	1.8	0.3
N	25	25	25	25	25	25	25	25	25	25 2	5	25	25	25	25	25	25

NP=NOT PREGNANT

x=EXCLUDED FROM MEAN

Sponsor Study No: 211-TAME-1G

APPENDIX R GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL DELIVERY AND LITTER DATA

GROUP III 10000 MG/M3

	LITTI	ER DEL	IVERED	·			NUM	BER OF	LIV	E PUPS					TOTAL IMPLAN-	DURATION OF GESTATION
	LIVE	DEAD	TOTAL		1		4		7	14		21		28	TATIONS	(DAYS)
FEMALE#	N	N	N	M	F	М	F	М	F	M F	M	F	М	F	N	N
3601	14	0	14	9	5	9	5	5	5	5 5	5	5	5	5	15	22
3602	13	0	13	10	3	9	3	7	3	7 3	7	3	7	3	17	22
3603	15	0	15	4	10	4	10	4	6	4 6	4	6	4	6	15	22
3604	14	0	14	7	7	7	7	5	5	5 5	5	5	5	5	15	21
3605x NP																
3606	13	0	13	4	9	4	9	4	6	4 6	3	6	3	6	15	22
3607	14	0	14	4	10	4	10	4	6	4 6	4	6	4	6	17	22
3608	18	1	19	11	7	11	7	5	5	5 5	5	5	5	5	20	21
3609	9	0	9	8	1	8	1	8	1	8 1	8	1	8	1	10	22
3610	12	0	12	6	6	6	6	5	5	5 5	5	5	5	5	16	22
3611	10	0	10	6	4	6	4	6	4	6 4	6	4	6	4	14	22
3612	12	1	13	8	4	8	4	6	4	6 4	6	4	6	4	14	22
3613	14	0	14	7	7	7	6	5	5	5 5	5	5	5	5	16	21
3614	14	0	14	8	6	8	6	5	5	5 5	5	5	5	5	17	22
3615	13	1	14	4	9	4	9	4	6	4 6	4	6	4	6	18	21
3616	19	0	19	7	12	7	12	5	5	5 5	5	5	5	5	19	22
3617	14	0	14	4	10	4	10	4	6	4 6	4	6	4	6	15	21
3618x NP																
3619	17	1	18	8	8	8	8	5	5	5 5	5	5	5	5	18	22
3620	13	0	13	8	5	8	5	5	5	5 5	5	5	5	5	15	22
3621	17	0	17	9	8	9	8	5	5	5 5	5	5	5	5	17	22
3622	10	0	10	5	5	5	5	5	5	5 5	5	5	5	5	17	22
3623	9	0	9	4	5	4	5	4	5	4 5	4	5	4	5	13	23
3624	13	0	13	5	8	5	8	5	5	5 5	5	5	5	5	13	22
3625	8	0	8	3	5	3	4	3	4	3 4	3	4	3	4	14	22
3626	10	0	10	5	5	5	5	5	5	5 5	5	5	5	5	14	22
MEAN	13.1	0.2	13.3	6.4	6.6	6.4	6.5	5.0	4.8	5.0 4.8	4.9	4.8	4.9	4.8	15.6	21.8
S.D.	2.9	0.4	3.0	2.2	2.6	2.2	2.6	1.0	1.1	1.0 1.1	1.1	1.1	1.1	1.1	2.2	0.5
N	24	24	24	24	24	24	24	24	24	24 24	24	24	24	24	24	24

NP=NOT PREGNANT

x=EXCLUDED FROM MEAN

Sponsor Study No: 211-TAME-1G

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

APPENDIX R

INDIVIDUAL DELIVERY AND LITTER DATA

GROUP IV 20000 MG/M3

	LITTE	ER DELI	(VERED				NUM		LIV AYS	E PUPS						TOTAL IMPLAN-	DURATION OF
	LIVE	DEAD	TOTAL		1		4		7	1	.4	2	1		28	TATIONS	(DAYS)
FEMALE#	N	N	N	M	F	M	F	M	F	M	F	М	F	M	F	N	N
4601	6	0	6	2	3	2	3	2	3	2	3	2	3	2	3	6	23
4602xNPAD																	
4603	15	0	15	9	5	9	5	5	5	5	5	5	5	5	5	16	22
4604	16	0	16	9	7	9	6	5	5	5	5	5	5	5	5	16	21
4605	18	0	18	5	13	4	13	4	6	4	6	4	6	4	6	18	22
4606	14	0	14	7	7	7	7	5	5	5	5	5	5	5	5	16	22
4607	7	0	7	2	5	2	5	2	5	2	5	2	5	2	5	17	23
4608	15	0	15	5	9	5	9	5	5	5	5	5	5	5	5	15	22
4609x NP																	
4610	16	0	16	7	9	7	9	5	5	5	5	5	5	5	5	16	22
4611	13	0	13	11	2	11	2	8	2	8	2	8	2	8	2	14	22
4612	16	0	16	8	8	8	8	5	5	5	5	5	5	5	5	18	22
4613	16	0	16	11	5	11	5	5	5	5	5	5	5	5	5	16	22
4614	17	0	17	10	7	10	6	5	5	5	5	5	5	5	5	17	22
4615	17	0	17	10	7	10	7	5	5	4	5	4	5	4	5	17	21
4616	12	0	12	6	6	6	6	5	5	5	5	5	5	5	5	15	22
4617x NP																	
4618	14	0	14	5	9	5	9	5	5	5	5	5	5	5	5	14	22
4619	12	0	12	5	4	5	3	5	3	5	3	5	3	5	3	14	21
4620	15	0	15	10	5	10	5	5	5	5	5	5	5	5	5	19	22
4621	16	0	16	8	8	8	8	5	5	5	5	5	5	5	5	17	22
4622	16	0	16	8	8	8	8	5	5	5	5	5	5	5	5	16	22
4623	15	0	15	3	11	3	11	3	7	3	7	3	7	3	7	15	22
4624	17	0	17	9	8	9	8	5	5	5	5	5	5	5	5	17	22
4625	7	1	8	4	3	4	3	4	3	4	3	4	3	4	3	18	22
4626	17	0	17	7	10	7	10	5	5	5	5	5	5	5	5	17	22
MEAN	14.2	0.0	14.3	7.0	6.9	7.0	6.8	4.7	4.7	4.7 4	. 7	4.7 4	.7	4.7	4.7	15.8	22.0
S.D.	3.4	0.2	3.3	2.7	2.7	2.8	2.8	1.2	1.1	1.2 1	1	1.2 1	.1	1.2	1.1	2.5	0.5
N	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23

NP=NOT PREGNANT NPAD=ACCIDENTAL DEATH, NOT PG x=EXCLUDED FROM MEAN

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX S

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP SEX AND STATUS DURING LACTATION

GROUP I	0 MG/M3																						
	PU:	 P#																					
FEMALE#	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1601	MK28	MC 4	MK28	MK28	MK28	MK28	MC 4	FC 4	FC 4	FK28	FK28	FK28	FK28	FC 4	FC 4	FD 4	MK28	FC 4					
1602	MK28	MK28	MK28	MK28	MC 4	MK28	MC 4	MK28	MM 1	FK28	FK28	FK28	FK28										
1603	MK28	MC 4	MC 4	MK28	MK28	MC 4	MK28	MK28	MK28	FK28	FK28	FK28	FK28										
1604	MC 4	MC 4	MC 4	MK28	MK28	MC 4	MK28	MC 4	MK28	MK28	FK28	FK28	FK28	FC 4	FK28	FK28							
1605	MK28	MC 4	MC 4	MK28	MC 4	MK28	MK28	MK28	MK28	MC 4	MK28	MK28	MC 4	MK28	FK28								
1606	FS	MU 1	MU 1	MU 1	MU 1	MU 1	MU 1	MU 1	MU 1	MU 1	MŲ 1	FU 1	FU 1	FU 1	FU 1								
1607	MK28	MK28	MC 4	MK28	MK28	MK28	FC 4	FC 4	FK28	FC 4	FK28	FK28	FK28	FC 4	FK28	FC 4							
1608	MK28	MC 4	MC 4	MK28	MK28	MK28	MK28	MK28	FK28	FC 4	FK28	FK28	FK28	FC 4	FC 4								
1610	MK28	MK28	MK28	MK28	FK28	FK28	FK28	FK28	FC 4	FK28	FC 4	FK28	FC 4	FC 4									
1611	MS	MM 2																					
1612	MC 4	MK28	MK28	MK28	MK28	MC 4	MK28	FK28	FK28	FC 4	FK28	FK28	FK28										
1613	MK28	MK28	MK28	MK28	MK28	FK28	FC 4	FC 4	FC 4	FC 4	FC 4	FC 4	FC 4	FK28	FC 4	FK28	FK28	FK28	FM 1				
1614	MC 4	MC 4	MC 4	MK28	MK28	MK28	MC 4	MK28	MC 4	MK28	FK28	FK28	FK28	FC 4	FK28	FK28	FC 4						
1615	MK28	MK28	MK28	MK28	MK28	FK28	FK28	FK28	FK28	FC 4	FK28	FC 4											
1616	MK28	MK28	MK28	MK28	MK28	MC 4	FK28	FK28	FC 4	FK28	FK28	FC 4	FK28										
1617	MK28	MK28	MK28	MM 2	MK28	MK28	MM 2	FK28	FK28	FK28	FD 2	FC 4	FK28	FK28	FC 4								
1618	MK28	MK28	MK28	MK28	MK28	FK28	FK28	FC 4	FC 4	FK28	FC 4	FK28	FK28	FC 4									
1619	MK28	MK28	MK28	MC 4	MK28	MC 4	MK28	FK28	FC 4	FC 4	FK28	FK28	FK28	FK28									
1620	MC 4	MK28	MK28	MM 5	MC 4	MK28	FK28	FK28	FK28	FK28	FK28	FK28	FC 4	FC 4	FC 4	FC 4							
1621	MK28	MC 4	MK28	MK28	MK28	MC 4	MC 4	MC 4	MK28	MC 4	FK28	FK28	FC 4	FK28	FK28	FC 4	FK28						
1622	MK28	MK28	MK28	MK28	MK28	MM 1	MC 4	FK28	FK28	FK28	FK28	FK28											
1623	MK28	MK28	MK28	MK28	FK28	FK28	FK28	FK28	FK28	FK28	FC 4												
1624	MK28	MK28	MK28	MK28	MK28	FK28	FK28	FK28	FK28	FC 4	FC 4	FC 4	FC 4	FK28									
1626	MK28	MK28	FC 4	FK28	FC 4	FK28	FK28	FK28	FK28	FC 4	FK28	FK28	FK28										

SEX CODE PRECEDES PUP STATUS CODE. NUMERICAL VALUE INDICATES DAY OF LACTATION.

SEX CODES: M-MALE F-FEMALE U-UNCERTAIN

PUP STATUS CODES: A-ALIVE S-STILLBORN D-DIED C-CULLED M-MISSING K-SCHEDULED SACRIFICE U-UNSCHEDULED SACRIFICE

Sponsor Study No: 211-TAME-1G APPENDIX S

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP SEX AND STATUS DURING LACTATION

GROUP II	2000 MG	/M3				IND	1 V 1 D 0.	AD FO	DLA	AND .	JINIO	J DOK.	ING II	ACIAI	LOIV								
	PU	 P #											- ·				-						
FEMALE#	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
2601	MK28	MK28	MK28	MK28	MK28	MK28	MK28	FK28	FK28	FK28													
2602	MK28	MC 4	MZ 1	MK28	MK28	MK28	MK28	MC 4	FC 4	FK28	FK28	FK28	FK28	FK28	FC 4								
2603	MK28	MK28	MK28	MK28	MK28	MC 4	FK28	FK28	FK28	FC 4	FC 4	FC 4	FK28	FK28	FC 4								
2604	MZ23	MK28	MK28	MK28	MC 4	MK28	FC 4	FC 4	FK28	FK28	FM 4	FD 8	FM 3	FK28	FK28	FD 4	FM 4						
2605	MK28	MK28	MC 4	MK28	MK28	MK28	FK28	FK28	FK28	FC 4	FK28	FK28	FC 4										
2606	MK28	MK28	MC 4	MC 4	MK28	MK28	MK28	FK28	FC 4	FC 4	FK28	FK28	FK28	FK28									
2607								MC 4															
2608	MK28	MK28	MC 4	MK28	MC 4	MK28	MC 4	MK28	FK28	FK28	FK28	FC 4	FK28	FC 4	FC 4	FK28							
2610	MK28	MK28	MK28	MK28	MK28	FC 4	FC 4	FK28	FK28	FC 4	FK28	FC 4	FK28	FK28									
2611								FK28															
2612								MC 4															
2613								FC 4							FK28								
2614								MK28															
2615								FK28															
2616								MK28															
2617							_	FK28							FC 4	FC 4							
2618								MK28															
2619								MC 4			FK28	FK28	FC 4	FC 4	FK28	FK28	FK28						
2620				_		-		FK28															
2621								FK28															
2622	MK28	MK28	MC 4	MC 4	MK28	MK28	MK28	FK28	FK28	FK28	FK28	FC 4	FK28										
2623								MC 4															
2624	MK28	MC 4	MC 4	MC 4	MC 4	MC 4	MK28	MK28	MK28	MK28	FK28	FK28	FC 4	FC 4	FC 4	FK28	FK28	FK28					
2625	MK28	MK28	MC 4	MK28	MK28	MC 4	MK28	MC 4	FK28	FK28	FC 4	FD 1	FC 4	FC 4	FK28	FC 4	FK28	FK28	FZ 0				
2626	MK28	MK28	MK28	MK28	FC 4	FK28	FK28	FK28	FK28	FK28	FD 1	FC 4	FK28										

SEX CODE PRECEDES PUP STATUS CODE. NUMERICAL VALUE INDICATES DAY OF LACTATION.

SEX CODES: M-MALE F-FEMALE U-UNCERTAIN

PUP STATUS CODES: A-ALIVE S-STILLBORN D-DIED C-CULLED Z-CANNIBALIZED M-MISSING K-SCHEDULED SACRIFICE

Huntingdon Life Saionaea 00 4202

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX S

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP SEX AND STATUS DURING LACTATION

GROUP III	10000 M	G/M3				IND		AL PU	P SEA	AND	SIAIU	S DUR	ING LA	ACIAI.	LON								
	PUI	P #																					
FEMALE#	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
3601	MK28	MK28	MK28	MK28	MC 4	MC 4	MC 4	MC 4	MK28	FK28	FK28	FK28	FK28	FK28									
3602	MK28	MK28	MK28	MK28	MD 3	MC 4	MK28	MK28	FK28	MC 4	FK28	MK28	FK28										
3603	FD 0	MK28	MK28	MK28	MK28	FC 4	FK28	FK28	FC 4	FC 4	FK28	FK28	FC 4	FK28	FK28								
3604	MK28	MK28	MC 4	MK28	MK28	MC 4	MK28	FK28	FC 4	FK28	FK28	FC 4	FK28	FK28									
3606	MK28	MD15	MK28	MK28	FC 4	FK28	FK28	FC 4	FK28	FK28	FC 4	FK28	FK28										
3607	MK28	MK28	FK28	MK28	MK28	FK28	FK28	FC 4	FC 4	FC 4	FC 4	FK28	FK28	FK28									
3608	US	MK28	MK28	MK28	MK28	MK28	MC 4	MC 4	MC 4	MC 4	MC 4	MC 4	FK28	FK28	FK28	FK28	FC 4	FC 4	FK28				
3609	MK28	MK28	MK28	MK28	MK28	MK28	MK28	MK28	FK28														
3610							FC 4				FK28	FK28											
3611							FK28																
3612	MS	MK28	MK28	MC 4	MK28	MK28	MC 4	MK28	MK28	FK28	FK28	FK28	FK28										
3613												FD 2											
3614												FK28											
3615												FK28											
3616															FK28	FK28	FC 4	FK28	FC 4				
3617		_				_	-			-		FK28											
3619												FK28		FK28	FC 4	FC 4	FK28	FS					
3620												FK28											
3621			-	-				_			FC 4	FK28	FC 4	FK28	FK28	FK28	FC 4						
3622							FK28			FK28													•
3623							FK28																
3624									FK28	FK28	FC 4	FK28	FC 4										
3625	-						FK28																
3626	MK28	MK28	MK28	MK28	MK28	FK28	FK28	FK28	FK28	FK28													

SEX CODE PRECEDES PUP STATUS CODE. NUMERICAL VALUE INDICATES DAY OF LACTATION.

SEX CODES: M-MALE F-FEMALE U-UNCERTAIN

PUP STATUS CODES: A-ALIVE S-STILLBORN D-DIED C-CULLED M-MISSING K-SCHEDULED SACRIFICE

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX S

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP SEX AND STATUS DURING LACTATION

GROUP IV	20000 MG	/M3																					
	PUP	#																					
FEMALE#	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
4601	FD 0	MK28	MK28	FK28	FK28	FK28																	
4603	MK28	MK28	MK28	MC 4	MC 4	MC 4	MK28	MC 4	MM 1	MK28	FK28	FK28	FK28	FK28	FK28								
4604	MK28	MC 4	MK28	MK28	MK28	MC 4	MC 4	MK28	MC 4	FK28	FK28	FC 4	FK28	FK28	FK28	FM 2							
4605	MK28	MM 4	MK28	MK28	MK28	FC 4	FC 4	FK28	FC 4	FK28	FC 4	FK28	FK28	FK28	FK28	FC 4	FC 4	FC 4					
4606	MK28	MK28	MC 4	MC 4	MK28	MK28	MK28	FK28	FK28	FK28	FK28	FC 4	FC 4	FK28									
4607	MK28	MK28	FK28	FK28	FK28	FK28	FK28																
4608	FD 0	MK28	MK28	MK28	MK28	MK28	FC 4	FC 4	FK28	FC 4	FK28	FC 4	FK28	FK28	FK28								
4610	MK28	MK28	MK28	MK28	MK28	MC 4	MC 4	FC 4	FC 4	FK28	FK28	FK28	FC 4	FC 4	FK28	FK28							
4611	MK28	MK28	MK28	MK28	MK28	MK28	MC 4	MK28	MK28	MC 4	MC 4	FK28	FK28										
4612	MK28	MC 4	MK28	MK28	MK28	MC 4	MC 4	MK28	FK28	FK28	FC 4	FK28	FC 4	FC 4	FK28	FK28							
4613	MK28	MK28	MK28	MC 4	MC 4	MC 4	MK28	MC 4	MK28	MC 4	MC 4	FK28	FK28	FK28	FK28	FK28							
4614	MK28	MK28	MK28	MK28	MK28	MC 4	MC 4	MC 4	MC 4	MC 4	FK28	FD 2	FK28	FK28	FK28	FC 4	FK28						
4615	MC 4	MK28	MC 4	MC 4	MK28	MK28	MK28	MD 8	MC 4	MC 4	FK28	FK28	FC 4	FK28	FK28	FK28	FC 4						
4616	MC 4 1	MK28	MK28	MK28	MK28	MK28	FK28	FK28	FC 4	FK28	FK28	FK28											
4618	MK28	MK28	MK28	MK28	MK28	FK28	FC 4	FC 4	FK28	FK28	FK28	FK28	FC 4	FC 4									
4619	MD 0	FD 0	MZ 1	MK28	MK28	MK28	MK28	MK28	FK28	FK28	FK28	FM 2											
4620	MC 4	MC 4	MK28	MC 4	MC 4	MK28	MK28	MK28	MK28	MC 4	FK28	FK28	FK28	FK28	FK28								
4621	MC 4	MC 4	MK28	MC 4	MK28	MK28	MK28	MK28	FC 4	FK28	FK28	FK28	FC 4	FC 4	FK28	FK28							
4622	MC 4	MK28	MK28	MK28	MK28	MK28	MC 4	MC 4	FK28	FK28	FK28	FC 4	FC 4	FK28	FK28	FC 4							
4623	MK28	MK28	MM 1	MK28	FK28	FK28	FK28	FC 4	FC 4	FC 4	FC 4	FK28	FK28	FK28	FK28								
4624	MK28	MC 4	MC 4	MC 4	MK28	MK28	MK28	MC 4	MK28	FC 4	FK28	FK28	FK28	FK28	FK28	FC 4	FC 4						
4625	FS	MK28	MK28	MK28	MK28	FK28	FK28	FK28															
4626	MC 4	MK28	MC 4	MK28	MK28	MK28	MK28	FC 4	FC 4	FC 4	FK28	FK28	FC 4	FK28	FK28	FC 4	FK28						

SEX CODE PRECEDES PUP STATUS CODE. NUMERICAL VALUE INDICATES DAY OF LACTATION.

SEX CODES: M-MALE F-FEMALE U-UNCERTAIN

PUP STATUS CODES: A-ALIVE S-STILLBORN D-DIED C-CULLED Z-CANNIBALIZED M-MISSING K-SCHEDULED SACRIFICE

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP I 0 MG/M3

FEMALE#	OBSERVATIONS	DAY OF LACTATION	0 1	2 3 4 5	6 7 8 9	1 1 1 1 1 1 1 1 1 1 0 1 2 3 4 5 6 7 8		
1601 PUP# 3	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 4	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 5	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 8	WITHIN NORMAL LIMITS		P	P				
PUP# 1	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 2	WITHIN NORMAL LIMITS		P	P				
PUP# 7	WITHIN NORMAL LIMITS		P	P				
PUP# 6	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 16	WITHIN NORMAL LIMITS		P	_				
PUP# 18 PUP# 17	WITHIN NORMAL LIMITS WITHIN NORMAL LIMITS		P	P	_	_		
PUP# 17 PUP# 12	WITHIN NORMAL LIMITS WITHIN NORMAL LIMITS		P P	P	P	P	P	P
PUP# 14	WITHIN NORMAL LIMITS		-	P	P	P	P	P
PUP# 15	WITHIN NORMAL LIMITS		P P	P				
PUP# 13	WITHIN NORMAL LIMITS		P	P P	P	ъ	_	_
PUP# 9	WITHIN NORMAL LIMITS		r P	P	P	P	₽	P
PUP# 11	WITHIN NORMAL LIMITS		P	P	P	P	P	ъ
PUP# 10	WITHIN NORMAL LIMITS		P	P	P	P	P	P P
"			-	-	±	r	P	Р
1602 PUP# 12	WITHIN NORMAL LIMITS		P	P	P	Р	P	P
PUP# 3	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 1	WITHIN NORMAL LIMITS		P	P	P	Þ	P	P
PUP# 9	WITHIN NORMAL LIMITS		P			-	-	-
PUP# 2	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 5	WITHIN NORMAL LIMITS		P	P			_	_
PUP# 8	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 4	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 10	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 7	WITHIN NORMAL LIMITS		P	P				
PUP# 11	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 6	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 13	WITHIN NORMAL LIMITS		P	P	P	P	P	P

Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP I 0 MG/M3

		DAY OF				1 1 1 1 1 1 1 2		
FEMALE#	OBSERVATIONS	LACTATION	0 1 2 3	4 5 6	789012	3 4 5 6 7 8 9 0	1 2 3 4 5 6 7	8
1603 PUP# 9	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 10	WITHIN NORMAL LIMITS		P	P	P	P		P
PUP# 13	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 4	WITHIN NORMAL LIMITS		P	P	P	P	P	Ρ
PUP# 5	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 1	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 3	WITHIN NORMAL LIMITS		P	P				
PUP# 12	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 8	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 6	WITHIN NORMAL LIMITS		P	P				
PUP# 7	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 2	WITHIN NORMAL LIMITS		P	P				
PUP# 11	WITHIN NORMAL LIMITS		P	P	P	P	P	P
1604 PUP# 12	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 11	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 10	WITHIN NORMAL LIMITS		- P	P	P	P	P	P
PUP# 13	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 9	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 1	WITHIN NORMAL LIMITS		P	P				
PUP# 4	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 6	WITHIN NORMAL LIMITS		P	P				
PUP# 7	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 5	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 2	WITHIN NORMAL LIMITS		P	P				
PUP# 8	WITHIN NORMAL LIMITS		P	P				
PUP# 3	WITHIN NORMAL LIMITS		P	P				
PUP# 14	WITHIN NORMAL LIMITS		P	P				
PUP# 15	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 16	WITHIN NORMAL LIMITS		P	P	P	P	P	P

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP I 0 MG/M3 DAY OF LACTATION 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 FEMALE# OBSERVATIONS ______ 1605 PUP# 15 WITHIN NORMAL LIMITS Ρ P Ρ PUP# 10 WITHIN NORMAL LIMITS PUP# 9 WITHIN NORMAL LIMITS P PUP# 2 WITHIN NORMAL LIMITS P Р P P PUP# 6 WITHIN NORMAL LIMITS Ρ Ρ PUP# 12 WITHIN NORMAL LIMITS P P PUP# 3 WITHIN NORMAL LIMITS P P PUP# 7 WITHIN NORMAL LIMITS P P P PUP# 13 WITHIN NORMAL LIMITS P P ₽ PUP# 1 WITHIN NORMAL LIMITS P P PUP# 11 WITHIN NORMAL LIMITS P Ρ PUP# 8 WITHIN NORMAL LIMITS PUP# 5 WITHIN NORMAL LIMITS Ρ Ρ PUP# 14 WITHIN NORMAL LIMITS P PUP# 4 WITHIN NORMAL LIMITS Ρ Р 1606 PUP# 13 WITHIN NORMAL LIMITS PUP# 15 WITHIN NORMAL LIMITS PUP# 14 WITHIN NORMAL LIMITS PUP# 12 WITHIN NORMAL LIMITS PUP# 8 WITHIN NORMAL LIMITS PUP# 6 WITHIN NORMAL LIMITS PUP# 7 WITHIN NORMAL LIMITS PUP# 5 WITHIN NORMAL LIMITS PUP# 3 WITHIN NORMAL LIMITS PUP# 2 WITHIN NORMAL LIMITS PUP# 4 WITHIN NORMAL LIMITS PUP# 11 WITHIN NORMAL LIMITS PUP# 10 WITHIN NORMAL LIMITS Р PUP# 9 WITHIN NORMAL LIMITS

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP I 0 MG/M3

FEMALE#		OBSERVATIONS		DAY OF LACTATION	0 1	1 2 3	4 !	5 6	7 8						2 2 2 2 3 4	
1607 PUP#	3	WITHIN NORMAL	LIMITS		P		P									
		WITHIN NORMAL			Ρ		P		P		I	₽ .		P		F
PUP# 1		WITHIN NORMAL			P		P									
PUP# 1		WITHIN NORMAL			P		P		P		I	?		P		F
• •	8	WITHIN NORMAL			P		P		_		_	_		_		_
	6	WITHIN NORMAL			P		P		P			P		P		F
	2	WITHIN NORMAL			P		P		P		J	₽		P		F
PUP# I		WITHIN NORMAL			P		P		~			_				
PUP# 1		WITHIN NORMAL			P		P		P		,	P		P		F
PUP# PUP# 1	7	WITHIN NORMAL			P P		P		_			_		ъ		7
PUP# 1		WITHIN NORMAL			P P		P P		Р		,	P		P		E
**	1	WITHIN NORMAL			P		P		P		,	P		P		I
	4	WITHIN NORMAL			P		P		P			P P		P		1
	9	WITHIN NORMAL			P		P		P			P		P)
PUP# 1	-	WITHIN NORMAL			P		P		P			P		P		E
101 1					-		-		-					•		•
1608 PUP#	1	WITHIN NORMAL	LIMITS		P		P		P		1	P		P		Į
PUP#	3	WITHIN NORMAL	LIMITS		P		P									
PUP# 1	L4	WITHIN NORMAL	LIMITS		Ρ		P									
PUP# 1	12	WITHIN NORMAL	LIMITS		₽		P		P		1	P		P		I
PUP#	9	WITHIN NORMAL	LIMITS		P		P		P]	P		P		I
PUP#	7	WITHIN NORMAL	LIMITS		Ρ		P		P]	P		P		I
PUP#	8	WITHIN NORMAL	LIMITS		P		P		P]	P		P		1
PUP# 3	15	WITHIN NORMAL	LIMITS		Ρ		P									
PUP# 1	10	WITHIN NORMAL	LIMITS		P		Ρ									
PUP# 3	11	WITHIN NORMAL	LIMITS		P		P		P]	₽		P]
· ·	2	WITHIN NORMAL			Ρ		P									
PUP#	4	WITHIN NORMAL			Ρ		P		P			P		P		
PUP#	13	WITHIN NORMAL			P		P		P			P		P		
••	5	WITHIN NORMAL			Ρ		P		P			₽		P		1
PUP#	6	WITHIN NORMAL	LIMITS		P		P		P		3	₽		P		

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP I 0 MG/M3

FEMALE#	OBSERVATIONS	DAY OF LACTATION	0 1 2 3	4 5 6		1 1 1 1 1 1 2 3 4 5 6 7 8 9 0		2 8
1610 PUP# 11	WITHIN NORMAL LIMITS		P	P				
PUP# 9	WITHIN NORMAL LIMITS		P	P				
PUP# 10	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 2	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 13	WITHIN NORMAL LIMITS		P	P				
PUP# 12	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 7	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 14	WITHIN NORMAL LIMITS		P	P				
PUP# 6	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 8	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 4	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 5	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 3	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 1	WITHIN NORMAL LIMITS		P	P	P	P	P	P
1611 PUP# 2	WITHIN NORMAL LIMITS		P					
1612 PUP# 13	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 11	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 3	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 9	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 10	WITHIN NORMAL LIMITS		P	P				
PUP# 2	WITHIN NORMAL LIMITS		₽	P	P	P	P	P
PUP# 6	WITHIN NORMAL LIMITS		P	P				
PUP# 8	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 4	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 1	WITHIN NORMAL LIMITS		P	P				
PUP# 7	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 5	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 12	WITHIN NORMAL LIMITS		P	P	P	P	P	P

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP I 0 MG/M3

EMALE#	OBS	ERVATIONS		DAY OF LACTATION	0	1 2 3	4 5	6 7 8		1 1 1 1 2 6 7 8 9 0		
1613 PUP#	3 WIT:	IN NORMAL	LIMITS		P		P	P	 P		P	F
PUP#	2 WIT	HIN NORMAL	LIMITS		P		P	P	P		P	F
PUP#	4 WIT	HIN NORMAL	LIMITS		P		P	P	P		P	E
PUP#		HIN NORMAL			P		P					
PUP#		HIN NORMAL			P		P	P	P		P	I
PUP#		HIN NORMAL			P		P					
PUP#		HIN NORMAL			P		P	P	P		P	E
PUP#	8 WIT	HIN NORMAL	LIMITS		P		P					
PUP#		HIN NORMAL			P		P					
PUP#		HIN NORMAL			P		P					
PUP#	_	HIN NORMAL			P		P	P	P		P	E
PUP#	10 WIT	HIN NORMAL	LIMITS		P		P					
PUP#	19 WIT	HIN NORMAL	LIMITS		P							
PUP#	13 WIT	HIN NORMAL	LIMITS		P		P					
PUP#	17 WIT	HIN NORMAL	LIMITS		P		P	P	P		P	
PUP#	14 WIT	HIN NORMAL	LIMITS		P		P	P	P		P	1
PUP#	15 WIT	HIN NORMAL	LIMITS		P		P					
PUP#	16 WIT	HIN NORMAL	LIMITS		P		P	P	P		P	I
PUP#	18 WIT	HIN NORMAL	LIMITS		P		P	P	P		P	
1614 PUP#	8 WIT	HIN NORMAL	LIMITS		P		P	P	P		P	
PUP#	5 WIT	HIN NORMAL	LIMITS		P		P	P	P		P	1
PUP#	1 WIT	HIN NORMAL	LIMITS		P		P					
PUP#	11 WIT	HIN NORMAL	LIMITS		P		P	P	P		P	1
PUP#	15 WIT	HIN NORMAL	LIMITS		P		P	P	P		P	
PUP#	3 WIT	HIN NORMAL	LIMITS		P		P					
PUP#	12 WIT	HIN NORMAL	LIMITS		P		P	P	P		P	
PUP#	14 WIT	HIN NORMAL	LIMITS		P		P					
PUP#	2 WIT	HIN NORMAL	LIMITS		P		P					
PUP#	17 WIT	HIN NORMAL	LIMITS		P		P					
PUP#	6 WIT	HIN NORMAL	LIMITS		P		P	P	P		P	
PUP#	4 WIT	HIN NORMAL	LIMITS		P		P	P	P		P	I
PUP#	7 WIT	HIN NORMAL	LIMITS		P		P					

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP I 0 MG/M3

		DAY OF			1 1 1 1	1 1 1 1 1 1 2	2 2 2 2 2 2 2 2
FEMALE#	OBSERVATIONS	LACTATION 0	1 2 3	4 5 6	7 8 9 0 1 2 3	4 5 6 7 8 9 0	1 2 3 4 5 6 7 8
1614 PUP# 13	WITHIN NORMAL LIMITS	F	· · · · · · · · · · · · · · · · · · ·	 Р	P	P	P P
PUP# 9	WITHIN NORMAL LIMITS	F		P			
PUP# 10	WITHIN NORMAL LIMITS	P	?	P	P	P	P P
PUP# 16	WITHIN NORMAL LIMITS	F	?	P	p	P	P P
1615 PUP# 4	WITHIN NORMAL LIMITS	F	P	P	P	P	p p
PUP# 2	WITHIN NORMAL LIMITS	F	?	P	P	P	P P
PUP# 1	WITHIN NORMAL LIMITS	P	?	P	P	P	P P
PUP# 3	WITHIN NORMAL LIMITS	F	?	P	P	P	P P
PUP# 7	WITHIN NORMAL LIMITS	F	?	P	P	P	P P
PUP# 5	WITHIN NORMAL LIMITS	F	?	P	P	P	P P
PUP# 6	WITHIN NORMAL LIMITS	F	?	P	P	P	P P
PUP# 10	WITHIN NORMAL LIMITS	F	?	P			
PUP# 12	WITHIN NORMAL LIMITS	F	•	P			
PUP# 11	WITHIN NORMAL LIMITS	P	?	P	P	P	P P
PUP# 8	WITHIN NORMAL LIMITS	F	?	P	P	P	P P
PUP# 9	WITHIN NORMAL LIMITS	F	?	P	P	P	P P
1616 PUP# 7	WITHIN NORMAL LIMITS	F	?	P	P	P	P P
PUP# 8	WITHIN NORMAL LIMITS	P	?	P	P	P	P P
PUP# 13	WITHIN NORMAL LIMITS	F	•	P	P	P	P P
PUP# 10	WITHIN NORMAL LIMITS	F	•	P	P	P	P P
PUP# 5	WITHIN NORMAL LIMITS	F	?	P	P	P	P P
PUP# 12	WITHIN NORMAL LIMITS	F	?	P			
PUP# 9	WITHIN NORMAL LIMITS	F	·	P			
PUP# 2	WITHIN NORMAL LIMITS	P	?	P	P	P	P P
PUP# 1	WITHIN NORMAL LIMITS	F	?	P	P	P	P P
PUP# 6	WITHIN NORMAL LIMITS	F	?	P			
PUP# 3	WITHIN NORMAL LIMITS	F	?	P	P	P	P P
PUP# 11	WITHIN NORMAL LIMITS	F	?	P	P	P	P P
PUP# 4	WITHIN NORMAL LIMITS	F	?	P	P	P	P P

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP I 0 MG/M3

FEMALE#		OBSERVATIONS		DAY OF LACTATION	0 1 2 3	4 5 6		1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 0		2 2 7 8
1617 PUP#	2	WITHIN NORMAL	LIMITS		P	P	P	P	P	 P
PUP# 1	.3	WITHIN NORMAL	LIMITS		P	P	P	P	P	P
PUP# 1	.0	WITHIN NORMAL	LIMITS		P	P	P	P	P	P
PUP#	3	WITHIN NORMAL	LIMITS		P	P	P	P	P	P
PUP#	1	WITHIN NORMAL	LIMITS		P	P	P	P	P	Ē
PUP# 1		WITHIN NORMAL			P	P				
PUP# 1		WITHIN NORMAL	•		P					
PUP# 1		WITHIN NORMAL			P	P				
		WITHIN NORMAL			P					
"		WITHIN NORMAL			P	P	P	P	P	P
PUP# 1		WITHIN NORMAL			P	P	P	P	P	F
··		WITHIN NORMAL			P	P	P	P	P	E
		WITHIN NORMAL			P					
- "		WITHIN NORMAL			P	P	P	P	P	I
PUP#	8	WITHIN NORMAL	LIMITS		P	P	P	P	P	I
1618 PUP# 1		WITHIN NORMAL			P	P				
- "		WITHIN NORMAL			P	P	P	P	P	Ι
"		WITHIN NORMAL			P	P	P	P	P	I
"		WITHIN NORMAL			P	P	P	P	P	Ι
- "		WITHIN NORMAL			P	P	P	P	P	Ι
PUP# 1		WITHIN NORMAL			P	P	P	P	P	I
PUP# 1		WITHIN NORMAL			P	P	P	P	P	1
"		WITHIN NORMAL			P	P	P	P	P	I
•		WITHIN NORMAL			P	P				
•		WITHIN NORMAL	•		P	P				
PUP# 1		WITHIN NORMAL			₽	P				
•		WITHIN NORMAL			P	P	P	P	P	I
PUP# 1		WITHIN NORMAL			P	P	P	P	P	F
PUP#	7	WITHIN NORMAL	LIMITS		P	P	P	P	P	F

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP I 0 MG/M3

		DAY OF				1 1	1 1	1 1	111	1 1	2 2	2 2	2 2	2 2	2
FEMALE#	OBSERVATIONS	LACTATION	0 1 2 3	4 5 6	7 8	9 0 1	2 3	4 9	5 6 7	8 9	0 1	2 3	4 5	6 7	8
1619 PUP# 9	WITHIN NORMAL LIMITS		P	P	_										
PUP# 13	WITHIN NORMAL LIMITS		P	P	P			P			P				P
PUP# 12	WITHIN NORMAL LIMITS		P	P	P			P			P				P
PUP# 5	WITHIN NORMAL LIMITS		P	P	P			P			P				P
PUP# 6	WITHIN NORMAL LIMITS		P	P											
PUP# 4	WITHIN NORMAL LIMITS		P	P											
PUP# 11	WITHIN NORMAL LIMITS		P	P	P			P			P				P
PUP# 10	WITHIN NORMAL LIMITS		P	P											
PUP# 3	WITHIN NORMAL LIMITS		P	P	P			P			P				P
PUP# 2	WITHIN NORMAL LIMITS		P	P	P			P			P				P
PUP# 8	WITHIN NORMAL LIMITS		P	P	P			P			P				P
PUP# 14	WITHIN NORMAL LIMITS		P	P	P			P			P				P
PUP# 7	WITHIN NORMAL LIMITS		P	P	P			P			P				₽
PUP# 1	WITHIN NORMAL LIMITS		P	P	P			P			P				P
1620 PUP# 1	WITHIN NORMAL LIMITS		P	P											
PUP# 3	WITHIN NORMAL LIMITS		P	P	P			Ρ			P				P
PUP# 4	WITHIN NORMAL LIMITS		P	P											
PUP# 2	WITHIN NORMAL LIMITS		P	P	P			P			P				P
PUP# 10	WITHIN NORMAL LIMITS		P	P	P			P			P				P
PUP# 12	WITHIN NORMAL LIMITS		P	P	P			P			P				P
PUP# 11	WITHIN NORMAL LIMITS		P	P	P			P			P				P
PUP# 15	WITHIN NORMAL LIMITS		P	P											
PUP# 7	WITHIN NORMAL LIMITS		P	P	Ρ			P			P				P
PUP# 8	WITHIN NORMAL LIMITS		P	P	P			P			P				P
PUP# 9	WITHIN NORMAL LIMITS		P	P	P			P			P				P
PUP# 13	WITHIN NORMAL LIMITS		P	P											
PUP# 14	WITHIN NORMAL LIMITS		P	P											
PUP# 16	WITHIN NORMAL LIMITS		P	P											
PUP# 6	WITHIN NORMAL LIMITS		P	P	P			P			P				P
PUP# 5	WITHIN NORMAL LIMITS		P	P											

Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP I 0 MG/M3

FEMALE#		OBSERVATIONS	DAY OF LACTATION	0	1 2 3	4 5 6	7 8 9			1 1 2 2 2 2 2 3	
		WITHIN NORMAL LIM		P		P					
PUP#	1	WITHIN NORMAL LIM		P		P	P		P	P	P
PUP#	4	WITHIN NORMAL LIM		P		P	P		P	P	P
PUP#	-	WITHIN NORMAL LIM		P		P					
PUP#	10	WITHIN NORMAL LIM		P		P					
PUP#	5	WITHIN NORMAL LIM		P		P	P		P	P	P
PUP#	15	WITHIN NORMAL LIM		P		P	P		P	P	P
PUP#	9	WITHIN NORMAL LIM		P		P	P		P	P	P
PUP#	7	WITHIN NORMAL LIM		P		P					
PUP#	6	WITHIN NORMAL LIM		P		P					
PUP#	13	WITHIN NORMAL LIM		P		P					
PUP#	8	WITHIN NORMAL LIM		P		P					
PUP#	14	WITHIN NORMAL LIM		P		P	P		P	P	P
PUP#	17	WITHIN NORMAL LIM		P		P	P		P	P	P
PUP#	12	WITHIN NORMAL LIM		P		P	P		P	P	P
PUP#	3	WITHIN NORMAL LIM	S	P		P	P		P	P	P
PUP#	11	WITHIN NORMAL LIM	S	P		P	P		P	P	P
1622 PUP#	3	WITHIN NORMAL LIM	s	P		P	P		P	P	P
PUP#	2	WITHIN NORMAL LIM	S	P		P	P		P	P	P
PUP#	5	WITHIN NORMAL LIM	S	P		P	P		P	P	P
PUP#	1	WITHIN NORMAL LIM	S	P		P	P		P	P	P
PUP#	4	WITHIN NORMAL LIM	S	P		P	P		P	P	P
PUP#	10	WITHIN NORMAL LIM	S	P		P	P		P	P	P
PUP#	9	WITHIN NORMAL LIM	S	P		P	P	•	P	P	P
PUP#	8	WITHIN NORMAL LIM	S	P		P	P		P	P	P
PUP#	11	WITHIN NORMAL LIM	'S	P		P	P		P	P	P
PUP#	6	WITHIN NORMAL LIM	S	P							
PUP#	12	WITHIN NORMAL LIM	S	P		P	P		P	P	P
PUP#	7	WITHIN NORMAL LIM	S	P		P					

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP I 0 MG/M3

EMALE#	OBSERVATIONS		DAY OF LACTATION	0	1 2 3	4 5	6 7		1 1 1						
1623 PUP# 10				P		P	F			P	 	F		 	P
PUP# 3	WITHIN NORMAL			P		P	F			P		F	•		Ρ
PUP# 9	WITHIN NORMAL			P		P	F	1		₽		F	•		P
PUP# 11	WITHIN NORMAL			P		P									
PUP# 4				P		P	F			P		P			P
PUP# 5	WITHIN NORMAL			P		P	F			P		P			P
PUP# 1				P		P	P			P		P			P
PUP# 2				P		P	F			P		F			P
PUP# 6	WITHIN NORMAL			P		P	F			P		F			P
PUP# 8	WITHIN NORMAL			₽		P	F			P		F			P
PUP# 7	WITHIN NORMAL	LIMITS		P		P	F	1		P		F)		P
1624 PUP# 4	WITHIN NORMAL	LIMITS		P		P	F	•		P		F)		Р
PUP# 13	WITHIN NORMAL	LIMITS		P		P									
PUP# 8	WITHIN NORMAL	LIMITS		P		P	F	,		P		F	•		P
PUP# 5	WITHIN NORMAL	LIMITS		P		P	P	,		P		P	•		P
PUP# 2	WITHIN NORMAL	LIMITS		P		P	F	•		P		F	•		P
PUP# 6	WITHIN NORMAL	LIMITS		P		P	E	•		P		F	•		P
PUP# 3	WITHIN NORMAL	LIMITS		P		P	E	,		P		P)		P
PUP# 11	WITHIN NORMAL	LIMITS		P		P									
PUP# 9	WITHIN NORMAL	LIMITS		P		P	F	•		P		F	•		Р
PUP# 14	WITHIN NORMAL	LIMITS		P		₽	F	,		P		F	•		Р
PUP# 12	WITHIN NORMAL	LIMITS		P		P									
PUP# 7	WITHIN NORMAL	LIMITS		P		P	P	,		P		F	•		P
PUP# 10	WITHIN NORMAL	LIMITS		P		P									
PUP# 1	WITHIN NORMAL	LIMITS		P		P	F	•		P		F			P
1626 PUP# 10	WITHIN NORMAL	LIMITS		Р		P									
PUP# 5	WITHIN NORMAL	LIMITS		P		P									
PUP# 6	WITHIN NORMAL	LIMITS		P		P	F	ı		P		F	•		P
PUP# 4	WITHIN NORMAL	LIMITS		P		P	F			- P		F			P
PUP# 8	WITHIN NORMAL	LIMITS		P		P	F			P		F			P
PUP# 13	WITHIN NORMAL	T.TMTTS		P		P	F			- P		F			P

Sponsor Study No: 211-TAME-1G APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP I	0 MG/M3																					
FEMALE#			OBSERVA	ATION	3			DAY OF LACTATION	0	1	2 3	4	5 6	7 8	1 1 9 0 1							2 2 7 8
1626 PU	2#	11	WITHIN	NORM	ΑL	LIMITS			P			P		P		 P	 	 	P P	 		P
PU:	#	12	WITHIN	NORM	$^{ m AL}$	LIMITS			P			P		P		P			P			P
PU	? #	1	WITHIN	NORM	$^{ m AL}$	LIMITS			P			P		P		P			P			P
PU	P#	7	WITHIN	NORM	ΑL	LIMITS			P			P		P		P			P			P
PU	2#	9	WITHIN	NORM	$^{ m AL}$	LIMITS			P			P		P		Ρ			₽			P
PU	₽#	2	WITHIN	NORM	λL	LIMITS			P			P		P		Ρ			P			P
PU	2#	3	WITHIN	NORM	ΑL	LIMITS			P			P										

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP II 2000 MG/M3

MALE#		OBSERVATIONS		DAY OF LACTATION	0 1 2 3	3 4 5	6 7	8 9	l 1 l 2						
2601 PUP#	8	WITHIN NORMAL	LIMITS		P	P	P	, 	 	 E	 >	 	 P	 	 I
PUP# :	10	WITHIN NORMAL	LIMITS		P	P	P	•		F	,		P		I
PUP#	2	WITHIN NORMAL	LIMITS		P	P	P)		F	>		P		I
PUP#	1	WITHIN NORMAL	LIMITS		P	P	P)		F	,		P		Į
PUP#	9	WITHIN NORMAL	LIMITS		P	P	P)		F	•		P		I
PUP#	5	WITHIN NORMAL	LIMITS		P	P	P	•		F	,		P		1
PUP#	3	WITHIN NORMAL	LIMITS		P	P	P	•		F	>		P		Į
PUP#	6	WITHIN NORMAL	LIMITS		P	P	P	•		F	•		P		F
PUP#	4	WITHIN NORMAL	LIMITS		P	P	P	•		F	?		P		I
PUP#	7	WITHIN NORMAL	LIMITS		P	P	P)		F	•		P		I
2602 PUP#	4	WITHIN NORMAL	LIMITS		P	P	P	,		F	,		P		I
PUP#	6	WITHIN NORMAL	LIMITS		P	P	P)		E	•		P		1
PUP#	2	WITHIN NORMAL	LIMITS		P	P									
PUP#	5	WITHIN NORMAL	LIMITS		P	P	P)		F	•		P		I
PUP#	1	WITHIN NORMAL	LIMITS		P	P	P)		F	þ		P		1
PUP#	3	WITHIN NORMAL	and the second s		P										
PUP#	7	WITHIN NORMAL	LIMITS		P	P	P	•		F	•		P		I
PUP# :	10	WITHIN NORMAL	LIMITS		P	P	P)		F	>		P		Ι
PUP# :	13	WITHIN NORMAL	LIMITS		P	P	P)		F	•		P		E
PUP# 3	12	WITHIN NORMAL			P	P	P	•		F	>		P		I
PUP#	8	WITHIN NORMAL	LIMITS		P	P									
PUP# :	11	WITHIN NORMAL			P	P	P	•		E	2		P		I
PUP#	9	WITHIN NORMAL			P	P									
PUP# 3		WITHIN NORMAL			P	P									
PUP# 1	14	WITHIN NORMAL	LIMITS		P	P	P	•		I	•		P		Ι
2603 PUP#	3	WITHIN NORMAL	LIMITS		P	P	P	•		E	•		P		I
PUP# 3		WITHIN NORMAL	LIMITS		P	P	P	•		E	•		P		I
PUP# 3	15	WITHIN NORMAL	LIMITS		P	P									
PUP# :	11	WITHIN NORMAL	LIMITS		P	P									
PUP#	1	WITHIN NORMAL	LIMITS		P	P	P)		F	,		P		I
PUP#	4	WITHIN NORMAL	LIMITS		P	P	P	•		F	•		P		1

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP II 2000 MG/M3

EMALE#		OBSERVATIONS		DAY OF LACTATION	0	1 2	3 4	5 6	7 8			2 2 2 2 2 1 2 3 4 5	
2603 PUP#	7	WITHIN NORMAL	LIMITS		P		Ε	•	P	 E)	 P	E
PUP# 1	.2	WITHIN NORMAL	LIMITS		P		I	•					
PUP# 1	.3	WITHIN NORMAL	LIMITS		P		E	•	P	E)	P	F
PUP#		WITHIN NORMAL			P		F	•					
PUP#		WITHIN NORMAL			P		I	•	P	E		P	I
PUP# 1	.0	WITHIN NORMAL	LIMITS		P		I	?					
PUP#	8	WITHIN NORMAL	LIMITS		P		E	•	P	E		P	I
PUP#	9	WITHIN NORMAL	LIMITS		P		I	?	P	E		P	I
PUP#	2	WITHIN NORMAL	LIMITS		P		E	>	P	F	>	P]
2604 PUP# 1	.5	WITHIN NORMAL	LIMITS		P		I	P	P	E	Þ	P]
PUP# 1	4	WITHIN NORMAL	LIMITS		P		1	•	P	F	P	P	1
PUP# 1	.6	WITHIN NORMAL	LIMITS		P								
PUP# 1	.0	WITHIN NORMAL	LIMITS		P		Ι	•	P	F	•	P	
PUP#	8	WITHIN NORMAL	LIMITS		P		I	•					
PUP# 1	.3	WITHIN NORMAL	LIMITS		P								
PUP#	9	WITHIN NORMAL	LIMITS		P		I	,	P	E	•	P	
PUP#	4	WITHIN NORMAL	LIMITS		P		I	?	P	E	•	P	1
PUP#	3	WITHIN NORMAL	LIMITS		P		I	?	P	I	P	P	
PUP# 1	.1	WITHIN NORMAL	LIMITS		P								
PUP# 1	.7	WITHIN NORMAL	LIMITS		P								
PUP#	5	WITHIN NORMAL	LIMITS		P		E						
PUP#	2	WITHIN NORMAL	LIMITS		P		E	>	P	E	•	P]
PUP#	1	WITHIN NORMAL	LIMITS		P		I	>	P	F	•	P	
PUP#	7	WITHIN NORMAL	LIMITS		P		I	•					
PUP# 1	2	WITHIN NORMAL	LIMITS		P		F		P				
PUP#	6	WITHIN NORMAL	LIMITS		P		I	•	P	E	•	P	1
2605 PUP# 1	.2	WITHIN NORMAL	LIMITS		P		I	·	P	I	,	P]
		WITHIN NORMAL	LIMITS		P		1		P	E		P	1
PUP#	9	WITHIN NORMAL	LIMITS		P		I		P	I		P]
PUP#	4	WITHIN NORMAL	LIMITS		P		I		P	F		P]
		WITHIN NORMAL			P		I		P	E		P]

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP II 2000 MG/M3

FEMALE#	OBSERVATIONS	DAY OF LACTATION	0 1 2 3	4 5 6	7 8 9 0 1 1 1 1		2 2 2 2 2 2 2 1 2 3 4 5 6 7	
2605 PUP# 10	WITHIN NORMAL LIMITS	·	P	P	· • • • • • • • • • • • • • • • • • • •			
PUP# 1	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 3	WITHIN NORMAL LIMITS		P	P				
PUP# 5	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 2	WITHIN NORMAL LIMITS		P	P	P	P	P	Ρ
PUP# 11	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 13	WITHIN NORMAL LIMITS		P	P				
PUP# 8	WITHIN NORMAL LIMITS		P	P	P	P	P	P
2606 PUP# 8	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 12	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 6	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 1	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 9	WITHIN NORMAL LIMITS		P	P				
PUP# 13	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 11	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 3	WITHIN NORMAL LIMITS		P	P				
PUP# 2	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 10	WITHIN NORMAL LIMITS		P	P				
PUP# 5	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 7	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 4	WITHIN NORMAL LIMITS		P	P				
PUP# 14	WITHIN NORMAL LIMITS		P	P	P	P	P	P
2607 PUP# 5	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 4	WITHIN NORMAL LIMITS		P	P				
PUP# 1	WITHIN NORMAL LIMITS		P	P				
PUP# 2	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 3	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 6	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 7	WITHIN NORMAL LIMITS		P	P				
PUP# 8	WITHIN NORMAL LIMITS		P	P				
PUP# 15	WITHIN NORMAL LIMITS		P	P	P	P	P	P

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP II 2000 MG/M3

'EMALE#	OBSERVATIONS		DAY OF LACTATION	0 1 2 3	4 5 6		1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 0		2 2 7 8
2607 PUP# 10	WITHIN NORMAL	LIMITS		P	P	P	P	P	P
PUP# 16	WITHIN NORMAL	LIMITS		P	P	P	P	P	P
PUP# 12	WITHIN NORMAL	LIMITS		P	P	P	P	P	P
PUP# 11	WITHIN NORMAL	LIMITS		P	P	P	P	P	P
PUP# 9	WITHIN NORMAL	LIMITS		P	P				
PUP# 14	WITHIN NORMAL	LIMITS		P	P				
PUP# 13	WITHIN NORMAL	LIMITS		P	P	P	P	P	P
2608 PUP# 1				P	P	P	P	P	P
PUP# 12	· · · · · · · · · · · · · · · · · · ·			P	P				
PUP# 3	WITHIN NORMAL	LIMITS		P	P				
PUP# 5				P	P				
PUP# 2	WITHIN NORMAL	LIMITS		P	P	P	P	P	P
PUP# 8	WITHIN NORMAL	LIMITS		P	P	P	P	P	P
PUP# 4	WITHIN NORMAL	LIMITS		P	P	P	P	P	P
PUP# 10	WITHIN NORMAL	LIMITS		P	P	P	P	P	P
PUP# 13	WITHIN NORMAL	LIMITS		P	P	P	P	P	Ρ
PUP# 7	WITHIN NORMAL	LIMITS		P	P				
PUP# 9	WITHIN NORMAL	LIMITS		P	P	P	P	P	P
PUP# 11	WITHIN NORMAL	LIMITS		P	P	P	P	P	P
PUP# 6	WITHIN NORMAL	LIMITS		P	P	P	P	P	P
PUP# 15	WITHIN NORMAL	LIMITS		P	P				
PUP# 16	WITHIN NORMAL	LIMITS		P	P	P	P	P	P
PUP# 14	WITHIN NORMAL	LIMITS		P	P				
2610 PUP# 14	WITHIN NORMAL	LIMITS		P	P	P	P	p	P
PUP# 5	WITHIN NORMAL	LIMITS		P	P	P	P	P	P
PUP# 7	WITHIN NORMAL	LIMITS		P	P				
PUP# 3	WITHIN NORMAL	LIMITS		P	P	P	P	P	P
PUP# 2	WITHIN NORMAL	LIMITS		P	P	P	P	P	Ρ
PUP# 13	WITHIN NORMAL	LIMITS		P	P	P	P	P	Ρ
PUP# 6	WITHIN NORMAL	LIMITS		P	P				
PUP# 4	WITHIN NORMAL	LIMITS		P	P	P	P	P	P

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP II 2000 MG/M3

FEMALE#	OBSERVATIONS	DAY OF LACTATION	0 1 2	3 4 5	6789	1 1 1 1 1 1 1 1 1 0 1 2 3 4 5 6 7		
2610 PUP# 1			P	P	P	P	P	P
	8 WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 1			P	P				
	1 WITHIN NORMAL LIMITS		P	P	P	P	P	P
	9 WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 1	0 WITHIN NORMAL LIMITS		P	P				
2611 PUP#	3 WITHIN NORMAL LIMITS		P	P	P	P	P	р
PUP#	7 WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 1	0 WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP#	9 WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP#	4 WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP#	6 WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP#	1 WITHIN NORMAL LIMITS		P	P			_	_
PUP#	8 WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP#	5 WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP#	2 WITHIN NORMAL LIMITS		P	P				_
PUP# 1	2 WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 1	1 WITHIN NORMAL LIMITS		P	P	P	P	P	P
2612 PUP# 1	2 WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 1	1 WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP#	8 WITHIN NORMAL LIMITS		P	P	•	•	-	L
PUP# 1	3 WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP#	7 WITHIN NORMAL LIMITS		P	P	-	-	•	-
PUP#	4 WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP#	1 WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP#	5 WITHIN NORMAL LIMITS		P	P	P	P	P	P
**	2 WITHIN NORMAL LIMITS		P	P	P	P	P	P
	3 WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 1			P	P	P	P	P	P
	9 WITHIN NORMAL LIMITS		P	P	P	P	P	P
	6 WITHIN NORMAL LIMITS		P		•	-	F	P
			=	P			F	

Huntingdon Life Sciences 00-4202 PAGE 366

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP II 2000 MG/M3

PEMALE# OBSERVATIONS LACTATION 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 6 7 8 9 9 9 9 9 9 9 9 9		·							
2613 PUP# 10		An annua - a a a	DAY OF						_
PUP# 3 WITHIN NORMAL LIMITS	FEMALE#	OBSERVATIONS	LACTATION	0 1 2 3	4 5 6	7890123	4 5 6 7 8 9 0	1 2 3 4 5 6 7	8
PUP# 1 WITHIN NORMAL LIMITS	2613 PUP# 10	WITHIN NORMAL LIMITS		P	P	P	P	P :	 P
PUP# 8 WITHIN NORMAL LIMITS	PUP# 3	WITHIN NORMAL LIMITS		P	P	P	P		P
PUP# 9 WITHIN NORMAL LIMITS	PUP# 1	. WITHIN NORMAL LIMITS		P	P	P	P		P
PUP# 11 WITHIN NORMAL LIMITS	PUP# 8	WITHIN NORMAL LIMITS		P	P				
PUP# 12 WITHIN NORMAL LIMITS	PUP# 9	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 13 WITHIN NORMAL LIMITS	PUP# 11	WITHIN NORMAL LIMITS		P	P				
PUP# 14 WITHIN NORMAL LIMITS	PUP# 12	WITHIN NORMAL LIMITS		P	P				
PUP# 5 WITHIN NORMAL LIMITS	PUP# 13	WITHIN NORMAL LIMITS		P	P	P	P	P :	P
PUP# 6 WITHIN NORMAL LIMITS	PUP# 14	WITHIN NORMAL LIMITS		P	P	P	P	P	₽
PUP# 2 WITHIN NORMAL LIMITS P <td>PUP# 5</td> <td>WITHIN NORMAL LIMITS</td> <td></td> <td>P</td> <td>P</td> <td></td> <td></td> <td></td> <td></td>	PUP# 5	WITHIN NORMAL LIMITS		P	P				
PUP# 4 WITHIN NORMAL LIMITS P P P P P P P P P P P P P P P P P P P				P	P	P	P	P :	P
PUP# 77 WITHIN NORMAL LIMITS PUP# 15 WITHIN NORMAL LIMITS PUP# 15 LACERATION - RIGHT LOWER DORSAL 2614 PUP# 9 WITHIN NORMAL LIMITS PUP# 1 WITHIN NORMAL LIMITS PUP# 14 WITHIN NORMAL LIMITS PUP# 14 WITHIN NORMAL LIMITS PUP# 15 WITHIN NORMAL LIMITS PUP# 10 WITHIN NORMAL LIMITS PUP# 12 WITHIN NORMAL LIMITS PUP# 15 WITHIN NORMAL LIMITS PUP# 15 WITHIN NORMAL LIMITS PUP# 17 WITHIN NORMAL LIMITS PUP# 18 WITHIN NORMAL LIMITS PUP# 19 PUP# 10 WITHIN NORMAL LIMITS PUP# 10 PUP# 10 PUP# 10 WITHIN NORMAL LIMITS PUP# 10 PUP# 1				P	P	P	P	P :	P
PUP# 15 WITHIN NORMAL LIMITS P P P P P P P P P P P P P P P P P P P	PUP# 4			P	P	P	P	P :	P
PUP# 15 LACERATION - RIGHT LOWER DORSAL 2614 PUP# 9 WITHIN NORMAL LIMITS PUP# 1 WITHIN NORMAL LIMITS PUP# 14 WITHIN NORMAL LIMITS PUP# 15 WITHIN NORMAL LIMITS PUP# 17 WITHIN NORMAL LIMITS PUP# 18 WITHIN NORMAL LIMITS PUP# 19 PPUP# 10 WITHIN NORMAL LIMITS PUP# 3 WITHIN NORMAL LIMITS PUP# 4 WITHIN NORMAL LIMITS PUP# 5 WITHIN NORMAL LIMITS PUP# 6 WITHIN NORMAL LIMITS PUP# 13 WITHIN NORMAL LIMITS PUP# 14 WITHIN NORMAL LIMITS PUP# 15 WITHIN NORMAL LIMITS PUP# 16 WITHIN NORMAL LIMITS PUP# 17 WITHIN NORMAL LIMITS PUP# 18 WITHIN NORMAL LIMITS PUP# 19 PP PP PP PP PP PP PP PP PP PP PP PP PP	,			P					
2614 PUP# 9 WITHIN NORMAL LIMITS P P P PUP# 1 WITHIN NORMAL LIMITS P P P P P P PUP# 14 WITHIN NORMAL LIMITS P P P P P P PUP# 15 WITHIN NORMAL LIMITS P P P P P P PUP# 5 WITHIN NORMAL LIMITS P P P P P P PUP# 3 WITHIN NORMAL LIMITS P P P P P P PUP# 3 WITHIN NORMAL LIMITS P P P P P P PUP# 6 WITHIN NORMAL LIMITS P P P PUP# 13 WITHIN NORMAL LIMITS P P PUP# 13 WITHIN NORMAL LIMITS P P P PUP# 14 WITHIN NORMAL LIMITS P P P P PUP# 15 WITHIN NORMAL LIMITS P P P P P P PUP# 16 WITHIN NORMAL LIMITS P P P P P P P PUP# 17 WITHIN NORMAL LIMITS P P P P P P P P P P P P P P P P P P P	•••				P	P	P	P :	P
PUP# 1 WITHIN NORMAL LIMITS P <td>PUP# 15</td> <td>5 LACERATION - RIGHT LOWER DORSAL</td> <td></td> <td>P</td> <td></td> <td></td> <td></td> <td></td> <td></td>	PUP# 15	5 LACERATION - RIGHT LOWER DORSAL		P					
PUP# 14 WITHIN NORMAL LIMITS P	2614 PUP# 9	WITHIN NORMAL LIMITS		P	P				
PUP# 11 WITHIN NORMAL LIMITS P	PUP# 1	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 12 WITHIN NORMAL LIMITS P	PUP# 14	WITHIN NORMAL LIMITS		P	P	P	P		P
PUP# 5 WITHIN NORMAL LIMITS P <td>PUP# 11</td> <td>. WITHIN NORMAL LIMITS</td> <td></td> <td>P</td> <td>P</td> <td>P</td> <td>P</td> <td></td> <td>P</td>	PUP# 11	. WITHIN NORMAL LIMITS		P	P	P	P		P
PUP# 3 WITHIN NORMAL LIMITS P PUP# 6 WITHIN NORMAL LIMITS P PUP# 13 WITHIN NORMAL LIMITS P PUP# 10 WITHIN NORMAL LIMITS P PUP# 2 WITHIN NORMAL LIMITS P P P P P P P P P P P P P P P P P P P	PUP# 12	WITHIN NORMAL LIMITS		P	P	P	P	P :	P
PUP# 6 WITHIN NORMAL LIMITS P PUP# 13 WITHIN NORMAL LIMITS P PUP# 10 WITHIN NORMAL LIMITS P PUP# 2 WITHIN NORMAL LIMITS P P P P P P P P P P P P P P P P P P P	PUP# 5	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 13 WITHIN NORMAL LIMITS P P P P P P P P P P P P P P P P P P P	PUP# 3	WITHIN NORMAL LIMITS		P	P				
PUP# 10 WITHIN NORMAL LIMITS P P P P P P P P P P P P P P P P P P P	PUP# 6	WITHIN NORMAL LIMITS		P	P				
PUP# 2 WITHIN NORMAL LIMITS P P P P	PUP# 13	WITHIN NORMAL LIMITS		P	P	P	P	P	P
	PUP# 10	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PIIP# 7 WITHIN MORMAI, LIMITS D D D D D	PUP# 2	WITHIN NORMAL LIMITS		P	P	P	P	P	P
TOTH / WITHIN MORE BEILD E	PUP# 7	WITHIN NORMAL LIMITS		P	P	P	P		P
PUP# 8 WITHIN NORMAL LIMITS P P P P P	PUP# 8	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 4 WITHIN NORMAL LIMITS P P	PUP# 4	WITHIN NORMAL LIMITS		P	P				

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP II 2000 MG/M3

MALE#		OBSERVATIONS		DAY OF LACTATION	0	1 2 3	4 5 6	5 7 8 9			2 2 2 2 2 3	
2615 PUP#	1	WITHIN NORMAL	LIMITS		P		Р	P	 P		P	
PUP# :	14	WITHIN NORMAL	LIMITS		P		P					
PUP# :	12	WITHIN NORMAL			P		P	P	P		P	
PUP#	6	WITHIN NORMAL			P		P					
PUP#	9	WITHIN NORMAL			P		P	P	P		P	
PUP#	4	WITHIN NORMAL			P		P	P	P		P	
PUP#	7	WITHIN NORMAL			P		P					
PUP#	2	WITHIN NORMAL			P		P	P	P		P	
PUP#	8	WITHIN NORMAL			P		P	P	P		P	
PUP# :		WITHIN NORMAL			P		P					
PUP#	3	WITHIN NORMAL			P		P	P	P		P	
PUP#	5	WITHIN NORMAL			P		P	P	P		P	
PUP# :		WITHIN NORMAL			P		P	P	P		P	
PUP# 1	11	WITHIN NORMAL	LIMITS		P		P	P	P		P	
2616 PUP#		WITHIN NORMAL			P		P					
PUP#	1	WITHIN NORMAL			P		P					
PUP#	6	WITHIN NORMAL			P		P	P	P		P	
PUP# :		WITHIN NORMAL			P		P	P	P		P	
PUP# :		WITHIN NORMAL			P		P	P	P		P	
PUP#	8	WITHIN NORMAL			P		P	P	P		P	
PUP#	5	WITHIN NORMAL			P		P	P	P		P	
PUP# :		WITHIN NORMAL			P		P	P	P		P	
PUP# 3	15	WITHIN NORMAL	LIMITS		P		P					
PUP# :	13	WITHIN NORMAL	LIMITS		P		P	P	P		P	
PUP#	7	WITHIN NORMAL			P		P	P	P		P	
PUP# :	12	WITHIN NORMAL			P		P	P	P		P	
PUP#	3	WITHIN NORMAL	LIMITS		P		P					
PUP#	9	WITHIN NORMAL			P		P					
PUP#	4	WITHIN NORMAL	LIMITS		P		P	P	P		P	

Huntingdon Life Sciences 00-4202 PAGE 368

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP II 2000 MG/M3

FEMALE#	OBSERVATIONS	DAY OF LACTATION	0 1 0 3	4 5 6			2 2 2 2 2 2 2	
remale#	OBSERVATIONS	LACTATION	0 1 2 3	456	7890123	4567890	1 2 3 4 5 6 7	8
2617 PUP# 15	WITHIN NORMAL LIMITS		P	P				
PUP# 13	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 6	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 3	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 5	WITHIN NORMAL LIMITS		P	P	P	P		
PUP# 16	WITHIN NORMAL LIMITS		P	P				
PUP# 4	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 10	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 12	WITHIN NORMAL LIMITS		P	P				
PUP# 11	WITHIN NORMAL LIMITS		P	P				
PUP# 9	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 14	WITHIN NORMAL LIMITS		P	P				
PUP# 7	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 2	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 8	WITHIN NORMAL LIMITS		P	P	P	P	P	P
2618 PUP# 6	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 2	WITHIN NORMAL LIMITS		P	P				
PUP# 5	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 4	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 7	WITHIN NORMAL LIMITS		₽	P	P	P	P	P
PUP# 9	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 8	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 12	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 13	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 3	WITHIN NORMAL LIMITS		P	P				
PUP# 11	WITHIN NORMAL LIMITS		P	P				
PUP# 10	WITHIN NORMAL LIMITS		P	P	P	Ρ.	P	P
PUP# 1	WITHIN NORMAL LIMITS		P	P				
PUP# 14	WITHIN NORMAL LIMITS			P	P	P	P	P
PUP# 14	TIP OF TAIL MISSING		P					

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP II 2000 MG/M3

IALE#		OBSERVATIONS		DAY OF LACTATION	0	1 2 3	4 5	6 7	8 9 0					2 2 2 2 3 4	
2619 PUP#	3	WITHIN NORMAL	LIMITS	· · · · · · · · · · · · · · · · · · ·	P		P	P		 P		 	P		
PUP#	5	WITHIN NORMAL	LIMITS		P		P	P		P			P		
PUP# 1	4	WITHIN NORMAL	LIMITS		P		P								
PUP#	8	WITHIN NORMAL	LIMITS		P		P								
PUP# 1	1	WITHIN NORMAL	LIMITS		P		P	P		P			P		
PUP# 1	0	WITHIN NORMAL	LIMITS		P		P								
PUP# 1	16	WITHIN NORMAL	LIMITS		P		P	P		P			P		1
PUP#	7	WITHIN NORMAL	LIMITS		P		P								
PUP# 1	12	WITHIN NORMAL	LIMITS		P		P	P		P			P		1
PUP# 1	7	WITHIN NORMAL	LIMITS		P		P	P		P			P		1
PUP#	9	WITHIN NORMAL	LIMITS		P		P	P		P			P		1
PUP# 1	.5	WITHIN NORMAL	LIMITS		P		P	P		P			P		:
PUP#	6	WITHIN NORMAL	LIMITS		P		P								
PUP#	1	WITHIN NORMAL	LIMITS		P		P								
PUP# 1	L3	WITHIN NORMAL	LIMITS		P		P								
PUP#	4	WITHIN NORMAL	LIMITS		P		P	P		P	•		P		:
PUP#	2	WITHIN NORMAL	LIMITS		P		P	P		P	,		P		
2620 PUP#	5	WITHIN NORMAL	LIMITS		P		P	P		P	,		P		:
PUP#	8	WITHIN NORMAL	LIMITS		P		P	P		P	•		P		
PUP#	7	WITHIN NORMAL	LIMITS		P		P	P		P	•		P		:
PUP#	2	WITHIN NORMAL	LIMITS		P		P	P		P)		P		
PUP#	1	WITHIN NORMAL	LIMITS		P		P	P		P	,		P		
PUP#	9	WITHIN NORMAL	LIMITS		P		P	P		P	,		P		
PUP# 1	LO	WITHIN NORMAL	LIMITS		P		P	P		P	1		P		
PUP#	4	WITHIN NORMAL	LIMITS		P		P	P		P	1		P		
PUP#	3	WITHIN NORMAL	LIMITS		P		P	P		P	,		P		
PUP#	6	WITHIN NORMAL	LIMITS		P		P	P		P)		P		
2621 PUP#		WITHIN NORMAL			P		P	P		P	,		P		
PUP#		WITHIN NORMAL			P		P	P		P	•		P		
PUP# 1		WITHIN NORMAL			P		P	P		P			P		
PUP#	2	WITHIN NORMAL	LIMITS		P		P	Р		P			P		

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP II 2000 MG/M3

MALE#	(OBSERVATIONS		DAY OF LACTATION	0 1 2 3	4 5 6		11111111		2 2 7 8
2621 PUP#	6 1	WITHIN NORMAL	LIMITS		P	P	P	P	P	P
PUP# 1	2 1	WITHIN NORMAL	LIMITS		P	P	P	P	P	P
PUP#	3 1	WITHIN NORMAL	LIMITS		P	P	P	P	P	P
PUP#	4 1	WITHIN NORMAL	LIMITS		P	P	P	P	P	P
PUP#	7 1	WITHIN NORMAL	LIMITS		P	P				
PUP# 1	1 1	WITHIN NORMAL	LIMITS		P	P	P	P	P	P
PUP#	9 1	WITHIN NORMAL	LIMITS		P	P				
PUP# 1		WITHIN NORMAL			P	P	P	P	P	P
PUP#	5 1	WITHIN NORMAL	LIMITS		P	P				
	-	WITHIN NORMAL			P	P	P	P	P	P
PUP# 1		WITHIN NORMAL			P	P	P	P	P	P
		WITHIN NORMAL			P	P	P	P	P	P
,,		WITHIN NORMAL			P	P	P	P	P	P
		WITHIN NORMAL			P	P	P	P	P	P
		WITHIN NORMAL			P	P	P	P	P	P
PUP# 1	1 1	WITHIN NORMAL	LIMITS		P	P	P	P	P	P
PUP# 1		WITHIN NORMAL			P	P				
PUP# 1		WITHIN NORMAL			P	P	P	P	P	₽
PUP#	4 1	WITHIN NORMAL	LIMITS		P	P				
PUP#	5 1	WITHIN NORMAL	LIMITS		P	P	P	P	P	P
PUP#	3 1	WITHIN NORMAL	LIMITS		P	P				
PUP#	6 1	WITHIN NORMAL	LIMITS		P	P	P	P	P	P
2623 PUP#		WITHIN NORMAL			P	P	P	P	P	P
PUP#	9 1	WITHIN NORMAL	LIMITS		P	P	P	P	P	P
PUP#	4 1	WITHIN NORMAL	LIMITS		P	P	P	P	P	P
PUP# 1	0 1	WITHIN NORMAL	LIMITS		P	P				
PUP#	7	WITHIN NORMAL	LIMITS		P	P				
PUP#		WITHIN NORMAL			P	P	P	P	P	P
"		WITHIN NORMAL			P	P	P	P	P	P
PUP#		WITHIN NORMAL			P	P				
PUP# 1	4 1	WITHIN NORMAL	LIMITS		P	P	P	P	P	P

Huntingdon Life Sciences 00-4202 PAGE 371

Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP II 2000 MG/M3

FEMALE#	OBSERVATIONS		DAY OF LACTATION	0 1 2 3	4 5 6		1 1 1 1 1 1 2 4 5 6 7 8 9 0	
2623 PUP# 8	WITHIN NORMAL	LIMITS		P	P			
PUP# 1	WITHIN NORMAL	LIMITS		P P	P	P	P	P P
PUP# 12	WITHIN NORMAL	LIMITS		P	P	-	-	-
PUP# 15	WITHIN NORMAL	LIMITS		P	P	P	P	P P
PUP# 11	WITHIN NORMAL	LIMITS		P	P	P	P	P P
PUP# 13	WITHIN NORMAL	LIMITS		P	P	P	P	P P
2624 PUP# 1	WITHIN NORMAL	LIMITS		P	P	P	P	P P
PUP# 12				P	P	P	P	P P
PUP# 13				P	P			
PUP# 15				P	P			
PUP# 5				P	P			
PUP# 11				P	P	P	P	P P
PUP# 8				P	P	P	P	P P
PUP# 6				P	P			
PUP# 3				P	P			
PUP# 14				P	P			
PUP# 4				P	P			
PUP# 17				P	P	P	P	P P
PUP# 18				P	P	P	P	P P
PUP# 7				P	P	P	P	P P
PUP# 9				P	P	P	P	P P
PUP# 10				P	P	P	P	P P
PUP# 2				P	P			
PUP# 16	WITHIN NORMAL	LIMITS		P	P	P	P	P P
2625 PUP# 1				P	P	P	P	P P
PUP# 18				P	P	P	P	P P
PUP# 2	WITHIN NORMAL	LIMITS		P	P	P	P	P P
PUP# 6				P	P			
PUP# 9				P	P	P	P	P P
PUP# 15				P	P	P	P	P P
PUP# 13	WITHIN NORMAL	LIMITS		P	P			

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP II 2000 MG/M3

(ALE#	OBSERVATIONS		DAY OF LACTATION	0 1 2	3 4 5	6 7 8	. 1 1				 	2 2 7 8
2625 PUP# 5	WITHIN NORMAL LIM	ITS		P	P	P	 	P	 	P	 	 F
PUP# 8	WITHIN NORMAL LIM	ITS		P	P							
PUP# 3	WITHIN NORMAL LIM	ITS		P	P							
PUP# 7	WITHIN NORMAL LIM			P	P	P		P		P		1
PUP# 10	WITHIN NORMAL LIM	ITS		P	P			P		P		I
PUP# 12	WITHIN NORMAL LIM	ITS		P								
PUP# 4	WITHIN NORMAL LIM	ITS		P	P	P		P		P		I
PUP# 14	WITHIN NORMAL LIM	ITS		P	P							
PUP# 16	WITHIN NORMAL LIM	ITS		P	P							
PUP# 11	WITHIN NORMAL LIM	ITS		P	P							
PUP# 17	WITHIN NORMAL LIM	ITS		P	P	P		P		P		1
PUP# 10	SOFT PROTRUSION -	MID ABDOMEN				P						
2626 PUP# 7	WITHIN NORMAL LIM	ITS		P	P	P		P		P]
PUP# 10	WITHIN NORMAL LIM	ITS		P	P	P		P		P		1
PUP# 2	WITHIN NORMAL LIM	ITS		P	P	P		P		P]
PUP# 12	WITHIN NORMAL LIM	ITS		P	P							
PUP# 3	WITHIN NORMAL LIM	ITS		P	P	P		P		P		1
PUP# 11	WITHIN NORMAL LIM	ITS		P								
PUP# 4	WITHIN NORMAL LIM	ITS		P	P	P		P		P		I
PUP# 8	WITHIN NORMAL LIM	ITS		P	P	P		P		P]
PUP# 9	WITHIN NORMAL LIM	ITS		P	P	P		P		P]
PUP# 5	WITHIN NORMAL LIM	ITS		P	P							
PUP# 13	WITHIN NORMAL LIM	ITS		P	P	P		P		P]
PUP# 1	WITHIN NORMAL LIM	ITS		P	P	P		P		P]
PUP# 6	WITHIN NORMAL LIM	ITS		P	P	Þ		P		P		F

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP III 10000 MG/M3

MALE#	OBSERVATIONS	DAY OF LACTATION	0 1 2	3 4 5		1 1 1 1 1 1 1 1 2 3 4 5 6 7		
3601 PUP# 2	WITHIN NORMAL LIMITS							
3601 PUP# 2 PUP# 1			P P	P P	P	P	P	P
PUP# 14			P	P	P	P	P P	P
PUP# 14 PUP# 9			P	P	P	P P	P	P
PUP# 10			P	P	P P	P	P	P P
PUP# 11			P	P	P	P	P	
PUP# 11			P	P	P	Р	Р	P
PUP# 13			P	P	P	P	P	
PUP# 8			P	P	P	r	P	P
PUP# 4			P	P	P	P	P	ъ
PUP# 3			P	P	P	P	P	P P
PUP# 12			P	P	P	P	P	P
PUP# 5			P	P P	P	P	P	Р
PUP# 6	· · · · · · · · · · · · · · · · · · ·		P	P				
101# 0	WITHIN NORTHE LIMITO		F	r				
3602 PUP# 8	WITHIN NORMAL LIMITS		P	P	P	P	Р	Р
PUP# 3			P	P	P	P	P	P
PUP# 6			P	P	-	1	•	-
PUP# 9			P	P	P	P	P	P
PUP# 5			P	-	-	•	•	-
PUP# 1		•	P	P	P	P	P	P
PUP# 4	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 10			P	P	•	-	-	-
PUP# 11	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 7			P	P	P	P	P	P
PUP# 2			P	P	P	P	P	P
PUP# 13	WITHIN NORMAL LIMITS		P	P	P	p.	P	P
PUP# 12			P	P	P	P	P	P
- "			_	-	-	•	-	-
3603 PUP# 2	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 11			P	P	P	P	P	P
PUP# 8	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 4	WITHIN NORMAL LIMITS		P	P	P	P	P	P

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP III 10000 MG/M3

EMALE#	OBSERVATIONS		DAY OF LACTATION	0123	456		1 1 1 1 1 1 1 1 2 3 4 5 6 7 8		
								·	
3603 PUP# 3	WITHIN NORMAL I			P	P	P	P	P	P
PUP# 13	WITHIN NORMAL I			P	P				
PUP# 14	WITHIN NORMAL I			P	P	P	P	P	P
PUP# 9	WITHIN NORMAL I			P	P				
PUP# 10	WITHIN NORMAL I			P	P				
PUP# 12	WITHIN NORMAL I			P	P	P	P	P	P
PUP# 7	WITHIN NORMAL I			P	P	P	P	P	P
PUP# 15	WITHIN NORMAL I			P	P	P	P	P	P
PUP# 6	WITHIN NORMAL I			P	P				
PUP# 5	WITHIN NORMAL I	LIMITS		P	P	P	P	P	P
PUP# 1	FOUND DEAD			P					
3604 PUP# 13	WITHIN NORMAL I	LIMITS		P	P	P	P	P	P
PUP# 9	WITHIN NORMAL I	LIMITS		P	P				
PUP# 10	WITHIN NORMAL I	LIMITS		P	P	P	P	P	P
PUP# 8	WITHIN NORMAL I	LIMITS		P	P	P	P	P	P
PUP# 4	WITHIN NORMAL I	LIMITS		P	P	P	P	P	P
PUP# 12	WITHIN NORMAL I	LIMITS		P	P				
PUP# 5	WITHIN NORMAL I	LIMITS		P	P	P	P	P	P
PUP# 2	WITHIN NORMAL I	LIMITS		P	P	P	P	P	P
PUP# 11	WITHIN NORMAL I	LIMITS		P	P	P	P	P	P
PUP# 6	WITHIN NORMAL I	LIMITS		P	P				
PUP# 1	WITHIN NORMAL I	LIMITS		P	P	P	P	P	P
PUP# 14	WITHIN NORMAL I	LIMITS		P	P	P	P	P	P
PUP# 3	WITHIN NORMAL I	LIMITS		P	P				
PUP# 7	WITHIN NORMAL I	LIMITS		P	P	P	P	P	P
3606 PUP# 6	WITHIN NORMAL I	LIMITS		P	P	P	P	P	P
PUP# 13	WITHIN NORMAL I			P	P	P	P	P	P
PUP# 12	WITHIN NORMAL I			r P	P	P	P	P	P
PUP# 4	WITHIN NORMAL I			P	P	P	P	P	P
PUP# 11	WITHIN NORMAL I			P	P	-	-	-	F
PUP# 1	WITHIN NORMAL I			r P	P	P	P	P	P

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP III 10000 MG/M3

FEMALE#		OBSERVATIONS		DAY OF LACTATION	0 1 2	3 4 5	6 7 8 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
3606 PUP# 1	.0	WITHIN NORMAL	LIMITS		P	P	P	P	P	F
PUP#	2	WITHIN NORMAL	LIMITS		P	P	P	P		
PUP#	7	WITHIN NORMAL	LIMITS		P	P	P	P	P	F
PUP#	3	WITHIN NORMAL	LIMITS		P	P	P	P	P	F
PUP#	8	WITHIN NORMAL	LIMITS		P	P				
PUP#	9	WITHIN NORMAL	LIMITS		P	P	P	P	P	F
PUP#	5	WITHIN NORMAL	LIMITS		P	P				
3607 PUP#	3	WITHIN NORMAL	LIMITS		P	P	P	P	P	F
PUP# 1		WITHIN NORMAL	· · ·		P	P	P	P	P	I
	1	WITHIN NORMAL			P	P	P	P	P	F
PUP#	8	WITHIN NORMAL			P	P				
PUP#	2	WITHIN NORMAL	LIMITS		P	P	P	P	P	1
PUP#	5	WITHIN NORMAL	LIMITS		P	P	P	P	P]
PUP#	4	WITHIN NORMAL	LIMITS		P	P	P	P	P	I
PUP#	9	WITHIN NORMAL	LIMITS		P	P				
PUP# 1	.3	WITHIN NORMAL			P	P	P	P	P	I
PUP#	6	WITHIN NORMAL			P	P	P	P	P	I
PUP# 1	.1	WITHIN NORMAL	LIMITS		P	P				
PUP# 1	4	WITHIN NORMAL	LIMITS		P	P	P	P	P	I
PUP# 1	.0	WITHIN NORMAL	LIMITS		P	P				
PUP#	7	WITHIN NORMAL	LIMITS		P	P	P	P	P	E
3608 PUP#		WITHIN NORMAL			P	P	P	P	P	F
PUP# 1		WITHIN NORMAL			P	P	P	P	P	I
PUP#	6	WITHIN NORMAL			P	P	P	P	P	I
PUP#	7	WITHIN NORMAL	LIMITS		P	P				
PUP#	5	WITHIN NORMAL	LIMITS		P	P	P	P	P	I
PUP# 1	.3	WITHIN NORMAL	LIMITS		P	P	P	P	P	I
PUP# 1	.9	WITHIN NORMAL	LIMITS		P	P	P	P	P	I
PUP# 1	.1	WITHIN NORMAL	LIMITS		P	P				
PUP#	9	WITHIN NORMAL			P	P				
PUP# 1	.2	WITHIN NORMAL	LIMITS		P	P				

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP III 10000 MG/M3

FEMALE#		DAY OF LACTATION 0	1 2 3	4 5 6		1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 0		
3608 PUP# 17	WITHIN NORMAL LIMITS		· -	P				
PUP# 18	WITHIN NORMAL LIMITS	P		P				
PUP# 8	WITHIN NORMAL LIMITS	P		P				
PUP# 14	WITHIN NORMAL LIMITS	P	,	P	P	P	P	P
PUP# 16	WITHIN NORMAL LIMITS	P	•	P	P	P	P	P
PUP# 4	WITHIN NORMAL LIMITS	P)	P	P	P	P	P
PUP# 10	WITHIN NORMAL LIMITS	P	•	P				
PUP# 2	WITHIN NORMAL LIMITS	P	•	P	P	P	P	P
3609 PUP# 4	WITHIN NORMAL LIMITS	P	,	P	P	P	P	P
PUP# 2	WITHIN NORMAL LIMITS	P)	P	P	P	P	P
PUP# 1	WITHIN NORMAL LIMITS	P)	P	P	P	P	P
PUP# 7	WITHIN NORMAL LIMITS	P	•	P	P	Þ	P	P
PUP# 8	WITHIN NORMAL LIMITS	P)	P	P	P	P	P
PUP# 9	WITHIN NORMAL LIMITS	P	•	P	P	P	P	P
PUP# 6	WITHIN NORMAL LIMITS	p)	P	P	P	P	P
PUP# 3	WITHIN NORMAL LIMITS	P)	P	P	P	P	P
PUP# 5	WITHIN NORMAL LIMITS	P	1	P	P	P	P	P
3610 PUP# 3	WITHIN NORMAL LIMITS	р	,	P	P	P	P	P
PUP# 7	WITHIN NORMAL LIMITS	P)	P				
PUP# 6	WITHIN NORMAL LIMITS	P)	P	P	P	P	P
PUP# 5	WITHIN NORMAL LIMITS	P)	P				
PUP# 1	WITHIN NORMAL LIMITS	P)	P	P	P	P	P
PUP# 4	WITHIN NORMAL LIMITS	P)	P	P	P	P	P
PUP# 2	WITHIN NORMAL LIMITS	P)	P	P	P	P	P
PUP# 8	WITHIN NORMAL LIMITS	P)	P	P	P	P	P
PUP# 12	WITHIN NORMAL LIMITS	P	•	P	P	P	P	P
PUP# 11	WITHIN NORMAL LIMITS	P	•	P	P	P	P	P
PUP# 9	WITHIN NORMAL LIMITS	P	•	P	P	P	P	P
PUP# 10	WITHIN NORMAL LIMITS	P	•	P	P	P	P	P

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP III 10000 MG/M3

			DAY OF			111	1111112		
FEMALE#	OBSERVATIONS			1 2 3	4 5 6		3 4 5 6 7 8 9 0		
3611 PUP# 8	WITHIN NORMAL	LIMITS		·	P	P	P	 P	P
PUP# 3	WITHIN NORMAL	LIMITS	P	•	P	P	P	P	P
PUP# 9	WITHIN NORMAL	LIMITS	F	•	P	P	P		P
PUP# 4	WITHIN NORMAL	LIMITS	P	P	P	P	P		P
PUP# 10	WITHIN NORMAL	LIMITS	P	P	P	P	P	P	P
PUP# 2	WITHIN NORMAL	LIMITS	P	P	P	P	P	P	P
PUP# 7	WITHIN NORMAL	LIMITS	F	•	P	P	P	P	P
PUP# 5	WITHIN NORMAL	LIMITS	P	•	P	P	P	P	P
PUP# 6	WITHIN NORMAL	LIMITS	P	P	P	P	P	P	P
PUP# 1	WITHIN NORMAL	LIMITS	F	•	P	P	P	P	P
3612 PUP# 2	WITHIN NORMAL	LIMITS	P	•	P	P	P	P	P
PUP# 3	WITHIN NORMAL	LIMITS	P	,	P	P	P	P	P
PUP# 4	WITHIN NORMAL	LIMITS	P	·	P				
PUP# 11	WITHIN NORMAL	LIMITS	P	<u> </u>	P	P	P	P	P
PUP# 13	WITHIN NORMAL	LIMITS	F	?	P	P	P	P	P
PUP# 7	WITHIN NORMAL	LIMITS	P	P	P				
PUP# 5	WITHIN NORMAL	LIMITS	P	?	P	P	P	P	P
PUP# 9	WITHIN NORMAL	LIMITS	P	<u> </u>	P	P	P	P	P
PUP# 8	WITHIN NORMAL	LIMITS	P	P	P	P	P	P	P
PUP# 6	WITHIN NORMAL	LIMITS	P	P	P	P	P	P	P
PUP# 10	WITHIN NORMAL	LIMITS	P	•	P	P	P	P	P
PUP# 12	WITHIN NORMAL	LIMITS	P	P	P	P	P	P	P
3613 PUP# 6	WITHIN NORMAL	LIMITS	P	P	P				
PUP# 7	WITHIN NORMAL	LIMITS	P	•	P				
PUP# 1	WITHIN NORMAL	LIMITS	P	•	P	P	P	P	P
PUP# 3	WITHIN NORMAL	LIMITS	P	P	P	P	P	P	P
PUP# 10	WITHIN NORMAL	LIMITS	P	•	P	P	P	P	P
PUP# 14	WITHIN NORMAL	LIMITS	P	P	P	P	P	P	P
PUP# 2	WITHIN NORMAL	LIMITS	P	P	P	P	P	P	P
PUP# 12	WITHIN NORMAL	LIMITS	P	P					
PUP# 4	WITHIN NORMAL	LIMITS	P	•	P	P	P	P	P

Huntingdon Life Sciences 00-4202 PAGE 378

Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP III 10000 MG/M3

FEMALE#	OBSERVATIONS	DAY OF LACTATION	0 1 2 3	456			2 2 2 2 2 2 2 1 2 3 4 5 6 7	
								
	WITHIN NORMAL LIMITS			P	P	P	P	P
	WITHIN NORMAL LIMITS		P	P	P	P	P	P
	WITHIN NORMAL LIMITS		P	P				
	WITHIN NORMAL LIMITS		P	P	P	P	P	₽
PUP# 11	WITHIN NORMAL LIMITS		P	P	P	P	P	P
3614 PUP# 4	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 9	WITHIN NORMAL LIMITS	:	P	P	P	P	P	P
PUP# 12	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 5	WITHIN NORMAL LIMITS	:	P	P	P	P	P	P
PUP# 11	WITHIN NORMAL LIMITS	:	P	P	P	P	P	P
PUP# 6	WITHIN NORMAL LIMITS	:	P	P	P	P	P	P
PUP# 1	WITHIN NORMAL LIMITS	:	P	P				
PUP# 3	WITHIN NORMAL LIMITS	:	P	P	P	P	P	P
PUP# 14	WITHIN NORMAL LIMITS	:	P	P				
PUP# 10	WITHIN NORMAL LIMITS	:	P	P	P	P	P	P
PUP# 13	WITHIN NORMAL LIMITS	:	P	P	P	P	P	P
PUP# 8	WITHIN NORMAL LIMITS	:	P	P				
PUP# 2	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 7	WITHIN NORMAL LIMITS	:	P	P				
3615 PUP# 3	WITHIN NORMAL LIMITS	1	P	P	P	P	P	P
PUP# 9	WITHIN NORMAL LIMITS	j	P	P		_	-	-
PUP# 5	WITHIN NORMAL LIMITS	j	P	P	P	P	P	P
PUP# 7	WITHIN NORMAL LIMITS	1	P	P	P	P	P	P
PUP# 14	WITHIN NORMAL LIMITS	1	P	P			_	_
PUP# 2	WITHIN NORMAL LIMITS	1	P	P	P	P	P	P
PUP# 8	WITHIN NORMAL LIMITS		P	P			-	-
PUP# 4	WITHIN NORMAL LIMITS	;	P	P	P	P	P	P
PUP# 6	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 11	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 12	WITHIN NORMAL LIMITS		P	P	P	P	P	P
	WITHIN NORMAL LIMITS		- P	P	P	P	P	P

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP III 10000 MG/M3

MALE#		OBSERVATIONS	DAY OF LACTATION	0 1 2	2 3	4 5	6	7 8	3 9	1 1 0 1	1 2	3	1 1 1 5	6	7 ε	. 1	0 :	2 2 L 2	2 3	2 : 4	2 2	· 2
3615 PUP# :	10	WITHIN NORMAL LIMITS		P		P		P				1	?]	?				
3616 PUP# 1	12	WITHIN NORMAL LIMITS		P		P																
PUP#	8	WITHIN NORMAL LIMITS		P		P																
PUP#	6	WITHIN NORMAL LIMITS		P		P		P				3	?]	?				
PUP# 3	13	WITHIN NORMAL LIMITS		P		P																
PUP#	1	WITHIN NORMAL LIMITS		P		P		P				1	?				3	?				
PUP#	4	WITHIN NORMAL LIMITS		P		P																
PUP# 1	14	WITHIN NORMAL LIMITS		P		P																
PUP# 1	10	WITHIN NORMAL LIMITS		P		P																
PUP#	9	WITHIN NORMAL LIMITS		P		P		P]	?				3	?				
PUP#	5	WITHIN NORMAL LIMITS		P		P																
PUP# :	11	WITHIN NORMAL LIMITS		P		P		P				3	9				3	?				
PUP#	7	WITHIN NORMAL LIMITS		P		P		P				1	?				3	?				
PUP#	2	WITHIN NORMAL LIMITS		P		P		P				1	?				3	?				
PUP#	3	WITHIN NORMAL LIMITS		P		P		P]	2				1	?				
PUP# :	17	WITHIN NORMAL LIMITS		P		P																
PUP# 3	15	WITHIN NORMAL LIMITS		P		P		P				1	?				1	?				
PUP# :	18	WITHIN NORMAL LIMITS		P		P		P]	⊋				1	?				
PUP# :	16	WITHIN NORMAL LIMITS		P				P				1	⊋]	2				
PUP# :		WITHIN NORMAL LIMITS		P		Ρ																
PUP# 3	16	SCABS				P																
3617 PUP#	3	WITHIN NORMAL LIMITS		P		P		P				1	2]					
PUP# 1	13	WITHIN NORMAL LIMITS		P		P		P				1	?				1	2				
PUP# :	10	WITHIN NORMAL LIMITS		P		P		P				1	?				1	?				
PUP#	2	WITHIN NORMAL LIMITS		P		P		P]	?				1	?				
PUP#	9	WITHIN NORMAL LIMITS		P		P																
PUP#	4	WITHIN NORMAL LIMITS		P		P		P]	ج]	2				
PUP#	6	WITHIN NORMAL LIMITS		P		P																
PUP#	5	WITHIN NORMAL LIMITS		P		P		P				J	2]	2				
PUP#	1	WITHIN NORMAL LIMITS		P		P		P				1	?				1	2				
PUP# 3	12	WITHIN NORMAL LIMITS		P		P		P				1	>				1	?				

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP III 10000 MG/M3

EMALE#	OBSERVATIONS		DAY OF LACTATION 0	1 2 3	4 5 6			1 2 2 2 2 2 2 2 2 9 0 1 2 3 4 5 6	
3617 PUP# 1	1 WITHIN NORMAL L	IMITS		,	P				
PUP#	8 WITHIN NORMAL L	IMITS	P		P	P	P	P	P
PUP#	7 WITHIN NORMAL L	IMITS	P)	P	P	P	P	P
PUP# 1	4 WITHIN NORMAL L	IMITS	P)	P				
3619 PUP# 1			P	1	P				
	2 WITHIN NORMAL L		P		P	P	P	P	P
• •	8 WITHIN NORMAL L		P		P				
	9 WITHIN NORMAL L		P	•	P	P	P	P	P
PUP# 1			P		P	P	P	P	P
PUP# 1			P		P	P	P	P	P
PUP# 1			P		P	P	P	P	P
PUP# 1			p		P				
PUP# 1			P		P	P	P	P	P
PUP# 1			P		₽				
	7 WITHIN NORMAL L		p		P	P	₽	P	P
•	3 WITHIN NORMAL L		P		P	P	P	P	P
	4 WITHIN NORMAL L		P		₽	P	P	P	P
PUP# 1			P		P	P	P	P	P
	5 WITHIN NORMAL L		P		P				
	6 WITHIN NORMAL L	IMITS	P	1	P				
PUP#	1 FOUND DEAD		P	•					
	6 WITHIN NORMAL L		P	ı	P	P	P	P	P
PUP# 1			P		P	P	P	P	P
11	5 WITHIN NORMAL L		P	1	P	P	P	P	P
	1 WITHIN NORMAL L		P	1	P				
PUP# 1	2 WITHIN NORMAL L	IMITS	P	1	P	P	P	P	P
	3 WITHIN NORMAL L		P	1	P	P	P	P	P
==	8 WITHIN NORMAL L	-	P	1	P				
PUP# 1			P	1	P	P	P	P	P
"	9 WITHIN NORMAL L		P	1	P	P	P	P	P
PUP#	4 WITHIN NORMAL L	IMITS	P		P	P	P	P	P

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP III 10000 MG/M3

FEMALE#	OBSERVATIONS	DAY OF LACTATION 0	. 1 2 2	4 5 6			1 1 2 2 2 2 2 2 8 9 0 1 2 3 4	
remale#	UBSERVATIONS	LACTATION 0		456	1890.	1 2 3 4 5 6 7	8 9 0 I 2 3 4	5 6 7 8
3620 PUP# 2	WITHIN NORMAL LIMITS	P	•	P	P	P	P	P
PUP# 13	WITHIN NORMAL LIMITS	P	•	P	P	P	P	P
PUP# 7	WITHIN NORMAL LIMITS	P	P	P				
3621 PUP# 14	WITHIN NORMAL LIMITS	P	•	P	P	P	P	P
PUP# 6	WITHIN NORMAL LIMITS	P	•	P				
PUP# 8	WITHIN NORMAL LIMITS	P	>	P	P	P	P	P
PUP# 4	WITHIN NORMAL LIMITS	P	•	P				
PUP# 2	WITHIN NORMAL LIMITS	P	P	P	P	P	P	P
PUP# 10	WITHIN NORMAL LIMITS	P	•	P	P	P	P	P
PUP# 15	WITHIN NORMAL LIMITS	P	•	P	P	P	P	P
PUP# 5	WITHIN NORMAL LIMITS	P	•	P	P	P	P	P
PUP# 13	WITHIN NORMAL LIMITS	P	P	P				
PUP# 12	WITHIN NORMAL LIMITS	P	•	P	P	P	P	P
PUP# 1	WITHIN NORMAL LIMITS	P	•	P				
PUP# 9	WITHIN NORMAL LIMITS	P	•	P	P	P	P	P
PUP# 17	WITHIN NORMAL LIMITS	P	P	P				
PUP# 7	WITHIN NORMAL LIMITS	P	P	P	P	P	P	P
PUP# 16	WITHIN NORMAL LIMITS	P)	P	P	P	P	P
PUP# 3	WITHIN NORMAL LIMITS	P	•	P				
PUP# 11	WITHIN NORMAL LIMITS	P	•	P				
3622 PUP# 4	WITHIN NORMAL LIMITS	P	>	P	P	P	P	P
PUP# 9	WITHIN NORMAL LIMITS	P	•	P	P	P	P	P
PUP# 1	WITHIN NORMAL LIMITS	P	?	P	P	P	P	P
PUP# 2	WITHIN NORMAL LIMITS	P	•	P	P	P	P	P
PUP# 10	WITHIN NORMAL LIMITS	F	?	P	P	P	P	P
PUP# 8	WITHIN NORMAL LIMITS	P	•	P	P	P	P	P
PUP# 6	WITHIN NORMAL LIMITS	F	p	P	P	P	P	P
PUP# 5	WITHIN NORMAL LIMITS	F	P	P	P	P	P	P
PUP# 3	WITHIN NORMAL LIMITS	F	,	P	P	P	P	P
PUP# 7	WITHIN NORMAL LIMITS	F	1	P	P	P	P	P

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP III 10000 MG/M3

		DAY OF			1 1 1 1	1 1 1 1 1 1 2	2 2 2 2 2 2 2 2 2
FEMALE#	OBSERVATIONS		1 2 3	4 5 6		4 5 6 7 8 9 0	
3623 PUP# 4	WITHIN NORMAL LIMITS	P	,	P	P	P	P P
PUP# 2	WITHIN NORMAL LIMITS	P	•	P	P	P	P P
PUP# 7	WITHIN NORMAL LIMITS	P)	P	P	P	P P
PUP# 3	WITHIN NORMAL LIMITS	P	•	P	P	P	P P
PUP# 9	WITHIN NORMAL LIMITS	P	•	P	P	P	P P
PUP# 6	WITHIN NORMAL LIMITS	P	•	P	P	P	P P
PUP# 8	WITHIN NORMAL LIMITS	P	•	P	P	P	P P
PUP# 1	WITHIN NORMAL LIMITS	P	•	P	P	P	P P
PUP# 5	WITHIN NORMAL LIMITS	p	•	P	P	P	P P
3624 PUP# 1	WITHIN NORMAL LIMITS	P	•	P	P	P	P P
PUP# 3	WITHIN NORMAL LIMITS	P	•	P	P	P	P P
PUP# 4	WITHIN NORMAL LIMITS	P)	P	P	P	P P
PUP# 9	WITHIN NORMAL LIMITS	P)	P	P	P	P P
PUP# 11	WITHIN NORMAL LIMITS	P)	P			
PUP# 13	WITHIN NORMAL LIMITS	P)	P			
PUP# 10	WITHIN NORMAL LIMITS	P)	P	P	P	P P
PUP# 7	WITHIN NORMAL LIMITS	P)	P			
PUP# 2	WITHIN NORMAL LIMITS	P)	P	P	P	P P
PUP# 6	WITHIN NORMAL LIMITS	P)	P	P	P	P P
PUP# 5	WITHIN NORMAL LIMITS	P)	P	P	P	P P
PUP# 12	WITHIN NORMAL LIMITS	P)	P	P	P	P P
PUP# 8	WITHIN NORMAL LIMITS	P)	P	P	P	P P
3625 PUP# 6	WITHIN NORMAL LIMITS	P	,	P	P	P	P P
PUP# 1	WITHIN NORMAL LIMITS	P)	P	P	P	P P
PUP# 7	WITHIN NORMAL LIMITS	P)	P	P	P	P P
PUP# 4	WITHIN NORMAL LIMITS	P	,	P	P	P	P P
PUP# 3	WITHIN NORMAL LIMITS	P)	P	P	P	P P
PUP# 2	WITHIN NORMAL LIMITS	P)	P	P	P	P P
PUP# 8	WITHIN NORMAL LIMITS	P)	P	P	P	P P
PUP# 5	WITHIN NORMAL LIMITS	P	•				

Huntingdon Life Sciences 00-4202 PAGE 383

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP III 10000 MG/M3

FEMALE#		DAY OF LACTATION 0	123	456			2 2 2 2 2 2 2 1 2 3 4 5 6 7	_
3626 PUP# 2	WITHIN NORMAL LIMITS	P		P	P	P	P	P
PUP# 6	WITHIN NORMAL LIMITS	P		P	P	P	P	P
PUP# 5	WITHIN NORMAL LIMITS	P		₽	P	P	P	Ρ
PUP# 10	WITHIN NORMAL LIMITS	P		P	P	P	P	P
PUP# 8	WITHIN NORMAL LIMITS	P		P	P	P	P	Ρ
PUP# 9	WITHIN NORMAL LIMITS	P		₽	P	P	P	Ρ
PUP# 4	WITHIN NORMAL LIMITS	P		P	P	P	P	P
PUP# 3	WITHIN NORMAL LIMITS	P		P	P	P	P	Ρ
PUP# 1	WITHIN NORMAL LIMITS	P		P	P	P	P	Ρ
PUP# 7	WITHIN NORMAL LIMITS	P		P	P	P	P	P

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP IV 20000 MG/M3

FEMALE#	OBSERVATIONS	DAY OF LACTATION (1 2 3	4 5 6		1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8		
4601 PUP# 6	WITHIN NORMAL LIMITS	I		P	P	P	P	P
PUP# 2	WITHIN NORMAL LIMITS	I		P	P	P	P	P
PUP# 5	WITHIN NORMAL LIMITS	I)	P	P	P	P	P
PUP# 3	WITHIN NORMAL LIMITS	I)	P	P	P	P	P
PUP# 4	WITHIN NORMAL LIMITS	I	•	P	P	P	P	P
PUP# 1	FOUND DEAD	I	•					
4603 PUP# 1	WITHIN NORMAL LIMITS	I		P	P	P	P	P
PUP# 3	WITHIN NORMAL LIMITS	I	•	P	P	P	P	P
PUP# 15	WITHIN NORMAL LIMITS	I)	P	P	P	P	P
PUP# 5	WITHIN NORMAL LIMITS	I)	P				
PUP# 12	WITHIN NORMAL LIMITS	I)	P	P	P	P	P
PUP# 14	WITHIN NORMAL LIMITS	I.)	P	P	P	P	P
PUP# 7	WITHIN NORMAL LIMITS	I		P	P	P	P	P
PUP# 9	WITHIN NORMAL LIMITS	I)					
PUP# 6	WITHIN NORMAL LIMITS	I)	P				
PUP# 4	WITHIN NORMAL LIMITS	I	•	P				
PUP# 13	WITHIN NORMAL LIMITS	I)	P	P	P	P	P
PUP# 10	WITHIN NORMAL LIMITS	I	•	P	P	P	P	P
PUP# 8	WITHIN NORMAL LIMITS	I)	P				
PUP# 11	WITHIN NORMAL LIMITS	I)	P	P	P	P	P
PUP# 2	WITHIN NORMAL LIMITS	I	•	P	P	P	P	P
4604 PUP# 8	WITHIN NORMAL LIMITS	I	•	P	P	P	P	P
PUP# 10	WITHIN NORMAL LIMITS	I)	P	P	P	P	P
PUP# 7	WITHIN NORMAL LIMITS	I)	P				
PUP# 16	WITHIN NORMAL LIMITS	I)					
PUP# 11	WITHIN NORMAL LIMITS	Ĩ)	P	P	P	P	P
PUP# 1	WITHIN NORMAL LIMITS	I)	P	P	P	P	P
PUP# 2	WITHIN NORMAL LIMITS	I)	P				
PUP# 15	WITHIN NORMAL LIMITS	I		P	P	P	P	P
PUP# 3	WITHIN NORMAL LIMITS	F)	P	P	P	P	P
PUP# 4	WITHIN NORMAL LIMITS	I)	P	P	P	P	P

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP IV 20000 MG/M3

EMALE#	OBSERVATIONS	DAY OF LACTATION	o :	1 2 3	4 5 6			1 1 1 2 2 2 2 2 2 7 8 9 0 1 2 3 4	
4604 PUP# 6	WITHIN NORMAL LIN		P		P				
PUP# 13	WITHIN NORMAL LIN	ITS	P		P	P	P	P	P
PUP# 14	WITHIN NORMAL LIN	ITS	P		P	P	P	P	P
PUP# 9	WITHIN NORMAL LIN	ITS	P		P				
PUP# 12	WITHIN NORMAL LIN	ITS	P		P				
PUP# 5	WITHIN NORMAL LIN	ITS	P		P	P	P	P	P
4605 PUP# 6			P		P				
PUP# 19		-	P		P	P	P	P	P
PUP# 8			P		P	P	P	P	P
PUP# 4			P		P	P	P	P	P
PUP# 12	WITHIN NORMAL LIN	ITS	P		P	P	P	P	P
PUP# 14			P		P	P	P	P	P
PUP# 2	WITHIN NORMAL LIN	ITS	P						
PUP# 11		ITS	P		P				
PUP# 13			P		P	P	P	P	P
PUP# 17	WITHIN NORMAL LIN	ITS	P		P				
PUP# 5	WITHIN NORMAL LIN	ITS	P		P	P	P	P	P
PUP# 16	WITHIN NORMAL LI	ITS	P		P				
PUP# 18	WITHIN NORMAL LIP	ITS	P		P				
PUP# 10	WITHIN NORMAL LIN	ITS	P		P	P	P	P	P
PUP# 9	WITHIN NORMAL LIN	ITS	P		P				
PUP# 7	WITHIN NORMAL LIN	ITS	P		P				
PUP# 3	WITHIN NORMAL LIN	ITS	P		P	P	P	P	P
PUP# 1	WITHIN NORMAL LIN	ITS	P		P	P	P	P	P
4606 PUP# 8	WITHIN NORMAL LIN	ITS	P		P	P	P	Р	P
PUP# 4	WITHIN NORMAL LIN	ITS	P		P				
PUP# 12	WITHIN NORMAL LIN	ITS	P		P				
PUP# 11	WITHIN NORMAL LIN	ITS	P		P	P	P	P	P
PUP# 5	WITHIN NORMAL LIN	ITS	P		P	P	P	P	P
PUP# 10	WITHIN NORMAL LIM	ITS	P		P	P	P	P	P
PUP# 7	WITHIN NORMAL LIN	ITS	P		P	P	P	P	P

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP IV 20000 MG/M3

					· • • • • • • • • • • • • • • • • • • •			
		DAY OF					2 2 2 2 2 2 2	2
FEMALE#	OBSERVATIONS	LACTATION 0	1 2 3	4 5 6	7 8 9 0 1 2 3	4 5 6 7 8 9 0	1 2 3 4 5 6 7	8
4606 PUP# 14	WITHIN NORMAL LIMITS	p	· ›	P	P	P	P	 P
PUP# 3		P		P	-	_	•	-
PUP# 13		- P		P				
PUP# 6		- P		P	P	P	P	P
PUP# 1	WITHIN NORMAL LIMITS	P		P	P	P		P
PUP# 2		- P		P	P	P		P
PUP# 9		P		P	P	P		P
							-	-
4607 PUP# 2	WITHIN NORMAL LIMITS	P)	P	P	P	P	P
PUP# 6	WITHIN NORMAL LIMITS	P)	P	P	P		P
PUP# 5	WITHIN NORMAL LIMITS	P	•	P	P	P		P
PUP# 1	WITHIN NORMAL LIMITS	P)	P	P	P		P
PUP# 3	WITHIN NORMAL LIMITS	P	•	P	P	P		P
PUP# 4	WITHIN NORMAL LIMITS	P		P	P	P	P	Р
PUP# 7	WITHIN NORMAL LIMITS	P		P	P	P		P
4608 PUP# 11	WITHIN NORMAL LIMITS	P	•	P	P	P	P	P
PUP# 13	WITHIN NORMAL LIMITS	P	•	P	P	P	P	Ρ
PUP# 4	WITHIN NORMAL LIMITS	P	•	P	P	P	P	Р
PUP# 14	WITHIN NORMAL LIMITS	P		P	P	P	P	P
PUP# 7	WITHIN NORMAL LIMITS	P	•	P				
PUP# 3	WITHIN NORMAL LIMITS	P		P	P	P	P	P
PUP# 5	WITHIN NORMAL LIMITS	P	•	P	P	P	P	Ρ
PUP# 12	WITHIN NORMAL LIMITS	P	•	P				
PUP# 15	WITHIN NORMAL LIMITS	P		P	P	P	P	P
PUP# 2		P	•	P	P	P	P	P
PUP# 9		P)	P	P	P	P	Ρ
PUP# 8	_	P)	P				
PUP# 10		P		P				
PUP# 6	··	P		P	P	P	P	P
PUP# 1	FOUND DEAD	P						

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP IV 20000 MG/M3

ALE#		OBSERVATIONS		DAY OF LACTATION	0	1 2	3 4	5 6	7 8 9				2 2 2 2 2 1 2 3 4 5	
4610 PUP#	16	WITHIN NORMAL	LIMITS		P		P		P	 	 P	 	P	
PUP# 1	11	WITHIN NORMAL	LIMITS		P		P		P]	P		P	I
PUP#	3	WITHIN NORMAL	LIMITS		P		P		P	1	P		₽	I
PUP# 1		WITHIN NORMAL			P		P		P]	P		P	1
PUP#		WITHIN NORMAL			P		P		P	1	₽		P	1
PUP#		WITHIN NORMAL			P		P							
PUP#		WITHIN NORMAL			P		P		P]	₽		P	3
PUP#		WITHIN NORMAL			P		₽							
PUP#		WITHIN NORMAL			P		P		P	1	P		P	1
PUP#		WITHIN NORMAL			P		P							
PUP# 1		WITHIN NORMAL			P		P		P		P		P	:
PUP#		WITHIN NORMAL			P		P		P]	₽		P	:
PUP# 1		WITHIN NORMAL			P		P							
PUP# :		WITHIN NORMAL			P		P		P]	P		P	:
PUP# 1		WITHIN NORMAL			P		P							
PUP#	6	WITHIN NORMAL	LIMITS		P		P							
4611 PUP#		WITHIN NORMAL			P		P		P	1	P		P	
PUP#		WITHIN NORMAL			P		P							
PUP#		WITHIN NORMAL			P		P		P]	P		P	:
PUP# 1		WITHIN NORMAL			P		P							
PUP#		WITHIN NORMAL			P		P		P		P		P	:
PUP# 1		WITHIN NORMAL			Ρ		P		P		P		P	
PUP#		WITHIN NORMAL			P		P		P	1	P		P	
PUP#		WITHIN NORMAL			P		P		P					
PUP#		WITHIN NORMAL			P		P		P		P		P	
PUP# :		WITHIN NORMAL			P		P		P		P		P	
PUP#		WITHIN NORMAL			P		P		P	1	P		P	
PUP# 1		WITHIN NORMAL			P		P							
PUP#		WITHIN NORMAL			P		P		P		P		P	
PUP#		EYE(S) - APPEA									P		P	1
PUP#	2	ENOPHTHALMOS -	UNILATERAL							1	P			

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP IV 20000 MG/M3

MALE#		OBSERVATIONS		DAY OF LACTATION	0	1 2	3 4	5 6	7 8				 		_	 _	2 2 6 7	_
4612 PUP# :	16	WITHIN NORMAL	LIMITS		P		P		P	 	E		 	P	,	 		P
PUP# :	12	WITHIN NORMAL	LIMITS		P		P		P		E	•		F	•			P
PUP#	6	WITHIN NORMAL	LIMITS		P		P											
PUP#		WITHIN NORMAL			P		P		P		E			P	•			E
PUP#		WITHIN NORMAL			P		P		Ρ		Ε			F)			E
PUP# :		WITHIN NORMAL			P		P		P		E	•		P)			E
PUP#		WITHIN NORMAL			P		P											
PUP# :		WITHIN NORMAL			P		P											
PUP# :		WITHIN NORMAL			P		P		P		E	•		E)			F
PUP#		WITHIN NORMAL			P		Ρ		Ρ		E	?		F)			I
PUP#	4	WITHIN NORMAL	LIMITS		P		P		P		I	•		F)			I
PUP# :		WITHIN NORMAL			P		P											
PUP# :		WITHIN NORMAL			P		Ρ											
PUP#	7	WITHIN NORMAL	LIMITS		P		P											
PUP#	8	WITHIN NORMAL	LIMITS		P		P		P		I	•		P	•			
PUP#	5	WITHIN NORMAL	LIMITS		P		P		P		E	•		F	•			1
4613 PUP#		WITHIN NORMAL			P		P		P		Ε	•		P	,			
PUP#		WITHIN NORMAL			P		P											
PUP# :		WITHIN NORMAL			P		P											
PUP#		WITHIN NORMAL			P		P											
PUP#		WITHIN NORMAL			P		P		P		E	•		P)			1
PUP#		WITHIN NORMAL			P		P											
PUP#		WITHIN NORMAL			P		P		Р		E	•		P)]
PUP#		WITHIN NORMAL			P		P		P		E	•		P)			1
PUP# :	10	WITHIN NORMAL	LIMITS		P		P											
PUP#	7	WITHIN NORMAL	LIMITS		P		P		₽		E	•		P	•			;
PUP#	5	WITHIN NORMAL	LIMITS		P		P											
PUP# :		WITHIN NORMAL			P		P		P		E	•		P	,			
PUP# 1	14	WITHIN NORMAL	LIMITS		P		P		P		F	•		P	,			
PUP# :	16	WITHIN NORMAL	LIMITS		P		P		P		E	•		P	•			:
PUP# 1	12	WITHIN NORMAL	LIMITS		P		P		P		E	•		F	•			I
PUP# 1	13	WITHIN NORMAL	LIMITS		P		P		P		E			P	,			Ι

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP IV 20000 MG/M3

MALE#	OBSERVATIONS		DAY OF LACTATION	0 1	2 3 4	5 6					2 2 2 2 5 6 7 8
4614 PUP#	7 WITHIN NORMAL	LIMITS		P	P			 	 		
PUP# 1	.7 WITHIN NORMAL	LIMITS		P	P		P	P		P	3
PUP# 1				P	P		P	P		P	3
PUP# 1	.2 WITHIN NORMAL	LIMITS		P							
PUP#	4 WITHIN NORMAL			P	P		P	P		P]
PUP#	9 WITHIN NORMAL			P	P						
PUP# 1	.4 WITHIN NORMAL	LIMITS		P	P		P	P		P	1
	1 WITHIN NORMAL			P	P		P	P		P	1
PUP# 1				P	P						
PUP# 1				P	P		P	P		P	I
"	6 WITHIN NORMAL			P	P						
PUP# 1				P	P						
•	3 WITHIN NORMAL			P	P		P	P		P	I
PUP#	5 WITHIN NORMAL	LIMITS		P	P		P	P		P	I
PUP# 1	.5 WITHIN NORMAL	LIMITS		P	P		P	₽		P	I
PUP#	2 WITHIN NORMAL			P	P		P	P		P	I
PUP#	8 WITHIN NORMAL	LIMITS		P	P						
4615 PUP# 1				P	P		P	P		P	I
PUP#	5 WITHIN NORMAL	LIMITS		P	P		P	P		P	I
PUP#	2 WITHIN NORMAL			P	P		P	P		P	I
PUP#	3 WITHIN NORMAL			P	P						
PUP#	4 WITHIN NORMAL	LIMITS		P	P						
PUP# 1	.0 WITHIN NORMAL	LIMITS		P	P						
PUP#	7 WITHIN NORMAL	LIMITS		P	P		P	P		P	I
PUP# 1	.7 WITHIN NORMAL	LIMITS		P	P						
PUP# 1	.4 WITHIN NORMAL	LIMITS		P	P		P	P		P	1
PUP# 1	.2 WITHIN NORMAL	LIMITS		P	P		P	P		P	1
PUP#	6 WITHIN NORMAL	LIMITS		P	P		P	P		P]
PUP# 1	3 WITHIN NORMAL	LIMITS		P	P						
PUP# 1	.1 WITHIN NORMAL	LIMITS		P	P		P	P		P]
PUP#	8 WITHIN NORMAL	LIMITS		P	P		P				
PUP# 1	.6 WITHIN NORMAL	LIMITS		P	P		P	P		P	j

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP IV 20000 MG/M3

'EMALE#		OBSERVATIONS		DAY OF LACTATION	0 1	1 2 3	3 4	5 6	7	8 9								2 2 7 8
4615 PUP#	9	WITHIN NORMAL	LIMITS		P		P										 	
PUP#	1	WITHIN NORMAL	LIMITS		P		P											
4616 PUP#	1	WITHIN NORMAL	LIMITS		P		P											
PUP# 1	12	WITHIN NORMAL	LIMITS		Ρ		P		P			Ρ			P			P
PUP#	6	WITHIN NORMAL	LIMITS		P		P		P			Ρ			P			F
PUP#	2	WITHIN NORMAL	LIMITS		P		P		P			Ρ			P			P
PUP#	7	WITHIN NORMAL	LIMITS		Ρ		P		P			P			P			P
PUP# 3	11	WITHIN NORMAL	LIMITS		P		P		P			Ρ			P			P
PUP#	5	WITHIN NORMAL	LIMITS		P		P		P			P			P			P
PUP#	9	WITHIN NORMAL	LIMITS		P		P											
PUP#	3	WITHIN NORMAL	LIMITS		P		P		P			P			P			P
PUP# :	10	WITHIN NORMAL	LIMITS		P		P		P			P			P			P
PUP#	8	WITHIN NORMAL	LIMITS		Ρ		P		P			Ρ			P			P
PUP#	4	WITHIN NORMAL	LIMITS		P		P		P			P			P			P
4618 PUP# 3	14	WITHIN NORMAL	LIMITS		P		P											
PUP#	3	WITHIN NORMAL	LIMITS		P		P		P			P			P			P
PUP#	9	WITHIN NORMAL	LIMITS		P		P		P			P			P			P
PUP# 3	10	WITHIN NORMAL	LIMITS		P		P		Ρ			P			P			F
PUP#	5	WITHIN NORMAL	LIMITS		P		P		P			P			P			P
PUP# :	13	WITHIN NORMAL	LIMITS		P		P											
PUP#	1	WITHIN NORMAL	LIMITS		P		Ρ		P			P			P			P
PUP#	8	WITHIN NORMAL	LIMITS		P		P											
PUP#	2	WITHIN NORMAL	LIMITS		P		P		P			P			P			P
PUP#	6	WITHIN NORMAL	LIMITS		P		P		P			P			P			P
PUP# 3	11	WITHIN NORMAL	LIMITS		P		P		P			P			P			P
PUP#	7	WITHIN NORMAL	LIMITS		P		P											
PUP# 1	12	WITHIN NORMAL			P		P		P			P			P			P
PUP#	4	WITHIN NORMAL	LIMITS		Ρ		P		P			Р			P			P

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP IV 20000 MG/M3

MALE#	OBSERVATIONS		DAY OF LACTATION	0	1 2	3 4	5 6	7 8	1 1 1 2						
4619 PUP#	4 WITHIN NORMAL	LIMITS		P		P		P	 	F	,	 	P	 	
PUP# 1				P											
PUP#	8 WITHIN NORMAL			P		P		P		P	•		P		
PUP#	6 WITHIN NORMAL			P		P		P		F			P		
	7 WITHIN NORMAL			P		P		P		P	•		P		
PUP#	5 WITHIN NORMAL			P		P		P		P	•		P		
PUP# 1				P		P		P		F	•		P		
PUP# 1				P		P		P		F	•		P		
PUP#	9 WITHIN NORMAL	LIMITS		P		P		Ρ		F)		P		
	1 FOUND DEAD			P											
PUP#	2 FOUND DEAD			P											
4620 PUP# 1	0 WITHIN NORMAL	LIMITS		P		P									
PUP# 1	2 WITHIN NORMAL	LIMITS		P		P		P		P	•		P		
PUP# 1	4 WITHIN NORMAL	LIMITS		P		P		P		P	•		P		
PUP#	1 WITHIN NORMAL	LIMITS		P		P									
PUP#	6 WITHIN NORMAL	LIMITS		P		P		P		P	1		P		
PUP# 1	3 WITHIN NORMAL	LIMITS		P		P		P		P	1		P		
PUP#	3 WITHIN NORMAL	LIMITS		P		P		P		P	•		P		
PUP# 1	1 WITHIN NORMAL	LIMITS		P		P		P		P	1		P		
PUP#	2 WITHIN NORMAL	LIMITS		P		P									
PUP#	5 WITHIN NORMAL	LIMITS		P		P									
PUP#	7 WITHIN NORMAL	LIMITS		P		P		P		P	1		P		
PUP#	9 WITHIN NORMAL	LIMITS		P		P		P		P	1		P		
PUP# 1	5 WITHIN NORMAL	LIMITS		P		P		P		P	,		P		
PUP#	4 WITHIN NORMAL	LIMITS		P		P									
PUP#	8 WITHIN NORMAL	LIMITS		P		P		P		P	1		P		
4621 PUP# 1	5 WITHIN NORMAL	LIMITS		P		P		P		P	,		P		
PUP#	9 WITHIN NORMAL	LIMITS		P		P									
PUP#	8 WITHIN NORMAL	LIMITS		P		P		P		P	•		P		
PUP# 1	2 WITHIN NORMAL	LIMITS		P		P		P		F	•		P		
PUP# 1	1 WITHIN NORMAL	LIMITS		P		P		P		P			P		

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP IV 20000 MG/M3

MALE#		OBSERVATIONS		DAY OF LACTATION	1 0	1	2 3	4 !	5 6	7 8	9	0 1							
4621 PUP#	10	WITHIN NORMAL	LIMITS	 	F	,		P		P			 	 Р	-	 	P	 	
PUP# :	14	WITHIN NORMAL	LIMITS		F	•		P											
PUP# :	16	WITHIN NORMAL	LIMITS		F			P		P				P			P		
PUP#	2	WITHIN NORMAL	LIMITS		F	•		P											
	3	WITHIN NORMAL			F			P		P				P			P		
PUP#	6	WITHIN NORMAL			F			P		P				P			P		
PUP#	7	WITHIN NORMAL			F	•		P		P				P			P		
PUP#	1	WITHIN NORMAL			F	•		P											
PUP#	5	WITHIN NORMAL	LIMITS		F)		P		P				P			P		
PUP# :	13	WITHIN NORMAL	LIMITS		F)		P											
PUP#	4	WITHIN NORMAL	LIMITS		F	•		P											
4622 PUP#	9	WITHIN NORMAL	LIMITS		F	•		P		P				P			P		
PUP#	2	WITHIN NORMAL	LIMITS		F	•		Ρ		P				P			P		
PUP# :	11	WITHIN NORMAL	LIMITS		F	•		P		P				P			P		
PUP# :	16	WITHIN NORMAL	LIMITS		F	•		P											
PUP# :	13	WITHIN NORMAL	LIMITS		F)		P											
PUP#	5	WITHIN NORMAL	LIMITS		F	•		Р		P				P			P		
PUP#	4	WITHIN NORMAL	LIMITS		F)		P		P				P			P		
PUP#	1	WITHIN NORMAL	LIMITS		E	•		P											
PUP#	14	WITHIN NORMAL	LIMITS		F	•		P		P				P			P		
PUP# :	15	WITHIN NORMAL	LIMITS		F)		P		P				P			P		
PUP#	6	WITHIN NORMAL	LIMITS		F	•		P		P				P			P		
PUP# :	12	WITHIN NORMAL	LIMITS		F	•		P											
PUP#	3	WITHIN NORMAL	LIMITS		E	•		P		P				P			P		
PUP#	7	WITHIN NORMAL	LIMITS		E	•		P											
PUP#	8	WITHIN NORMAL	LIMITS		E	•		P											
PUP# :	10	WITHIN NORMAL	LIMITS		F	•		P		P				P			P		
4623 PUP#	3	WITHIN NORMAL	LIMITS		F	•													
PUP#	5	WITHIN NORMAL	LIMITS		I	•		P		P				P			P		
PUP#	1	WITHIN NORMAL	LIMITS		E	•		P		P				P			Ρ		
PUP#	4	WITHIN NORMAL	LIMITS		E			P		P				P			P		

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP IV 20000 MG/M3

FEMALE#	OBSERVATIONS	DAY OF LACTATION	0 1 2 3	4 5 6		1 1 1 1 1 1 2 4 5 6 7 8 9 0	2 2 2 2 2 2 2 1 2 3 4 5 6 7	 2 8
							·	
4623 PUP# 2	WITHIN NORMAL LIMITS		P	P	P	P		Р
PUP# 14	WITHIN NORMAL LIMITS		P	P	P	P		P
PUP# 6	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 8	WITHIN NORMAL LIMITS		P	P				
PUP# 9	WITHIN NORMAL LIMITS		P	₽				
PUP# 11	WITHIN NORMAL LIMITS		P	P	_	_	_	_
PUP# 7	WITHIN NORMAL LIMITS		P	P	P	P		P
PUP# 15	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 10	WITHIN NORMAL LIMITS		P	P	_	_	_	
PUP# 13	WITHIN NORMAL LIMITS		P	P	P	P		P
PUP# 12	WITHIN NORMAL LIMITS		P	P	P	P	P	P
4624 PUP# 10	WITHIN NORMAL LIMITS		P	P				
PUP# 1	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 3	WITHIN NORMAL LIMITS		t D	P	£	r	F	-
PUP# 8	WITHIN NORMAL LIMITS		T D	P				
PUP# 16	WITHIN NORMAL LIMITS		P	P				
PUP# 4	WITHIN NORMAL LIMITS		P	P				
PUP# 2	WITHIN NORMAL LIMITS		- P	P				
PUP# 12	WITHIN NORMAL LIMITS		- P	P	P	P	P	P
PUP# 5	WITHIN NORMAL LIMITS		- P	P	P	P		P
PUP# 11	WITHIN NORMAL LIMITS		- P	P	P	P		P
PUP# 14	WITHIN NORMAL LIMITS		- P	P	P	P		P
PUP# 15	WITHIN NORMAL LIMITS		P	P	P	P		P
PUP# 7	WITHIN NORMAL LIMITS		P	P	P	P		P
PUP# 13	WITHIN NORMAL LIMITS		- P	P	P	P		P
PUP# 17	WITHIN NORMAL LIMITS		P	P		_	_	-
PUP# 6	WITHIN NORMAL LIMITS		P	P	P	P	P	P
PUP# 9	WITHIN NORMAL LIMITS		P	P	P	P		P

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX T

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP CLINICAL OBSERVATIONS DURING LACTATION

GROUP IV 20000 MG/M3

				DAY OF								1 1												2 2
FEMALE#		OBSERVATIONS		LACTATION	0	1 2	3 4	1 5 6	7	8 9	0 :	12	3	4 5	6	7 8	39	0	1 2	2 3	4	5	6 1	7 8
4625 PUP# 3	}	WITHIN NORMAL	LIMITS		P		I	•	P					P					P					P
PUP# 2	2	WITHIN NORMAL	LIMITS		P		I	•	P					P					Ρ					P
PUP# 4	Ŀ	WITHIN NORMAL	LIMITS		P		Ι	•	P					P					Р					Ρ
PUP# 7	7	WITHIN NORMAL	LIMITS		P		Į	?	P					P					P					P
PUP# 5	5	WITHIN NORMAL	LIMITS		P		I	?	P					P					Ρ					P
PUP# 6	5	WITHIN NORMAL	LIMITS		P		I	?	P					P					P					P
PUP# 8	3	WITHIN NORMAL	LIMITS		P		I	?	P					P					P					P
4626 PUP# 4	Ŀ	WITHIN NORMAL	LIMITS		P		I	,	Р					P					P					P
PUP# 2	2	WITHIN NORMAL	LIMITS		P		I	>	Р					P					P					P
PUP# 3		WITHIN NORMAL			P		1	>																
PUP# 7	,	WITHIN NORMAL	LIMITS		P		I	>	P					P					Р					Р
PUP# 14	Ŀ	WITHIN NORMAL	LIMITS		Ρ		I	>	Ρ					P					P					P
PUP# 8	}	WITHIN NORMAL	LIMITS		P		I	•																
PUP# 13	3	WITHIN NORMAL	LIMITS		Ρ		Ι	?																
PUP# 12	2	WITHIN NORMAL	LIMITS		P		I	?	P					P					Р					P
PUP# 5	5	WITHIN NORMAL	LIMITS		Ρ		I	?	P					Ρ					P					P
PUP# 9)	WITHIN NORMAL	LIMITS		Ρ		I	?																
PUP# 17	7	WITHIN NORMAL	LIMITS		P		I	?	Ρ					P					P					P
PUP# 15	5	WITHIN NORMAL	LIMITS		₽		Į	?	Ρ					Ρ					P					P
PUP# 11	_	WITHIN NORMAL	LIMITS		P		I	?	P					P					P					P
PUP# 16	5	WITHIN NORMAL	LIMITS		P		I	?																
PUP# 6	5	WITHIN NORMAL	LIMITS		P		I	?	P					P					P					P
PUP# 10)	WITHIN NORMAL	LIMITS		Р		I	?																
PUP# 1	L	WITHIN NORMAL	LIMITS		P		I	?																

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX U

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP BODY WEIGHTS (GRAMS)

ROUP I	0 MG	•						DOAL P			,						LACT.	ATION I	DAY 1	
FEMALE#	MEAN		PUP#																	
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1601	7.1	7.8	7.2	7.7	7.1	8.2	7.4	7.7	6.9	7.3	7.1	6.4	6.7	7.1	6.7	7.4	6.4	6.6	7.0	
1602	8.1	8.6	8.5	7.9	8.7	8.2	7.6	8.2	8.8	M	7.1	7.6	8.0	8.2						
1603	8.5	9.0	8.7	9.1	8.8	8.1	8.7	9.5	8.5	8.9	7.6	7.5	7.7	8.0						
1604	7.2	8.1	7.4	7.3	6.8	7.0	7.0	7.5	6.7	7.6	7.8	7.4	7.1	7.5	7.4	5.3	6.7			
1605	7.3	7.6	7.5	7.1	7.4	7.4	7.7	7.4	6.1	7.3	8.5	7.1	7.4	7.0	6.6	7.2				
1606	FOUND DE	AD																		
1607	7.0	7.3	7.4	8.1	7.6	7.1	6.5	6.7	6.7	6.7	6.5	7.3	6.6	7.2	6.6	6.2	6.9			
1608	7.7	7.4	8.1	10.8	7.4	8.1	8.0	7.7	7.1	7.4	7.2	7.1	7.8	7.9	7.0	7.1				
1609	NOT PREG	NANT																		
1610	7.2	8.1	8.2	7.5	6.8	6.5	7.2	7.1	7.2	7.2	7.0	7.2	7.1	6.9	7.1					
1611	6.9	S	6.9																	
1612	6.8	5.8	7.0	7.0	7.3	7.6	6.7	7.0	6.1	6.8	7.0	6.1	6.8	7.0						
1613	6.9	6.9	6.9	6.3	7.7	7.3	7.0	6.3	7.2	6.9	6.5	7.4	6.4	7.2	6.5	6.2	6.8	7.6	6.5	M
1614	6.7	6.5	6.7	6.6	6.6	6.2	6.2	7.1	7.0	6.5	8.1	6.9	6.8	6.4	6.4	6.2	6.4	7.2		
1615	7.2	7.2	7.7	7.0	7.5	7.6	7.1	7.5	6.3	7.2	7.7	6.8	6.8							
1616	8.0	8.6	7.9	8.1	8.9	7.8	7.7	7.8	7.5	7.6	7.7	7.6	8.4	8.0						
1617	6.8	7.8	6.8	7.1	6.5	7.6	6.7	3.5	6.9	6.8	7.6	7.3	7.7	6.0	7.4	5.9				
1618	6.8	6.8	7.2	7.4	7.1	7.5	7.1	5.3	7.2	6.1	6.6	6.2	6.8	6.8	6.7					
1619	7.2	8.0	7.5	7.4	7.7	7.3	6.7	7.2	5.7	6.8	7.5	6.7	7.3	7.1	7.2					
1620	6.7	7.0	7.4	6.2	6.2	7.0	6.8	6.9	6.7	6.2	6.8	7.3	6.4	6.6	6.7	6.7	6.8			
1621	6.6	7.2	6.4	6.8	5.4	7.5	6.4	7.6	7.0	7.0	7.1	6.2	6.4	6.8	7.3	4.9	6.1	6.6		
1622	7.3	7.5	7.4	8.0	7.3	7.6	M	7.4	7.0	6.9	6.8	7.1	6.9							
1623	8.2	8.5	8.8	8.5	4.6	9.4	8.2	7.9	8.2	8.5	8.6	8.5								
1624	7.2	7.7	7.6	7.6	7.5	7.2	7.3	6.8	7.1	7.4	6.9	7.7	6.6	7.1	6.2					
1625	NOT PREG	NANT																		
1626	7.3	8.0	6.9	7.6	7.0	7.1	7.0	7.3	7.5	7.4	7.6	6.8	7.6	7.1						

MEAN 7.2 S.D. 0.52 N 23

PUP STATUS CODES: S-STILLBORN M-MISSING

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX U

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP BODY WEIGHTS (GRAMS)

GROUP II	2000	MG/M3					INDIVI	JOAL I	JP BOD	· WBIO		di io,					LACT	ATION 1	DAY 1	
FEMALE#	MEAN	1	PUP# 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
2601	7.9	7.9	7.2	8.1	8.6	7.9	8.1	8.1	7.9	7.6	7.2	-						- -		
2602	7.4	7.5	7.4	Z	8.5	7.5	7.2	6.9	7.9	7.9	7.3	7.3	7.4	7.4	6.6	6.5				
2603	7.2	7.3	7.2	6.9	6.6	7.4	9.6	7.0	7.0	6.7	6.9	6.9	7.2	7.5	6.9	6.9				
2604	6.5	7.1	6.6	6.9	7.3	6.5	7.3	6.9	7.4	6.7	6.8	5.3	7.2	4.8	6.3	6.7	4.5	6.5		
2605	7.3	7.7	7.7	7.5	7.6	7.5	7.3	6.9	7.1	7.4	7.5	7.1	7.4	6.4						
2606	6.8	6.9	7.3	7.3	6.9	7.1	6.6	7.0	5.9	7.0	6.4	6.4	6.7	6.3	6.7					
2607	7.5	8.6	7.7	7.5	7.5	7.6	8.3	7.2	7.6	7.4	7.5	7.3	8.0	7.0	7.5	7.2	6.5			
2608	7.3	7.7	7.9	7.5	7.5	7.6	7.5	7.8	7.4	7.2	6.8	6.7	7.0	6.9	7.0	7.2	7.4			
	NOT PREC																			
2610	6.1	6.7	6.8	6.0	6.1	5.9	6.0	5.5	6.3	5.9	6.1	6.2	6.1	6.2	5.7					
2611	7.3	7.6	7.7	7.7	7.7	7.3	7.8	7.3	6.5	7.3	7.2	6.8	7.0							
2612	7.5	8.0	7.5	7.7	8.2	7.6	6.5	7.5	8.1	7.8	7.4	7.0	7.0	6.7						
2613	7.3	7.5	8.5	6.3	7.6	6.9	8.0	6.7	7.2	7.3	6.5	7.4	7.1	7.9	7.4	7.1				
2614	7.1	7.5	7.3	7.2	6.9	7.6	7.4	6.8	7.0	7.2	7.1	7.0	7.0	6.5	6.5					
2615	7.2	7.8	7.6	7.2	7.8	7.5	7.4	7.7	6.6	6.8	6.7	6.8	7.0	7.1	6.7					
2616	6.5	6.9	6.6	6.6	6.6	6.8	6.1	5.7	7.2	6.4	6.0	6.4	6.7	6.6	6.6	6.2				
2617	6.4	S	7.3	6.7	7.1	6.7	6.7	5.6	6.0	6.2	6.8	6.0	5.5	6.0	6.5	6.8	6.2			
2618	6.8	6.9	6.8	6.8	7.2	6.6	6.8	6.9	7.2	6.5	6.8	6.6	6.4	6.6	6.8					
2619	7.3	7.8	7.6	7.8	5.6	7.0	7.5	7.4	8.1	7.8	7.3	8.0	7.5	7.3	6.9	6.7	7.5	6.8		
2620	7.3	7.4	7.4	7.6	7.1	7.2	6.9	7.0	7.6	7.4	7.5									
2621	6.9	7.2	7.2	7.2	6.8	6.6	7.6	7.3	6.8	6.5	7.4	6.2	6.5	6.6						
2622	7.8	7.8	7.7	8.4	7.8	8.2	8.1	7.5	7.6	7.4	7.8	7.2	8.0	7.3						
2623	6.8	7.0	6.3	7.0	7.2	7.1	6.3	8.1	6.9	6.9	6.3	6.2	6.8	6.4	6.3	7.0				
2624	6.8	7.0	7.2	6.7	6.8	6.6	7.0	7.0	6.9	6.1	6.9	6.9	7.0	6.7	5.7	7.0	6.2	7.2	6.7	
2625	6.7	6.6	5.9	7.8	7.3	6.7	7.3	7.8	6.7	7.3	5.8	5.9	D	7.1	6.5	6.1	7.2	6.6	5.7	\mathbf{z}
2626	7.8	8.3	8.0	8.0	7.8	8.0	7.4	8.0	7.4	7.7	7.6	D	7.4	7.8						
MEAN	7.1																			

MEAN 7.1 S.D. 0.45 N 25

PUP STATUS CODES: S-STILLBORN D-DIED Z-CANNIBALIZED

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX U

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP BODY WEIGHTS (GRAMS)

ROUP III	1000	0 MG/M	3 - 							I WEIG					.		LACT	ATION	DAY 1	
FEMALE#	MEAN	1	PUP#	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
							-								-					
3601	7.2	6.6	6.8	7.9	7.7	7.3	7.0	6.8	7.4	6.9	8.1	6.9	6.9	7.3	6.5					
3602	7.5	7.5	8.2	6.8	7.2	7.8	7.9	8.1	7.9	7.5	6.4	6.7	7.4	7.6						
3603	6.9	D	6.8	6.9	7.6	6.8	6.9	7.4	6.8	7.0	6.9	5.7	6.8	6.5	7.0	6.9				
3604	6.6	7.0	6.8	6.6	7.2	6.6	7.1	6.8	6.4	6.9	6.6	6.1	6.0	6.6	6.2					
3605 1	NOT PREG	NANT																		
3606	6.5	7.3	6.9	6.7	6.4	6.8	6.2	6.5	6.8	6.2	6.5	5.9	6.7	5.6						
3607	7.2	7.5	7.5	6.2	7.8	8.7	6.8	6.9	6.8	7.5	6.1	7.2	7.3	7.1	7.3					
3608	5.8	s	6.0	5.5	5.5	5.9	6.3	6.0	6.2	6.0	6.0	5.7	6.1	5.6	6.2	6.1	5.7	5.6	5.5	5
3609	8.5	8.5	8.1	8.3	9.6	8.4	8.6	8.3	8.5	7.9										
3610	7.5	6.8	7.7	8.0	7.7	8.3	7.9	7.5	7.4	7.0	6.6	7.9	7.5							
3611	7.6	7.6	8.3	7.7	8.6	7.4	7.8	7.4	7.2	7.5	6.8									
3612	8.0	s	7.6	7.9	7.5	8.9	8.2	9.3	8.3	8.0	7.3	7.8	7.4	7.6						
3613	5.8	6.2	5.7	5.9	6.2	6.5	5.5	5.9	5.9	5.8	5.3	5.9	4.8	5.6	6.0					
3614	7.5	7.2	7.3	7.6	8.6	7.9	7.9	7.7	7.4	7.1	7.7	6.9	7.3	7.3	7.4					
3615	5.8	D	6.7	5.3	6.1	6.7	6.0	4.5	5.5	5.7	5.7	6.1	5.8	6.1	5.3					
3616	6.5	7.3	6.5	6.4	7.5	6.3	7.0	7.1	6.6	5.6	6.4	6.9	6.2	6.3	6.6	5.9	6.4	6.5	6.2	6
3617	6.2	6.7	6.4	6.5	5.0	6.4	6.4	6.1	6.0	6.3	6.2	6.4	6.5	6.2	6.0					
3618	NOT PREG	NANT																		
3619	7.2	Ð	7.2	8.0	7.2	7.9	6.7	6.1	7.2	7.9	7.1	7.0	7.5	6.7	6.7	7.2	7.6	7.4	S	
3620	7.8	8.1	7.4	8.2	7.8	9.0	8.3	8.5	7.3	7.8	7.4	7.7	7.0	6.8						
3621	6.9	7.8	7.1	7.3	7.4	6.6	6.8	6.5	6.9	7.1	7.1	6.9	6.0	7.0	6.1	6.5	6.5	7.0		
3622	7.9	7.9	8.3	8.5	8.2	7.8	7.9	7.8	7.3	7.4	7.8						•			
3623	8.5	9.3	9.1	8.3	7.2	9.0	9.1	7.4	8.3	9.1										
3624	7.2	7.8	7.4	7.0	7.1	7.2	7.3	6.6	6.9	6.8	7.3	7.4	7.3	7.5						
3625	7.9	7.6	8.2	8.7	7.5	8.1	7.7	8.3	7.4											
3626	7.1	7.3	7.2	7.0	7.4	7.0	7.1	6.6	7.2	7.2	7.0									

MEAN 7.2 S.D. 0.78 N 24

PUP STATUS CODES: S-STILLBORN D-DIED

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX U

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP BODY WEIGHTS (GRAMS)

ROUP IV	200	00 MG/M	13														LACT.	ATION	DAY 1	
FEMALE#	MEAN	1	PUP#	3	4	5	6	- -	8	9	10	11	12	13	14	15	16	17	18	19
						-														
4601	7.8	D	7.7	8.2	8.0	7.4	7.9													
	ACCIDEN:			T PG																
4603	7.1	7.3	7.3	7.7	7.1	7.8	7.7	7.1	6.7	M	5.9	6.7	7.0	6.4	6.9	7.2				
4604	5.9	6.3	6.0	5.8	6.2	6.6	6.5	6.3	6.3	5.8	5.7	6.1	6.3	4.6	6.2	6.0	4.2			
4605	6.4	7.1	6.0	6.9	7.0	6.7	6.4	6.3	6.2	6.1	6.0	6.4	6.5	5.9	5.9	7.1	6.4	6.5	6.1	
4606	7.4	7.9	7.3	7.6	7.1	7.5	7.1	8.2	7.6	7.0	7.1	6.3	7.3	7.9	7.9					
4607	9.9	10.2	10.4	9.7	10.0	9.1	9.8	9.8												
4608	7.3	D	7.9	6.8	6.5	7.1	7.8	7.5	7.3	7.6	7.5	6.9	5.9	7.6	7.7	7.7				
4609	NOT PREC	SNANT																		
4610	7.1	6.9	7.5	7.0	6.9	7.7	6.7	7.2	6.9	7.3	6.8	7.3	6.7	6.6	7.3	7.2	6.8			
4611	7.6	6.8	8.0	7.7	7.9	7.6	7.5	7.7	7.2	8.0	7.6	7.4	8.1	7.7						
4612	6.2	6.4	6.6	6.0	6.7	6.3	5.4	6.5	6.6	5.3	6.2	6.5	6.0	6.3	5.8	6.4	6.3			
4613	5.0	5.4	4.9	5.0	5.8	5.0	4.8	4.4	4.8	4.9	5.2	4.9	5.0	5.1	4.8	4.7	4.9			
4614	7.0	7.6	7.2	7.2	7.6	7.6	7.2	7.0	7.4	6.9	8.1	6.6	4.2	6.4	6.7	6.9	6.8	7.0		
4615	5.6	5.0	6.2	5.7	6.1	6.3	5.9	6.1	5.4	6.0	5.9	5.7	4.9	5.6	4.9	4.9	5.2	5.6		
4616	7.1	7.9	7.0	7.4	7.1	7.7	7.5	6.5	6.8	6.9	7.0	6.4	6.5							
4617	NOT PREC	TNANE																		
4618	6.8	7.3	7.5	6.9	7.5	7.1	6.6	7.1	6.7	6.5	6.8	5.9	6.5	6.7	6.7					
4619	6.1	D	D	5.7	7.1	6.0	6.5	6.5	6.6	6.5	5.8	5.8	4.7							
4620	5.8	6.6	6.4	6.7	6.0	6.6	6.7	7.2	5.5	3.8	3.3	5.6	6.2	5.9	6.1	4.8				
4621	7.2	7.1	7.1	7.5	7.7	7.8	7.0	7.5	7.3	7.6	6.1	7.4	6.6	6.7	7.3	6.8	7.7			
4622	6.7	7.5	7.1	6.7	6.6	6.9	7.3	7.0	7.1	6.5	6.2	6.4	6.7	6.1	6.1	6.5	6.6			
4623	7.3	7.2	7.9	М	7.8	7.9	7.2	7.3	5.9	7.3	7.8	7.3	7.7	7.1	7.1	6.8				
4624	6.6	6.5	6.6	6.8	6.9	6.7	6.5	6.0	7.0	7.3	6.5	6.8	6.3	6.4	7.1	6.3	6.6	5.6		
4625	7.5	s	7.3	8.2	7.8	7.1	7.3	7.3	7.5											
4626	7.1	7.3	6.8	7.2	7.8	,7.3	7.2	7.6	6.4	6.4	6.7	8.3	7.1	7.4	6.7	7.4	6.4	6.7		
EAN	6.9																			
.D.	0.96																			
N	23																			

PUP STATUS CODES: S-STILLBORN D-DIED M-MISSING

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX U

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP BODY WEIGHTS (GRAMS)

GROUP I	0 M	G/M3					INDIAI	DUAL P	OP BOL	Y WEIG	mis (G	KAN5/					LACT	ATION I	DAY 4	
FEMALE#	MEAN		PUP#										10	12	14	1.5	16	1.77	10	10
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1601	8.8	9.2	8.7	9.5	8.9	9.7	8.6	10.1	8.0	9.1	8.4	7.9	7.9	9.3	9.3	8.3	D	7.9	8.7	
1602	12.1	12.7	12.7	12.5	12.9	12.5	11.3	12.1	13.0	М	10.6	10.5	11.7	12.4						
1603	12.5	13.0	13.8	13.4	12.9	11.9	12.9	13.9	12.5	12.9	11.0	11.0	11.7	11.6						
1604	10.9	12.6	10.8	11.3	10.5	11.1	10.9	10.9	10.9	11.8	11.0	10.9	11.1	11.3	11.2	7.4	11.0			
1605	10.7	11.2	10.9	10.5	11.4	11.0	12.0	11.3	8.7	10.5	11.8	10.6	11.2	10.3	9.3	10.3				
1606	FOUND D	EAD																		
1607	9.5	11.0	10.7	10.7	10.1	9.3	8.4	9.8	8.4	9.0	8.9	9.7	9.2	10.2	9.8	8.0	8.7			
1608	10.7	10.9	10.9	11.4	9.8	11.3	11.6	11.0	9.8	10.2	10.3	10.3	10.6	11.1	10.5	10.4				
1609	NOT PRE	TNANE																		
1610	9.5	10.4	9.5	9.9	8.8	9.2	10.2	9.6	9.3	9.9	9.8	9.0	9.3	8.9	8.9					
1611	TOTAL L	ITTER L	oss																	
1612	10.7	9.3	10.7	11.2	11.5	12.0	10.9	11.0	10.0	10.5	10.7	9.5	10.2	11.0						
1613	9.3	8.7	9.3	9.0	10.8	9.9	9.8	8.6	9.8	9.6	8.7	10.3	9.3	9.6	8.8	8.6	8.5	9.7	9.0	М
1614	8.8	8.8	8.8	8.5	9.2	8.3	8.1	9.4	9.3	8.2	10.0	9.5	9.0	8.3	7.9	8.1	8.9	9.2		
1615	11.3	10.9	12.2	11.0	11.6	12.1	11.4	11.8	9.5	11.3	12.5	10.6	11.2							
1616	11.5	12.4	11.4	11.8	12.3	11.7	11.3	11.0	11.1	11.5	11.6	11.0	11.6	11.4						
1617	10.4	11.9	10.5	10.3	M	11.2	9.2	M	10.5	10.7	11.4	D	10.9	8.2	11.1	8.6				
1618	9.6	9.8	10.6	10.4	10.2	10.1	9.8	7.3	10.0	9.0	9.6	9.5	9.2	8.9	9.6					
1619	10.1	10.7	10.8	10.2	10.9	10.5	10.3	10.3	8.0	9.4	10.5	9.6	10.4	9.5	10.4					
1620	9.4	10.3	10.7	8.8	6.5	9.5	9.3	9.3	9.1	8.6	9.7	10.6	9.2	9.7	9.1	9.9	9.4			
1621	10.0	11.3	10.3	10.6	7.5	11.9	9.2	11.8	10.0	10.0	10.3	9.0	9.4	10.1	11.4	7.0	9.2	10.3		
1622	11.3	11.5	11.7	12.3	11.1	12.2	M	10.7	11.1	10.7	11.2	11.0	10.6							
1623	11.4		12.5			12.8				11.7		11.4								
1624	10.2	10.6	10.5	10.1	10.3	10.8	10.4	9.4	10.3	10.2	10.2	9.9	9.9	11.2	8.6					
1625	NOT PRE	TNANE																		
1626	9.9	11.4	9.6	9.8	9.6	9.7	9.9	9.7	9.8	10.0	9.8	9.4	10.0	9.9						

MEAN 10.4 S.D. 1.03 N 22

PUP STATUS CODES: D-DIED M-MISSING

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX U

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP BODY WEIGHTS (GRAMS)

ROUP II	2000	MG/M3							OF BOT		•	•					LACT.	NOITA	DAY 4	
FEMALE#	MEAN	1	PUP#	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
2601	12.2	12.3	11.7	12.4	12.9	12.1	12.7	12.5	11.8	12.1	11.4	- -								
2602	10.1	10.2	10.3	Z	11.3	9.8		9.2			10.0	9.8	10.1	10.4	8.8	9.3				
2603	9.7	10.5	9.6	9.9	8.8	10.3	9.1	9.8	9.8	8.7	9.8	9.3		10.5	9.4	9.9				
2604	8.6	9.0	7.9	8.4	8.9	8.4	8.8	8.1	9.1	8.1	9.6	М	9.2	М	7.6	8.8	D	М		
2605	10.5	11.1	11.1	10.3	10.4	11.1	10.5	9.7	10.4	10.7	10.4	10.3	10.6	10.4				••		
2606	9.8	10.3	10.0	10.4	10.3	9.8	10.0	10.0	8.6	10.4	8.9	9.7	9.7	9.6	9.7					
2607	9.8	10.7	9.6	10.7	9.8	9.8	11.4	9.6	9.9	9.7	9.3	9.4	9.8	9.1	10.4	8.9	8.8			
2608	9.5	10.7	11.3	8.3	10.4	10.1	8.6	10.0	9.4	10.4	8.1	9.9	8.6	9.1	8.5	9.6	9.3			
2609 1	NOT PREC	TNANE																		
2610	9.2	10.1	10.2	8.7	9.2	9.3	8.2	8.6	9.6	9.1	9.5	9.3	9.3	9.3	8.3					
2611	9.1	9.8	9.7	9.8	9.2	9.2	9.7	8.4	8.4	9.2	8.4	8.4	9.1							
2612	10.4	10.6	11.2	11.0	11.3	10.2	9.7	9.9	11.1	10.7	10.2	9.7	9.8	10.0						
2613	10.3	10.4	12.0	9.6	10.2	9.6	11.5	9.1	10.5	10.2	9.0	10.0	9.2	11.8	11.1	9.9				
2614	10.9	12.0	11.1	11.5	10.8	11.0	11.8	10.8	10.7	11.0	10.8	10.5	11.5	9.9	9.7					
2615	10.0	10.6	10.0	9.8	11.1	10.5	10.2	10.4	9.6	9.5	9.3	9.2	10.0	10.0	9.9					
2616	9.0	9.6	8.4	9.4	8.9	9.3	8.6	7.8	10.0	9.3	8.6	8.8	9.4	9.5	9.0	9.1				
2617	9.0	S	10.8	9.5	8.3	10.0	8.6	7.9	8.7	9.4	9.2	8.9	7.7	8.4	9.1	9.3	8.7			
2618	9.7	9.4	10.1	9.6	10.1	9.2	9.3	9.8	10.6	9.9	10.2	9.6	9.4	9.1	10.0					
2619	9.8	10.2	10.0	10.5	7.1	10.4	10.7	9.5	10.4	9.9	10.0	10.4	9.9	9.7	9.2	8.9	9.8	9.2		
2620	11.6	11.7	11.6	12.2	11.3	11.8	11.0	11.1	11.9	11.7	11.8									
2621	10.2	11.1	10.5	10.6	10.4	9.8	11.2	11.0	10.0	9.6	10.8	8.9	9.5	9.8						
2622	11.1	11.4	11.0	11.9	10.5	12.0	11.7	11.1	10.7	10.7	10.7	10.7	11.3	10.8						
2623	10.0	10.6	9.8	10.0	10.3	11.2	8.7	11.9	10.4	9.9	9.6	9.4	9.2	9.1	9.7	10.3				
2624	8.8	8.8	9.2	8.8	8.4	9.5	8.4	9.3	9.5	7.0	9.0	9.0	9.0	8.5	8.3	8.8	8.3	9.3	9.0	
2625	8.6	9.2		10.5	9.3	9.0	9.0	9.9	8.7	9.8	7.3	8.3	D	8.7	7.1	7.7	8.8	8.5	6.6	
2626	12.3	13.2	12.4	12.6	12.1	12.6	12.0	12.5	11.5	12.4	11.8	D	11.8	12.6						
AN	10.0																			
D.	1.02																			
Ī	25																			

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX U

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP BODY WEIGHTS (GRAMS)

ROUP III								-	OP BOD			,					LACT	ATION	DAY 4	
FEMALE#	MEAN		PUP#	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
					-	-													-	
3601	10.7	9.7	9.9										10.9		9.9					
3602	10.5	10.7		9.6	10.6				10.6		9.3		10.7	10.5						
3603	9.5	D		10.2	9.4		10.0		9.4	9.5	8.9	7.6	9.5	9.1		10.3				
3604	9.7		10.0	9.3	10.7	9.4	10.4	9.9	9.3	9.8	9.7	9.1	9.3	9.8	9.0					
	NOT PRE																			
3606	8.2	9.7	8.4	8.1		8.3	7.4			7.7		7.6	8.5	7.0						
3607	10.0	10.4	10.5	8.9	10.7		9.8	9.9		10.2	9.2	9.7		9.7	9.9					_
3608	8.3	S	8.8	7.9	8.1	8.4	9.1	8.5		8.4	8.7	8.0	8.2	8.3	8.7	8.9	8.2	7.3	8.1	7
3609	13.0		12.4		13.2		13.0	12.9	13.6											
3610	10.8	10.1	10.8		10.8		11.2		10.6	10.5	-	11.4	10.6							
3611	12.2		12.7			11.7		11.9	12.1											
3612	11.3	S		10.8	10.6		11.8	12.4	11.5	11.2			10.9							
3613	8.7	9.5	8.2	8.7	9.2	9.5	8.1	8.5	8.5	9.2	7.8	8.9	D	8.5	9.0					
3614	10.8	11.1	10.0	11.0	10.9		12.1	11.3	10.2	10.8	11.3	10.1	10.0	10.9	10.5					
3615	9.0	D	10.3	8.3	9.3	10.1	9.6	7.0	8.3	8.9	9.0	9.6	9.0	9.4	8.0					_
3616	8.9	9.4	8.9	9.0	9.8		10 1	9.5	9.1	7.3	8.9	9.6	8.1	8.6	9.2	8.2	8.8	9.3	8.2	8
3617	8.3	9.5	8.8	8.9	6.0	8.4	8.6	8.1	8.5	7.8	7.8	8.5	8.4	8.0	8.2					
	NOT PRE	GNANT																	_	
3619	10.1	D		11.6					10.3				10.6		9.3	10.1	10.2	10.3	S	
3620	10.9			11.5			11.8		10.5	11.3	10.5	10.4	9.1	9.9						
3621	8.6	9.2	9.4	9.4	8.6	8.7	9.1	7.6	8.4	8.5	9.2	8.5	8.0	8.9	7.5	9.0	8.1	8.6		
3622	12.2	12.4			12.4		12.3	11.8	11.6	11.3	12.6									
3623	10.8		11.8	9.5		11.6		9.3		11.6										
3624	8.3	8.7	8.4	7.9	8.4	7.8	7.7			8.1	8.6	9.0	8.2	9.2						
3625	13.0		13.3		12.1	M	13.0		12.6											
3626	10.6	10.8	10.4	10.3	11.1	10.2	10.9	10.2	10.8	11.0	10.2									
EAN	10.2																			
-	7 40																			

MEAN 10.2 S.D. 1.49 N 24

PUP STATUS CODES: S-STILLBORN D-DIED M-MISSING

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX U

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP BODY WEIGHTS (GRAMS)

GROUP IV	2000	00 MG/M	13														LACT	ATION :	DAY 4	
FEMALE#	MEAN		PUP#	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
													 -				-			
4601	11.4	D	10.7	11.8	11.4	11.4	11.8													
4602	ACCIDENT	CAL DEA	TH, NC	T PG																
4603	10.7	10.9	10.9	10.5	11.0	12.0	11.7	10.6	10.0	M	9.5	10.5	10.8	10.1	10.0	11.0				
4604	8.2	8.7	8.1	8.6	8.7	8.5	8.6	8.7	8.4	7.8	7.6	8.4	8.4	5.7	8.6	8.2	M			
4605	9.3	9.1	M	9.9	10.3	9.7	9.2	9.3	8.7	9.6	8.4	9.4	9.7	8.6	8.6	10.3	8.8	9.5	8.8	
4606	9.9	10.5	10.0	9.8	9.8	10.5	9.5	10.5	10.0	9.3	10.1	9.2	9.9	10.1	10.0					
4607	13.7	14.1	14.1	13.7	14.1	12.3	13.6	13.7												
4608	10.3	D	11.3	9.8	9.4	10.6	10.9	10.4	10.2	10.8	10.1	9.9	8.6	10.8	10.3	10.8				
4609	NOT PREC	TNANT																		
4610	9.6	8.3	9.8	9.4	10.2	10.4	8.6	9.9	8.5	10.7	9.7	10.2	9.3	9.2	10.5	9.4	9.4			
4611	11.0	10.1	11.1	11.4	11.0	10.3	10.9	11.3	11.2	11.2	10.8	11.3	11.3	10.9						
4612	9.0	9.7	9.5	8.7	9.5	9.5	7.7	9.5	9.3	7.6	9.4	9.3	8.9	9.5	8.5	9.2	8.4			
4613	9.6	10.5	9.9	9.3	10.2	9.6	9.5	8.9	9.1	9.6	9.5	9.6	9.9	9.8	9.4	9.1	9.2			
4614	8.3	8.5	8.8	9.1	8.8	9.7	9.1	8.2	9.4	7.6	9.2	7.3	D	6.8	7.6	7.6	7.2	7.5		
4615	7.1	5.9	9.0	7.5	8.1	8.9	7.2	8.2	6.6	7.0	7.8	6.8	6.0	7.8	5.4	5.9	5.8	7.1		
4616	10.0	11.2	10.5	10.2	10.1	10.8	10.2	9.5	9.9	9.5	9.6	9.5	9.4							
4617	NOT PREC	TNANE																		
4618	9.0	9.5	10.1	8.8	9.7	9.6	9.1	9.0	8.8	8.1	8.7	8.0	8.7	8.7	8.7					
4619	9.4	D	D	Z	10.5	9.8	9.9	9.6	9.5	10.0	8.1	8.0	M							
4620	6.9	8.1	7.5	7.8	6.8	8.0	7.8	8.2	6.7	3.4	3.1	7.0	7.7	7.4	7.8	6.1				
4621	8.6	8.4	8.6	8.6	9.7	9.4	8.2	9.0	8.7	8.9	7.3	9.0	7.5	7.9	8.7	8.2	9.5			
4622	8.1	8.6	9.0	8.2	8.3	7.8	8.7	8.5	9.3	7.8	6.9	7.5	8.0	8.1	7.5	7.6	7.6			
4623	9.9	9.5	10.9	M	10.7	10.7	10.4	10.0	8.4	10.0	9.9	9.7	10.0	10.2	9.2	9.0				
4624	8.7	8.0	9.5	9.3	9.4	8.8	9.1	7.8	8.2	9.9	8.9	9.1	8.1	8.9	8.8	8.1	9.0	6.8		
4625	12.9	S	12.4	14.2	13.0	12.4	12.5	13.0	12.6											
4626	8.6	8.7	8.2	9.6	9.4	8.8	8.7	9.1	7.9	8.1	8.5	10.0	8.8	8.9	7.7	8.3	6.9	8.0		
MEAN	9.6																			

MEAN 9.6 S.D. 1.62 N 23

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX U

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP BODY WEIGHTS (GRAMS)

13.3 16.9 18.4 C 16.2 EAD 14.6 15.6	16.4 C C C	16.3 C C C	17.1 18.4 15.5 16.5	16.0 C	11.9 15.5	C 18.9 16.2	C 17.6		14.0	11 11.4 14.5	11.3		14 C	15 	16 	17 11.2	18 	19
16.9 18.4 C 16.2 EAD 14.6 15.6 GNANT	16.4 C C C	16.3 C C C	17.1 18.4 15.5 16.5	C 16.8 16.0 C	15.5 C C	C 18.9 16.2	17.6 17.3	М	14.0	14.5			С	С	D	11.2	C	
16.9 18.4 C 16.2 EAD 14.6 15.6 GNANT	16.4 C C C	16.3 C C C	17.1 18.4 15.5 16.5	C 16.8 16.0 C	15.5 C C	C 18.9 16.2	17.6 17.3	М	14.0	14.5			С	С	D	11.2	С	
18.4 C 16.2 EAD 14.6 15.6 GNANT	C C C	с с с	18.4 15.5 16.5	16.8 16.0 C	C C	18.9 16.2	17.3				15.6	16.5						
C 16.2 EAD 14.6 15.6 3NANT	C C 14.2	c c	15.5 16.5 14.0	16.0 C	C	16.2		17.8										
16.2 EAD 14.6 15.6 GNANT	C 14.2	c c	16.5 14.0	С			C.											
EAD 14.6 15.6 GNANT	14.2	C	14.0		17.3		120			15.3				11.3	15.4			
14.6 15.6 GNANT						10.5	13.0	15.4	C	15.6	16.8	С	13.8	15.5				
15.6 GNANT					11 0	~	-	10 5	~	10.0	12.2	14.4	a					
GNANT	C	C	1/1 =											11.1 C	С			
			14.5	10.4	10.2	16.0	14.3	14.5	C	14.2	15.8	15.8	C	C				
	13.9	12 7	12 0	11 7	14 0	12.0	10.0		12.0	a	12.4		0					
ITTER		13.7	12.0	11./	14.0	12.0	12.2	C	13.0	C	13.4	C	С					
	13.5	14 0	1/1 2	14 0	C	12 4	12 0	10 5		10 1	12 5	14 0						
	13.9							C C					12 4	_	10.6		12 5	
12.7 C	13.9 C			11.8			-					C					13.7	
	16.4	-						C	14.2 C			12.6	C	12.0	13.0	C		
	16.6					15.8		15.8 C		16.2	C C	15.9						
	14.4			15.1		15.1		14.5	15.4	16.2 D	C	11.7	1 = 0					
	15.0						15.2 C	14.5 C	13.2	C	14.0	13.0	15.8 C	С				
	14.8		C C	14.4	13.4 C	14.4		C	13.2 C	13.5	13.8	13.0	_					
C		12.7	М	14.7 C		13.6			14.1			13.3 C	14.0 C	С	~			
												-			0	1 - 0		
												C	17.3	11.0	C	15.0		
											14.3							
												~	10.6					
14.7	13.1	74.7	10.∠	14.0	14.9	13.1	14.5	14.0	C	Ċ	C	C	12.6					
SNANT	14 4	C	14.0	C	14 4	14 0	14 2	74.0		12 4	1 - 1	7 4 7						
	15.9 15.1 14.9 IANT	15.9 15.3 15.1 15.9 14.9 15.1 JANT	15.9 15.3 15.9 15.1 15.9 15.7 14.9 15.1 14.1 JANT	15.9 15.3 15.9 15.3 15.1 15.9 15.7 9.9 14.9 15.1 14.1 15.2	15.9 15.3 15.9 15.3 15.6 15.1 15.9 15.7 9.9 16.8 14.9 15.1 14.1 15.2 14.8 IANT	15.9 15.3 15.9 15.3 15.6 M 15.1 15.9 15.7 9.9 16.8 14.8 14.9 15.1 14.1 15.2 14.8 14.9 IANT	15.9 15.3 15.9 15.3 15.6 M C 15.1 15.9 15.7 9.9 16.8 14.8 14.4 14.9 15.1 14.1 15.2 14.8 14.9 13.1 IANT	15.9 15.3 15.9 15.3 15.6 M C 14.6 15.1 15.9 15.7 9.9 16.8 14.8 14.4 14.7 14.9 15.1 14.1 15.2 14.8 14.9 13.1 14.5 IANT	15.9 15.3 15.9 15.3 15.6 M C 14.6 14.0 15.1 15.9 15.7 9.9 16.8 14.8 14.4 14.7 15.1 14.9 15.1 14.1 15.2 14.8 14.9 13.1 14.5 14.0 IANT	15.9 15.3 15.9 15.3 15.6 M C 14.6 14.0 14.2 15.1 15.9 15.7 9.9 16.8 14.8 14.4 14.7 15.1 15.6 14.9 15.1 14.1 15.2 14.8 14.9 13.1 14.5 14.0 C	15.9 15.3 15.9 15.3 15.6 M C 14.6 14.0 14.2 14.2 15.1 15.9 15.7 9.9 16.8 14.8 14.4 14.7 15.1 15.6 C 14.9 15.1 14.1 15.2 14.8 14.9 13.1 14.5 14.0 C C IANT	15.9 15.3 15.9 15.3 15.6 M C 14.6 14.0 14.2 14.2 14.3 15.1 15.9 15.7 9.9 16.8 14.8 14.4 14.7 15.1 15.6 C 14.9 15.1 14.1 15.2 14.8 14.9 13.1 14.5 14.0 C C C CANT	15.9 15.3 15.9 15.3 15.6 M C 14.6 14.0 14.2 14.2 14.3 15.1 15.9 15.7 9.9 16.8 14.8 14.4 14.7 15.1 15.6 C 14.9 15.1 14.1 15.2 14.8 14.9 13.1 14.5 14.0 C C C C	15.9 15.3 15.9 15.3 15.6 M C 14.6 14.0 14.2 14.2 14.3 15.1 15.9 15.7 9.9 16.8 14.8 14.4 14.7 15.1 15.6 C 14.9 15.1 14.1 15.2 14.8 14.9 13.1 14.5 14.0 C C C C 12.6 IANT	15.9 15.3 15.9 15.3 15.6 M C 14.6 14.0 14.2 14.2 14.3 15.1 15.9 15.7 9.9 16.8 14.8 14.4 14.7 15.1 15.6 C 14.9 15.1 14.1 15.2 14.8 14.9 13.1 14.5 14.0 C C C C 12.6 IANT	15.9 15.3 15.9 15.3 15.6 M C 14.6 14.0 14.2 14.2 14.3 15.1 15.9 15.7 9.9 16.8 14.8 14.4 14.7 15.1 15.6 C 14.9 15.1 15.2 14.8 14.9 13.1 14.5 14.0 C C C C 12.6 IANT	15.9 15.3 15.9 15.3 15.6 M C 14.6 14.0 14.2 14.2 14.3 15.1 15.9 15.7 9.9 16.8 14.8 14.4 14.7 15.1 15.6 C 14.9 15.1 14.1 15.2 14.8 14.9 13.1 14.5 14.0 C C C C 12.6 IANT	15.9 15.3 15.9 15.3 15.6 M C 14.6 14.0 14.2 14.2 14.3 15.1 15.9 15.7 9.9 16.8 14.8 14.4 14.7 15.1 15.6 C 14.9 15.1 14.1 15.2 14.8 14.9 13.1 14.5 14.0 C C C C 12.6 IANT

MEAN 14.5 S.D. 1.23 N 22

PUP STATUS CODES: D-DIED C-CULLED M-MISSING

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX U

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP BODY WEIGHTS (GRAMS)

GROUP II	200	MG/M3					INDIVI	DUAL F	OP BOL	Y WEIG	HTS (G	RAMS)					LACT	ATION	DAY 7	
FEMALE#	MEAN	1	PUP# 2	3	4	5	6	7		9			12	13	14		16	17	18	19
2601	15.3	15.1	14.8	15.4	16.3	14.5	16.1	16.1												
2602	12.6	12.4			14.4							11.8	12.3	12.9	11.5	C				
2603	14.2				13.1				14.2	12.7	C	C	C	14.7	14.0	C				
2604	11.5	12.4	10.3	11.7	11.5	С	11.6	C	C		13.4	М	10.0	M	10.1	12.7	D	M		
2605	13.3	13.8	13.6	C	13.0	13.4	13.7	12.3	13.0	13.4	C	13.1	13.5	C						
2606	13.5	13.6	14.5	С	C	13.6	13.5	13.8	12.3	С	C	13.2	13.4	13.4	13.5					
2607	13.3	С	12.9	14.3	C	13.6	16.7	С	С	С	12.8	13.1	13.3	12.6	C	11.5	12.0			
2608	13.7	15.0	15.5	C	13.9	C	12.6	С	13.0	14.2	12.2	14.0	C	13.1	C	C	13.9			
2609	NOT PRE	TNANE																		
2610	12.9	13.7	13.9	12.1	12.7	12.4	C	C	14.0	12.9	C	13.2	C	12.8	11.5					
2611	11.7	C	C	12.7	12.2	12.8	12.9	10.7	11.4	11.7	10.8	10.9	11.3							
2612	13.0	13.4	13.2	13.4	14.0	12.8	C	С	С	13.7	12.7	12.1	12.3	12.2						
2613	13.7	14.5	14.9	12.3	13.2	C	14.2	С	С	13.3	12.4	C	С	15.0	14.1	13.5				
2614	15.9	16.6	16.3	С	C	16.3	C	16.2	16.2	C	15.5	15.6	16.8	14.8	14.7					
2615	13.7	14.3	13.6	12.9	15.1	14.4	C	С	13.3	13.4	13.4	13.0	13.5	C	C					
2616	13.2	C	C	C	13.8	13.4	13.9	11.9	13.5	С	12.5		13.2	13.7		C				
2617	12.5	S	13.9	12.0	11.7	14.5	12.2	11.1	12.3	12.6	13.1	С	C	11.8	C	C	С			
2618	14.1	С	C	C	14.8	13.8	13.0		15.0	14.1	13.8		13.7	13.2						
2619	14.5	C	16.0	16.1	10.6	15.5	C	С	С	14.4	C	15.4	15.3	С	С	13.4	15.0	13.6		
2620	15.5	15.7	15.6	16.2	14.8	15.4	14.9	15.4	15.9	15.5	15.4									
2621	14.0	15.1	14.8	14.2	13.8	C	15.4	С	13.7	С	14.0		13.1							
2622	14.7	15.5	14.2	С	C	15.7	15.6		14.2		14.2	14.5	С	13.7						
2623	14.5	16.1			15.3		C	С	C	14.2	С	13.5	С	12.6	14.3					
2624	13.2	13.7	C	С	C	C	C		13.9	11.2	13.8			С	С			13.7		_
2625 2626	11.0 16.7	12.1 18.0	10.4 16.8		12.8 16.4		C 16.8	13.1 17.2	C 15.3	11.6 16.0	10.3 16.3	C D		C 17.2	С	9.2	С	10.5	8.6	Z

MEAN 13.7 S.D. 1.35 N 25

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX U

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP BODY WEIGHTS (GRAMS)

GROUP III																	LACT	MOITA	DAY 7	
FEMALE#			PUP#		4			7	8	9	10		12		14		16	17	18	19
3601	14 7	13.2						·	. C	12 5	16.2	13.7				·				
3602	13.6								13.3											
3603	13.5			14.3				13.6				10.4			13.6	14.4				
3604	13.6			C					13.4					13.8						
	NOT PRE			-			_		_	-										
3606	10.7		10.2	10.6	10.3	С	9.4	11.6	C	10.1	11.8	C	11.3	9.1						
3607	14.4								С			С	15.4	13.4	13.7					
3608	12.9															13.2	12.7	C	C	11
3609	16.5								17.5											
3610	13.8	12.7	14.3	14.0	14.0	С	14.6	C	14.2	13.3	12.4	14.4	13.7							
3611	15.9	15.9	16.4	16.7	17.1	15.4	16.8	15.5	15.4	15.8	14.3									
3612	14.6	s	14.6	14.0	C	15.8	15.1	С	14.8	14.9	13.3	14.6	14.1	14.6						
3613	11.9	12.7	11.0	12.0	12.0	12.7	C	C	11.7	12.2	10.4	12.3	D	C	11.7					
3614	15.2	C	14.0	14.8	14.8	16.2	16.7	C	C	15.8	16.2	14.0	14.6	14.6	C					
3615	13.3	D	15.1	12.4	13.1	14.7	13.8	10.3	C	C	13.2	13.6	13.3	13.6	C					
3616	13.3	14.3	13.2	13.7	С	C	14.7	14.1	C	10.8	С	13.8	C	C	C	12.1	13.3	C	12.9	
3617	13.0	14.0	13.7	14.2	9.9	13.3	C	12.9	13.2	C	12.2	С	13.6	12.9	C					
3618	NOT PRE	GNANT																		
3619	14.0	D	14.6	15.6	14.2	C	C	9.8	C	15.1	14.2	13.9	14.6	C	13.2	C	C	14.5	S	
3620	14.4	C	14.5	14.6	14.1	16.9	15.2	C	C	14.5	13.8	14.7	12.6	12.8						
3621	14.0	С	15.4	C	C	14.2	С	13.2	14.2	14.2	15.2	C	13.1	C	12.5	14.4	13.9	С		
3622	15.4	15.6	16.0	16.2	15.5	15.5	15.5	14.9	14.7	14.6	15.2									
3623	14.7	15.0	15.9	13.4	12.1	15.8	15.8	12.9	15.3	15.9										
3624	12.5	12.8	12.7	12.1	13.3	11.7	11.5	C	11.7	12.7	13.5	C	12.8	C						
3625	17.7	17.6	18.0	19.0	16.5	M	17.2	18.2	17.2											
3626	13.2	13.3	12.7	12.9	14.0	12.9	13.8	13.1	13.8	13.4	12.5									
IEAN	14.0																			
D.	1.48																			
	0.4																			

N 24

PUP STATUS CODES: S-STILLBORN D-DIED C-CULLED M-MISSING

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX U

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP BODY WEIGHTS (GRAMS)

GROUP IV	2000	00 MG/M	13														LACT	ATION	DAY 7	
FEMALE#	MEAN		PUP#								10		12	13	14	15	16	17	18	19
· 		1	2		4	5		7	8		10		12	13	7.4					
4601	15.9	D	14.7	16.1	15.6	16.0	17.1													
4602	ACCIDENT																			
4603	14.4	15.4	15.1	14.9	C	C	C	14.5	С	M	13.2	14.2	14.2	13.1	13.9	15.2				
4604	11.6	12.8	C	12.2	12.2	12.0	C	C	11.8	С	11.3	11.8	C	8.8	11.8	11.7	M			
4605	14.1	14.0	M	15.1	16.0	14.3	C	C	13.5	C	13.2	C	14.8	12.8	13.4	14.3	C	C	С	
4606	13.8	14.0	13.6	C	C	14.7	13.5	14.7	14.2	12.8	14.3	12.1	C	С	14.1					
4607	18.4	19.4	18.9	18.5	18.3	16.8	18.2	18.7												
4608	13.6	D	14.6	12.7	12.2	13.6	14.3	С	C	14.3	С	12.9	С	13.9	13.4	14.4				
4609	NOT PREG	GNANT																		
4610	12.7	11.1	12.9	12.9	12.5	13.7	C	С	С	C	13.2	13.4	12.7	C	C	12.3	12.2			
4611	15.1	14.4	15.6	15.9	15.3	14.3	15.1	C	15.4	15.4	C	С	14.8	15.2						
4612	13.0	14.3	C	12.8	13.5	13.5	С	C	12.9	11.0	13.6	C	12.5	C	C	13.7	12.1			
4613	13.6	14.5	14.3	13.7	С	С	C	12.9	С	13.5	C	C	13.9	13.8	13.0	12.9	13.2			
4614	12.7	12.7	13.3	12.7	13.4	14.1	C	C	C	C	C	11.5	D	11.4	13.6	12.1	С	11.9		
4615	10.9	С	13.5	C	C	13.0	11.3	12.4	10.5	C	C	10.9	9.3	C	8.9	9.4	9.7	C		
4616	13.7	С	14.2	14.2	14.0	14.4	14.3	13.3	13.5	С	13.5	13.0	13.0							
4617	NOT PREC	CIVANE																		
4618	13.0	14.1	14.4	12.6	13.2	13.6	13.1	C	C	11.9	12.7	11.8	12.5	C	C					
4619	12.2	D	D	Z	13.5	12.4	12.8	12.3	12.6	13.3	10.4	10.0	M							
4620	9.0	С	C	10.3	C	C	9.5	10.6	8.9	5.0	C	8.9	10.5	8.8	9.5	7.8				
4621	14.6	С	C	14.7	C	16.0	14.8	15.2	15.1	С	12.8	14.4	13.1	C	C	14.0	15.4			
4622	13.6	C	14.9	13.4	13.3	13.9	14.7	C	C	12.9	12.9	13.3	C	C	12.9	13.4	C			
4623	12.7	12.3	13.6	М	13.9	14.0	13.5	12.5	C	C	C	C	12.8	12.2	12.2	10.4				
4624	12.1	11.4	С	С	С	12.4	12.7	11.2	C	13.5	С	13.1	11.5	12.1	12.5	11.1	C	C		
4625	16.3	s	16.0	17.8	16.5	16.3	15.8	16.1	15.9											
4626	14.3	С	14.1	С	15.3	13.9	14.6	14.9	С	С	С	16.2	14.3	С	13.2	13.8	С	12.9		
1EAN	13.5																			
	1.91																			
N	23																			

Huntingdon Life Sciences 00-4202 PAGE 407 APPENDIX U

Sponsor Study No: 211-TAME-1G

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP BODY WEIGHTS (GRAMS)

ROUP I		•							0. 202		HIS (C	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					LACT	MOITA	DAY 14	:
FEMALE#	MEAN		PUP#																	
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1601	23.2	24.9	С	24.9	23.9	24.0	23.5	С	С	С	22.5	22.4	20.3	24.6	C	C	D	20.8	С	
1602	29.3	31.5	27.9	30.0	29.7	С	29.3	C	30.5	M	25.9	27.7	29.5	31.1						
1603	27.4	28.9	С	C	27.9	27.7	C	29.3	27.3	27.3	24.9	27.0	26.5	27.1						
1604	27.2	, C	C	С	26.2	28.1	C	28.3	С	28.0	31.0	26.5	26.7	27.4	C	22.6	27.6			
1605	28.5	29.8	C	C	29.3	C	30.7	29.5	23.5	28.1	C	28.3	31.0	C	26.3	28.7				
1606	FOUND DI	EAD																		
1607	25.4	26.5	27.1	С	27.1	25.6	23.5	C	C	26.0	C	24.3	24.9	25.7	C	23.3	C			
1608	26.9	27.4	С	C	26.4	28.1	27.5	28.1	25.0	25.8	С	27.9	25.0	27.5	C	C				
1609	NOT PRE	GNANT																		
1610	25.0	26.1	27.3	24.6	24.3	21.1	27.4	22.8	24.8	C	25.4	С	25.8	C	C					
1611	TOTAL L	ITTER L	oss																	
1612	25.5	C	24.8	26.0	27.3	28.1	С	25.1	23.7	26.1	C	22.8	25.7	25.0						
1613	26.3	23.3	26.4	25.7	28.2	26.5	27.9	C	С	C	C	C	С	С	26.4	C	24.9	27.4	26.1	M
1614	24.8	C	С	C	24.8	23.7	23.8	C	26.6	С	25.7	26.1	24.0	24.3	C	24.4	24.9	С		
1615	26.5	27.0	27.3	27.1	26.4	26.2	27.1	25.7	24.9	27.1	C	26.1	C							
1616	27.9	28.5	29.4	28.9	29.0	27.8	C	27.0	27.4	C	26.9	27.1	С	27.0						
1617	25.9	26.3	25.9	25.9	M	26.2	22.3	M	27.3	26.7	27.9	D	C	20.9	29.1	C				
1618	24.7	24.7	25.9	27.0	26.1	25.1	25.0	22.4	C	C	23.5	C	24.2	23.1	С					
1619	23.6	24.6	24.5	24.7	C	23.4	C	24.7	20.8	C	C	22.3	23.8	22.6	25.0					
1620	24.1	C	25.7	21.8	M	C	23.5	24.4	24.1	23.3	24.5	26.3	23.2	C	С	С	С			
1621	27.9	29.9	C	27.9	25.2	30.3	С	C	С	28.7	C	26.8	28.2	C	30.4	23.3	C	28.6		
1622	26.0	26.8	27.0	26.5	26.9	27.3	М	C	24.8	25.2	24.9	24.6	25.6							
1623	23.7	24.8	25.3	24.4	18.2	26.2	23.7	23.1	23.3	23.6	24.2	C								
1624	27.5	27.6	28.7	27.6	27.9	28.7	29.2	26.6	28.3	25.8	С	C	С	C	25.1					
1625	NOT PREC																			
1626	25.8	28.8	24.6	C	26.1	С	25.0	25.6	25.1	25.1	C	24.5	27 1	26 5						

MEAN 26.0 S.D. 1.68 22

PUP STATUS CODES: D-DIED C-CULLED M-MISSING

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX U

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP BODY WEIGHTS (GRAMS)

OUP II	2000	MG/M3								N MEIG	•	Ţ					LACT	ATION	DAY 14	
'EMALE#	MEAN	1	PUP#	3	4	5		7	8	9	10	11	12	13	14	15	16	17	18	1:
2601	24.7	25.0	24.3	25.3	25.3	23.8	25.2	25.0	24.7	24.3	23.9									
2602	23.0	21.7	C	Z	25.6	23.7		22.3	С	С	22.2	20.5	22.2	22.1	23.0	С				
2603	27.3	29.0	27.3	28.7	24.5	28.4	C	28.8	26.7	25.1	С	C	С	27.8	26.5	C				
2604	22.5	24.5	18.4	22.6	21.7	C	22.6	С	С	21.6	26.2	М	D	М		24.6	D	М		
2605	22.4	24.1	21.6	C	22.3	22.3	23.3	21.0	22.0	22.7	C	22.2	22.3	C						
2606	24.6	25.8	25.8	С	C	24.7	24.6	25.2	22.2	С	С	24.7	25.3	23.6	24.0					
2607	24.6	С	23.6	25.3	C	23.9	28.5	C	C	C	23.9	25.1	26.5	24.0	С	22.6	22.6			
2608	23.2	24.6	25.1	C	23.3	С	21.7	С	21.9	24.3	21.5	24.3	С	22.8	С	С	22.2			
2609 N	NOT PREC	NANT																		
2610	23.2	23.4	25.0	21.2	22.3	21.5	C	C	25.5	24.4	С	23.4	C	23.1	22.4					
2611	19.7	C	C	20.5	20.6	21.1	20.8	18.5	19.1	18.8	18.8	19.0	19.6							
2612	24.7	25.5	24.8	25.5	26.2		С	C	C		23.0	22.7	23.7	24.3						
2613	24.3	24.9	26.2	21.6	23.0	C	23.2	C	C	24.7	23.8	С	C	26.8	23.4	25.5				
2614	28.3	30.4	28.0	С	С	28.6	C	28.7	28.4	C	27.4	27.7	29.3	27.8	26.6					
2615	20.7	20.9	20.8	20.0	22.8	22.3	C	C	20.0	20.1	19.3	20.4	20.3	C	C					
2616	24.6	C	C	C	26.8	25.4	25.9	22.9	25.4	C	23.8	24.1	24.2	24.5	23.1	C				
2617	27.5	S	29.4	26.7	27.1	29.4	27.7	25.2	25.5	28.2	30.1	С	С	25.8	С	C	С			
2618	26.4	C	C	C	27.5	26.6	25.0	27.5	27.9	26.3	25.1	С	26.3	25.7	25.6					
2619	26.8	С	28.1	29.7	21.2	26.8	С	C	C	29.5	С	26.1	28.0	С	C	24.7	27.4	26.1		
2620	26.3	26.0	26.3	27.7	25.5	25.5	25.3	25.2	27.3	27.0	27.3									
2621	24.1	24.3	25.1	25.2	23.0	С	26.2	С	23.4	C	24.2	22.9	23.0	24.1						
2622	27.0	28.3	26.0	C	C	27.4	27.9	26.3	27.1	26.3	26.7	27.5	С	26.0						
2623	27.3	31.7	27.3	27.2	27.4	29.0	C	C	C	26.2	C	25.4	С	23.6	25.9	28.8				
2624	23.2	23.1	C	C	С	С	С	24.0	24.2	20.8		23.4				C	21.8	24.4	23.9	
2625	20.0	20.4	18.1	C	20.8	21.5	С	24.2	С	22.5			D		-				17.2	
2626	27.7	29.6	27.7	28.0	27.5	С	28.0	28.5	26.0	26.6			С			-		_		
AN	24.6																			
	2.42																			
	25																			

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX U

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP BODY WEIGHTS (GRAMS)

ROUP III	1000	00 MG/M	13														LACT	TATION	DAY 14	Ī
FEMALE#	MEAN	1	PUP#	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
					-							. 								
3601	26.0	24.0	25.4	27.4	28.2	C	C	C	C	22.9	28.0	25.7	27.9	26.0	24.5					
3602	23.5	26.3	24.5	23.1	24.1	D	C	25.3	22.7	21.4	C	21.3	23.9	22.7						
3603	24.5	D	26.2	24.9	24.6	24.9	C	24.3	25.4	С	C	20.9	25.2	С	24.2	24.0				
3604	23.6	24.1	23.8	С	26.0	23.9	С	24.2	24.1	C	23.1	21.4	С	22.9	22.2					
3605 N	NOT PREC	GNANT																		
3606	19.9	23.3	15.7	19.5	19.9	C	18.0	21.9	C	19.5	22.0	C	21.8	17.6						
3607	24.8	24.0	25.8	23.7	24.7	26.0	24.4	24.9	C	C	C	C	25.7	25.2	23.3					
3608	25.7	S	28.3	24.4	23.5	26.8	26.7	C	C	C	C	C	C	26.2	25.7	26.7	25.6	С	C	22.
3609	27.3	27.4	26.0	27.5	27.0	28.5	27.3	28.5	27.8	25.3										
3610	24.0	21.7	24.3	25.0	23.8	С	24.2	C	25.1	24.6	22.8	24.4	23.8							
3611	24.6	25.4	25.1	26.3	26.8	23.2	25.5	23.3	24.9	23.9	21.5									
3612	22.4	S	22.6	22.7	C	23.6	22.4	C	23.3	22.4	20.6	22.4	21.9	22.3						
3613	21.5	22.1	20.2	22.0	21.9	22.6	С	С	21.2	23.1	19.2	21.2	D	C	21.9					
3614	26.3	C	24.3	25.5	25.0	26.8	28.7	C	C	27.4	28.4	23.3	28.7	24.5	С					
3615	23.4	D	26.9	21.9	23.7	24.6	23.2	19.6	С	C	23.4	22.8	23.4	24.4	C					
3616	24.7	26.2	24.1	25.0	C	C	26.2	26.2	С	21.4	C	26.0	C	C	С	23.1	24.6	С	23.9	(
3617	22.8	24.1	24.6	24.6	18.2	23.2	С	21.1	22.7	C	22.1	С	23.6	23.3	С					
3618 N	OT PREC	SNANT																		
3619	25.6	D	26.1	28.3	24.8	С	С	19.8	C	26.9	25.7	25.5	28.1	С	23.4	С	С	27.0	s	
3620	24.6	С	24.5	24.6	24.0	29.4			C											
3621	25.3	С	27.1	С	С	25.8	C						24.2	С	23.8	25.2	24.7	С		
3622	24.9	25.8	24.9	27.1	24.7	25.6	24.3	24.3	23.6	24.0	25.1							-		
3623	22.9	23.9	24.0		19.9	23.6	24.0		24.2											
3624	22.7	23.5		22.7		22.5	21.0	C			25.1	С	22.9	С						
3625	30.7	30.4		32.0		M		30.8	31.1		-	-		-						
3626	20.9								22.0	20.8	20.4									
EAN	24.3																			
.D.	2.22																			
	24																			

PUP STATUS CODES: S-STILLBORN D-DIED C-CULLED M-MISSING

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX U

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP BODY WEIGHTS (GRAMS)

ROUP IV	2000	00 MG/M	:3 				-										LACT	CATION	DAY 14	:
FEMALE#	MEAN		PUP#															· -		
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
4601	29.1	D	27.4	29.7	29.8															
4602	ACCIDENT	TAL DEA	TH, NC	T PG																
4603	25.9	29.4	26.4	26.6	C	С	С	26.4	C	M	23.5	26.3	25.5	22.4	25.2	27.1				
4604	20.6	22.2	C	20.7	22.1	21.7	C	C	20.5	C	20.9	20.9	C	17.2	19.7	20.5	M			
4605	25.2	24.5	M	26.7	28.8	24.7	С	C	25.1	C	24.3	C	26.1	22.7	23.5	25.8	C	C	С	
4606	23.6	23.2	23.3	С	C	24.5	23.5	24.7	23.6	22.5	24.7	21.2	С	C	24.4					
4607	27.1	27.5	28.1	27.3	27.3	24.8	27.9	26.9												
4608	23.1	D	24.3	21.2	21.8	22.6	24.1	C	С	24.4	C	22.2	С	23.2	23.5	24.0				
4609 1	NOT PREC	TNANT																		
4610	23.0	19.4	22.1	23.2	25.1	25.3	C	С	C	C	24.6	22.7	23.2	C	C	22.7	22.2			
4611	26.2				28.1								25.3							
4612	23.6	24.9	C	23.2	24.8	23.8	C	C	23.8	21.7	23.8	C	23.2	C	C	24.6	22.1			
4613	23.3	24.0	24.7	23.4	C	С	C	22.7	C	23.2	С	С	23.4	24.5	22.4	22.5	22.3			
4614	22.9	24.5	23.0	24.1	23.6	23.6	С	С	С	C	C	22.2	D	20.9	24.3	21.0	С	21.4		
4615	22.9	C	26.6	C	C	26.4	23.6	26.0	D	С	C	23.6	20.7	C	18.6	20.6	20.1	С		
4616	23.4	C			23.6															
4617 1	NOT PREC																			
4618	22.1	22.9	22.5	22.3	22.6	23.3	22.4	С	C	21.7	22.2	20.2	20.8	С	C					
4619	22.7	D			25.4							18.4	М							
4620	14.2	C	С	16.7	C	С	14.9	17.2	13.6	9.2	С	13.8	15.2	13.7	15.0	12.6				
4621	24.7	C	C	25.8	C	26.2		27.0		C		23.3			C	24.8	25.1			
4622	23.6	С	26.2	22.7	22.0	24.1		C		23.5	22.5			Ċ	22.7		C			
4623	24.2	23.8	25.0	М	26.1			25.2		_			24.2		22.1		~			
4624	21.7	21.1			С												С	С		
4625	26.3			27.5		25.4					-						•	•		
4626	25.0				26.5					C	С	26.6	25.2	C	22.6	24 5	C	23.8		

MEAN 23.7 S.D. 2.81 N 23

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX U

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP BODY WEIGHTS (GRAMS)

GROUP I	0 M C	G/M3					11001 01	DOAL F	OF BOD	, were	DID (G	idilib,					LACT	ATION	DAY 21	
FEMALE#	MEAN	1	PUP# 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1601	 36.1	39.3		40.9	38.3	37.4	37.1			С	36.5	33.9	29.8	37.7	C	С	D	30.5	С	
1602			48.4	49.6	50.9	С		C	52.7	М	43.5	46.9	49.2	52.2						
1603		48.1	С	С	43.8	46.3	C	50.5	43.0	45.1	41.3	42.5	42.2	45.0						
1604		C	C		44.7	46.2	С	49.1	C	48.9	50.1	46.1	45.5	46.7	C	41.3	49.6			
1605	49.0	52.4	C	C	52.0	C	52.6	52.3	37.6	46.4	C	50.4	54.2	C	44.5	47.4				
1606	FOUND DE	EAD																		
1607	40.0	43.0	44.9	C	43.4	39.6	31.8	С	С	41.7	C	38.1	39.7	41.6	C	36.0	C			
1608	44.4	42.8	C	С	41.6	47.7	46.5	47.0	41.0	41.7	С	46.8	46.6	42.3	С	C				
1609	NOT PREC	SNANT																		
1610	41.0	43.4	43.6	41.7	40.7	36.0	44.6	35.9	39.7	C	40.3	С	44.1	C	C					
1611	TOTAL L	ITTER L	oss																	
1612	41.3	C	40.8	42.1	44.3	47.5	С	41.2	39.4	41.4	C	35.7	39.8	40.9						
1613	42.3	35.3	43.7	42.4	45.2	41.9	42.2	C	С	C	C	C	C	C	45.0	C	42.7	41.5	43.2	M
1614	37.9	C	C	C	38.0	36.6	35.6	C	43.6	C	38.3	41.4	37.4	35.1	C	35.7	37.0	C		
1615	39.1	45.7	38.6	36.0	44.5	46.8	36.0	35.5	34.2	36.9	C	36.6	C							
1616	48.3	49.3	51.1	48.5	50.7	49.8	C	47.1	47.7	C	45.3	46.7	C	46.4						
1617	41.6	42.2	38.3	43.4	M	45.3	36.5	M	47.3	39.1	47.1	D	C	30.0	46.5	С				
1618	42.5	43.1	43.6	48.9	44.9	43.2	42.1	37.7	С	C	40.0	C	41.6	40.0	C					
1619	39.8	42.9	39.8	41.1	C	39.6	C	41.0	36.0	C	C	37.7	38.5	37.1	44.4					
1620	39.2	С	40.7	34.7	M	C	38.6	38.3	41.6	37.8	41.1	44.4	35.8	C	С	C	C			
1621	41.5	44.4	C	41.8	37.4	44.7	C	C	C	43.5	C	38.9	42.9	С	43.1	35.5	C	43.1		
1622	43.6	48.8	40.7	47.4	47.0	45.1	M	С	39.7	42.5	41.7	41.2	41.7							
1623	38.4		40.6			44.0			36.8	39.6		C								
1624	48.0	50.1	48.0	50.8	48.3	50.4	51.8	42.6	48.5	45.5	C	C	C	C	43.8					
1625	NOT PRE	GNANT																		
1626	39.2	42.7	36.4	C	39.0	С	38.7	39.6	39.5	39.5	C	36.0	39.7	40.8						

MEAN 42.5 S.D. 3.87 N 22

PUP STATUS CODES: D-DIED C-CULLED M-MISSING

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX U

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP BODY WEIGHTS (GRAMS)

GROUP II	2000	MG/M3															LACT	ATION	DAY 21	
FEMALE#	MEAN	1	PUP# 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
2601	40.7	42.1	35.1	43.0	43.6	39.6	42.6	37.3	41.6	41.0	40.7									
2602	36.7	35.2	С	Z	40.9	38.0	39.4		С	С		31.9	36.6	36.6	38.2	C				
2603	44.4	46.5	44.6	45.1	40.1	46.3	C	45.5	44.3	42.6	C	С	С	45.8	43.5	C				
2604	31.1	32.7	24.7	31.2	28.9	C	31.0	C	С	28.9	38.5	M	D	M	28.1	35.6	D	M		
2605	36.7	39.7	34.4	С	36.5	34.6	37.1	37.7	37.2	35.8	С	38.6	35.5	C						
2606	37.8	39.5	40.3	С	С	38.8	36.4	40.0	34.9	С	С	37.1	35.4	38.7	37.0					
2607	40.9	С	34.1	43.0	С	39.1	47.7	C	С	С	39.8	42.2	44.9	41.5	C	37.9	38.9			
2608	37.1	39.6	41.7	С	35.6	С	33.1	C	35.0	38.8	35.9	40.2	С	36.7	С	C	34.2			
2609 1	NOT PREC	TNANE																		
2610	36.4	36.0	41.4	33.8	36.9	32.9	C	C	39.3	38.5	С	37.6	С	36.1	31.1					
2611	29.0	С	С	30.0	31.2	31.2	30.8	27.8	27.9	26.8	27.8	27.6	29.0							
2612	40.6	43.8	42.2	40.2	42.6	40.8	C	C	С	42.0	37.7	36.7	40.1	40.0						
2613	40.9	42.3	41.7	34.7	38.3	C	39.0	C	С	42.7	40.7	C	C	46.4	39.8	43.2				
2614	44.7	50.6	41.5	C	C	45.6	C	43.7	45.2	C	42.7	45.2	47.3	43.0	42.6					
2615	34.8	35.8	34.9	32.4	37.8	35.3	C	C	35.1	34.1	32.8	35.5	34.5	C	С					
2616	36.5	C	C	C	37.7	35.5	39.2	33.7	37.8	C	34.6	39.6	34.8	37.7	34.1	C				
2617	42.5	s	47.3	41.8	40.5	D	42.2	37.4	40.1	44.1	46.5	C	С	42.9	С	С	C			
2618	41.0	C	C	C	43.9	40.8	38.2	41.4	42.5	40.6	39.4	C	41.2	41.9	40.1					
2619	43.4	С	45.9	45.9	32.4	43.7	С	С	С	46.0	C	43.5	44.8	С	С	42.1	47.2	42.6		
2620	41.8	42.9	41.6	41.8	38.3	42.4	38.9	38.8	44.2	45.6	43.1									
2621	39.7	40.2	40.8	40.1	36.9	C	44.2	С	38.3	C	40.6	38.3	38.5	38.9						
2622	43.1	40.7	38.0	C	C	47.5	44.6	40.4	46.7	45.6	42.4	45.7	C	39.6						
2623	42.8	51.2	42.5	42.2	45.3	46.6	С	С	C	40.4	C	40.7	С	36.5	35.1	47.4				
2624	35.5	33.7	C	C	С	C	С	36.8	38.5	31.2	38.1	35.8	33.5	C	C	С	33.6	37.6	35.7	
2625	31.4	31.9	28.8	С	36.8	38.4	С	34.7	C	34.9	28.2	C	D	C	С	26.8	С	26.6	26.8	Z
2626	44.5	47.2	45.7	45.7	42.5	С	45.8	46.2	41.6	42.3	43.8	D	С	44.3						
MEAN	39.0																			
S.D.	4.38																			
N	25																			

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX U

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP BODY WEIGHTS (GRAMS)

OUP III	1000	00 MG/M		. .													LACT	ATION	DAY 21	
'EMALE#	MEAN		PUP#	3	4	5		7	8	9	10	11	12	13	14	15	16	17	18	19
3601	42.6	 37.7	42.1	45.5	40.5					38 9	47 9	44.2	45 7	43 Q	40.0					
3602	35.0			34.1			C		33.9			32.0			40.0					
3603	41.4			42.3			C	41.1			C	34.9	43.3		40.2	39.7				
3604	35.2		37.2		37.9		C		35.2		36.0	32.7	C			0,000				
3605 1	NOT PREC	TNANE																		
3606	32.8	39.8	D	28.4	30.8	C	28.2	36.1	С	31.1	37.1	С	36.1	27.6						
3607	39.0	35.9	37.2	38.1	42.5	40.7	39.1	36.1	C	C	C	С	43.6	38.6	38.1					
3608	41.3	S	45.8	38.5	36.8	41.1	44.3	C	C	C	C	C	C	40.5	42.4	44.5	40.3	C	С	38
3609	41.5	38.3	36.9	41.0	45.6	42.8	39.5	45.7	44.0	39.3										
3610	41.8	36.3	42.3	41.5	42.4	C	42.3	C	43.2	42.8	40.7	43.8	42.5							
3611	40.7	40.5	42.4		47.0	38.9	43.9	40.2	40.2	40.9	34.3									
3612	38.1	S	35.6		C	39.0	38.3	C	39.8	37.9	36.3	39.5	38.2	37.2						
3613	30.4			29.6		34.9	C	C	28.9	31.5	26.9	31.3	D	C	30.3					
3614	44.0	C		42.6			49.0	C	C	45.1	46.3	39.7	46.1	41.8	C					
3615	36.5	D			37.2		34.7			C	37.2	37.2	35.8	34.1	С					
3616	42.0			40.9			45.4		C	37.0	С	44.1	С	C	C	40.1	41.3	C	39.2	
3617	34.6	36.2	37.8	37.9	27.4	34.9	C	32.5	36.6	С	35.1	C	33.4	34.3	C					
	NOT PREC																			
3619	43.5			51.4			C	30.6				43.3			39.9	C	C	47.9	S	
3620	41.5		43.6	40.5	41.8	47.9		C	_		43.0		32.6							
3621	42.8	C	46.0	C	C	41.9	C	41.7		42.0		С	42.3	С	40.1	44.0	42.5	С		
3622	42.5	44.5		47.7			40.2		40.4	36.7	43.5									
3623	39.7	41.7		37.6			41.2			39.6		_		_						
3624	38.3	39.0	42.0		39.9					37.2	42.3	С	39.5	С						
3625	52.6	52.6		52.0		M		54.9												
3626	34.2	33.1	31.9	29.1	31.7	32.5	38.1	32.0	37.5	36.3	33.4									
AN	39.7																			
	4.65																			
	24																			

PUP STATUS CODES: S-STILLBORN D-DIED C-CULLED M-MISSING

Huntingdon Life Sciences 00-4202 PAGE 414

Sponsor Study No: 211-TAME-1G

APPENDIX U

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP BODY WEIGHTS (GRAMS)

ROUP IV	2000	00 MG/M	13														LACT	ATION	DAY 21	
FEMALE#	MEAN		PUP# 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
4607	40.5						-											-		
4601	48.5 ACCIDENT			50.9	49.3	46.8	49.4													
4602 2	44.1		45.7			•	-	44 5	-											
4603	33.3	35.8	45.7 C		34.5										43.0					
4605	44.6	44.7	M			44.9		C		С		34.1	C		30.3		M	_	_	
4606	33.3		32.9					C		C		C			42.1	44.9	C	C	C	
4607	50.2	50.0		51.6	C			48.2	33.7	31.2	33.8	30.1	Ċ	С	33.8					
4608	38.2			35.5				40.2 C	~	42.2	-	25.2	~	27 0	20.7	41 0				
	NOT PREC		30.3	33.3	34.3	30.0	39.0	C	C	43.2	С	35.3	C	37.8	39.7	41.2				
4610	36.8		34 2	35.2	37 3	42 3	c	C	C	C	20 4	20 1	2 E 1	C	C	20.4	35.0			
4611	41.0			44.0							70.4 C	29.1 C		38.7	C	39.4	35.8			
4612	39.8	40.2	2,.5 C		43.1		72.3 C			37.2		C	39.6	30.7 C	С	42.0	22 E			
4613	39.7	42.0	41.4		C	C	C		70.2 C	39.5		C			37.7		38.2			
4614	39.8	41.5		41.1	_	_	· c			C	_	_		36.9	42.3		38.2 C	30 5		
4615	34.6	C	39.7	C			-			c					28.5					
4616	41.3	Ċ		43.3										Ç	20.5	30.9	30.5	C		
4617 N	NOT PREC	NANT							10.0		12.1	50.0	30.1							
4618	34.9	36.2	32.1	31.1	35.8	39.1	37.9	С	С	36.7	29.8	33.8	36.8	С	С					
4619	35.6			z							30.6	28.7	М	J	Ū					
4620	20.2		С	25.1		C		22.7	19.8		C			19.1	21.9	18 1				
4621	38.8	С	С	42.7	С	42.9			38.9	C		39.1			C		37.5			
4622	37.7	С	41.0	35.9		39.0		C					C	Ċ	34.1		C			
4623	35.7	35.7	35.9	M		37.6						C			31.9		ŭ			
4624	35.4	32.9	C	С	С			35.4							36.2		С	С		
4625	44.1	s	43.7	48.7	44.5												-	-		
4626	38.4			C						С	C	43.3	37.4	C	34.3	36.8	C	39.0		
IEAN	38.5																			
	6.02																			
	23																			

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX U

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP BODY WEIGHTS (GRAMS)

ROUP I	0 M	3/M3															LACT	ATION	DAY 28	
FEMALE#	MEAN		PUP#			-														
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1601	73.2	80.1	C	82.0	78.9	76.3	73.3	C	C	С	73.4	64.5	65.2	73.9	С	C	D	64.8	С	
1602	87.9	95.4	87.5	91.5	89.8	C	90.4	C	95.3	M	75.0	81.0	84.7	88.3						
1603	83.7	90.9	C	C	86.7	85.6	C	90.6	85.3	83.3	73.7	77.6	80.8	82.1						
1604	81.6	С	С	C	81.3	82.8	C	84.4	C	87.0	90.5	78.3	80.2	76.9	C	72.6	81.8			
1605	87.4	93.7	C	C	90.6	C	92.6	93.6	67.6	83.7	C	86.8	94.4	C	84.4	86.5				
1606	FOUND D	EAD																		
1607	76.1	81.1	85.0	C	85.2	75.4	67.5	C	C	75.2	С	70.9	73.6	79.0	С	68.1	C			
1608	78.1	77.7	C	C	72.9	84.1	85.0	83.2	73.7	73.0	C	70.5	81.8	79.4	С	С				
1609	NOT PRE	GNANT																		
1610	74.5	77.9	80.7	77.9	74.9	65.4	76.2	70.7	70.7	C	71.9	C	78.7	C	C					
1611	TOTAL L	ITTER L	oss																	
1612	75.2	С	74.1	74.9	82.9	86.5	C	75.5	73.6	76.2	С	65.5	69.9	73.0						
1613	77.0	66.1	79.0	76.8	81.5	78.9	78.5	C	C	C	C	C	C	C	74.2	C	77.8	83.7	73.1	M
1614	73.4	C	C	C	76.8	72.7	70.6	С	82.6	C	76.6	75.8	68.9	68.7	С	70.4	71.3	С		
1615	79.2	88.3	84.5	77.4	83.8	88.4	72.8	71.4	70.2	79.5	C	76.0	C							
1616	89.2	92.9	96.2	90.3	96.4	94.9	C	84.3	86.9	C	84.7	82.9	C	82.7						
1617	76.7	75.5	75.6	84.1	M	79.8	69.6	M	79.5	74.6	81.5	D	C	65.0	81.9	С				
1618	79.8	81.2	83.3	90.1	84.8	84.8	76.4	72.8	C	C	76.1	C	75.5	73.4	C					
1619	73.7	80.4	78.8	76.3	C	77.4	C	76.3	63.4	С	C	66.9	68.4	69.5	79.6					
1620	75.9	C	81.1	70.2	M	С	76.3	73.9	76.2	73.6	78.9	80.6	72.7	C	C	C	C			
1621	82.6	89.3	C	83.1	78.9	92.5	C	C	C	86.9	С	76.1	83.1	C	81.2	69.2	С	85.4		
1622	77.2	82.2	78.7	83.2	88.5	80.9	M	C	71.1	74.3	70.9	71.8	70. 7							
1623	71.9	76.4	75.9	77.1	56.9	82.3	72.0	67.3	69.7	68.1	73.2	C								
1624	83.9	88.6	89.9	89.4	85.5	88.5	87.0	73.1	80.8	79.0	C	С	C	C	77.6					
1625	NOT PRE	GNANT																		
1626	74.2	82.1	74.2	С	72.4	C	73.6	73.8	74.9	73.0	С	72.1	72.3	73.3						

MEAN 78.8 S.D. 5.12 N 22

PUP STATUS CODES: D-DIED C-CULLED M-MISSING

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX U

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP BODY WEIGHTS (GRAMS)

GROUP II	2000	MG/M3							OI DOL	Y WEIG	1115 (0						LACT	ATION	DAY 28	
FEMALE#	MEAN	1	PUP#	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
2601	69.7	73.0	65.0	69.9	76.2	71.7	74.9	66.0	68.6	64.6	67.6									
2602	75.7	75.8	C	Z	84.2		82.9	69.2	С	С	77.9	67.1	74.0	72.9	77.3	С				
2603	86.8	92.0	85.8	92.5	78.1	92.1	C	88.6	82.8	83.9	C	C	C	87.7	84.8	C				
2604	65.6	\mathbf{z}	53.3	68.8	67.3	C	65.2	C	C	61.6	80.1	M	D	M	59.3	69.2	D	M		
2605	72.7	78.0	70.8	С	73.5	72.7	77.1	70.5	69.9	67.1	С	74.0	73.6	С						
2606	75.5	78.9	80.3	C	C	82.2	75.0	80.1	68.1	C	C	72.8	72.7	70.1	74.8					
2607	79.9	C	69.5	84.3	C	84.4	93.0	C	C	C	80.0	81.2	82.5	80.9	C	71.8	71.6			
2608	73.3	80.2	83.3	С	72.5	C	68.5	C	70.8	79.2	69.7	74.1	C	66.8	C	C	68.4			
2609 N	NOT PREC	SNANT																		
2610	72.7	73.9	83.3	71.2	72.9	68.0	C	С	76.0	75.2	C	70.7	C	71.5	63.9					
2611	61.8	С	C	65.0	68.7	64.9	67.3	57.4	54.5	60.6	58.7	59.9	60.5							
2612	77.5	82.2	79.1	82.3	84.9	81.8	С	C	C	79.1	68.8	68.9	73.3	74.7						
2613	76.4	80.7	80.7	69.9	74.1	C	75.8	C	С	78.7	73.7	C	C		72.4	74.6				
2614	81.2	92.9	80.1	C	C	84.4	C	84.0	79.7	С	80.5	78.8	82.7	75.6	72.9					
2615	65.6	69.4	61.1	62.4	69.1	70.3	C	С	66.1	65.8	61.0	65.2	65.1	С	C					
2616	77.3	С	C	C	83.3	79.6	82.2	75.9	85.0	C	67.4	80.6	69.4		73.1	C				
2617	81.4	S	88.7	83.3	81.3	D	81.7	73.5	79.5	83.4	84.8	C	C	76.8	С	С	С			
2618	82.7	C	C	C	89.3	88.2	79.3	85.8	91.0	78.0	77.8	С	80.3	78.0						
2619	80.0	С	85.8	87.8	63.6	82.1	C	C	С	87.4	С	79.9	77.3	С	С	75.2	83.5	77.3		
2620	81.1	86.0	81.2	84.1	81.7	78.0	77.0	74.6	83.6	85.0	79.7									
2621	72.4	76.3	77.4	76.9	66.1	C	74.4	C	69.9	С	73.5	66.9	70.3	72.4						
2622	85.4	87.1	81.5	С	C	92.7	89.8	82.3	86.8	85.4	83.8	84.2	С	80.4						
2623	77.1	96.2	77.4	75.1	80.5	85.2	C	С	C	67.5	С	72.7	С	65.9	70.7	79.7				
2624	68.4	70.3	C	С	С	С	С	72.3		60.7	73.7	67.2	65.6	C	C	С	65.3	69.8	67.0	_
2625	67.5	69.9	64.2	С	77.2		С	73.9	C	71.8	60.1	С	D	C	С	58.0	С	60.5	58.1	Z
2626	82.9	87.3	87.7	87.1	82.0	С	85.6	82.7	75.3	77.0	82.3	D	С	82.2						
MEAN	75.6																			
S.D.	6.60																			
N	25																			

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX U

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP BODY WEIGHTS (GRAMS)

ROUP III	1000	00 MG/M						DUAL P				-					LACT	ATION	DAY 28	
FEMALE#	MEAN	1	PUP# 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	1
3601	81.7	78.9	84.4	80.0	83.0			-		79.1	88.8	81.5	84.3	81.1	75.4					
3602	71.0	84.7	67.3	69.9	73.2	D	Ċ		72.9		С	65.6	76.1							
3603	78.5	D	91.1	80.6	78.8	79.1	С		79.4	C	С	66.0	78.6	C	79.7	74.4				
3604	69.4	74.8	72.1	С		68.6	С	66.1	69.5	С	66.1	63.0	C	69.4	66.0					
	NOT PRE																			
3606	62.4	76.2	D	52.1	62.4	С	52.9	69.1	C	57.5	70.1	C	70.4	50.7						
3607	76.6	73.7	73.1	72.9		81.9	72.1	73.5	C	С	C	С	83.8	74.1	77.5					
3608	77.9	S	85.7	72.3	75.5	80.1	85.5	C	C	C	C	C	C	71.4	81.2	81.5	72.6	C	C	73
3609	76.4	61.9	63.0	77.9	86.5	75.7	77.8	90.2	83.7	71.2										
3610	81.4	73.1	83.1	85.5	85.4	C	82.3	C	79.9	86.1	76.6	83.9	78.2							
3611	77.7	75.7	80.6	76.7	92.6	76.1	86.9	72.4	71.8	76.2	67.8									
3612	69.8	s	65.4	71.4	C	74.6	74.4	C	74.2	71.7	61.5	68.3	66.9	69.9						
3613	61.0	64.2	58.1	61.3	65.5	67.3	C	C	55.8	63.3	54.2	59.1	D	C	61.7					
3614	79.5	С	76.0	80.9	79.2	86.9	86.7	С	С	79.7	81.0	71.3	82.8	70.3	C					
3615	67.4	D	83.1	67.1	67.9	73.8	64.1	50.9	C	С	69.0	68.3	64.5	65.5	C					
3616	79.9	90.9	85.7	83.2	С	C	83.6	81.5	C	71.8	C	80.6	C	С	C	73.0	74.7	С	74.0	
3617	68.2	70.0	76.0	77.2	60.9	64.3	С	59.0	74.2	C	64.4	C	69.0	67.1	С					
3618	NOT PRE	GNANT																		
3619	81.7	D	87.4	93.4	88.5	С	C	66.4	C	81.4	83.2	75.9	85.7	C	75.1	C	С	79.8	S	
3620	80.7	С	86.7	80.0	82.0	95.3	88.9	C	С	83.9	81.8	76.7	56.6	75.4						
3621	79.2	С	90.9	С	С	82.4	С	76.6	80.4	72.0	83.1	C	75.9	C	75.6	79.0	76.5	C		
3622	78.9	85.3	80.9	93.2	82.0	84.0	72.9	71.8	74.4	67.6	76.9									
3623	73.8	80.2	78.5	72.9	67.8	76.7	73.7	65.2	77.8	71.2										
3624	73.9	84.0	81.3	73.1	74.2	60.4	70.7	С	64.8	72.9	80.7	C	76.7	C						
3625	93.7	95.6	99.2	95.5	86.9	M	94.9	90.5	93.6											
3626	61.2	61.2	59.3	53.5	66.6	60.6	64.7	57.9	63.9	65.2	58.7									
EAN	75.1																			
.D.	7.66																			
N	24																			

PUP STATUS CODES: S-STILLBORN D-DIED C-CULLED M-MISSING

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX U

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP BODY WEIGHTS (GRAMS)

GROUP IV	2000	00 MG/M	13														LACT	CATION	DAY 28	
FEMALE#	MEAN	1	PUP#										10							
				3	4	5		7		9 . 	10	11	12	13	14	15	16	17	18	19
4601	86.4	D	85.1	91.6	89.1	80.7	85.3													
4602	ACCIDENT		,																	
4603	83.1		86.5	83.7	С	C	C	89.8	C	M	76.3	79.7	77.6	76.3	80.4	92.3				
4604	61.8	66.9	C	63.4	62.9	63.3	C	C	66.2	C	60.6	62.1	C	52.3	58.1	62.5	М			
4605	79.3	81.1	M	85.1	91.1	81.6	C	С	76.6	C	75.1	C	80.3	68.5	75.9	77.8	C	C	С	
4606	65.6	63.2	65.5	C	C	75.1	70.8	65.1	72.0	64.2	58.9	49.9	С	C	71.0					
4607	90.8	97.0	99.1	95.5	90.4	81.6	90.3	81.7												
4608	75.9	D	82.6	70.5	72.4	74.7	79.8	С	C	77.7	C	73.8	C	73.4	74.5	79.6				
4609 1	NOT PREC	NANT																		
4610	74.9	64.8	71.4	73.9	76.6	84.1	С	C	C	C	76.3	78.7	73.0	C	C	77.7	72.6			
4611	79.2	73.0	74.3	83.3	83.5	78.4	81.8	C	84.1	83.5	C	С	78.6	71.0						
4612	70.5	44.5	C	73.9	76.5	79.9	С	C	74.7	66.2	71.5	С	74.1	C	C	76.7	67.3			
4613	75.4	83.3	79.1	74.2	C	C	C	72.9	C	75.8	C	С	72.9	76.7	73.1	72.1	73.6			
4614	75.2	79.3	82.3	78.8	78.5	80.4	С	C	C	C	C	69.8	D	67.9	72.9	72.5	С	69.4		
4615	70.6	C	82.9	C	C	78.6	71.5	83.0	D	C	C	72.0	62.6	C	59.1	62.6	63.4	С		
4616	77.2	C	79.2	80.8	86.6	78.8	84.3	77.7	76.9	C	72.2	65.8	69.9							
4617 1	NOT PREC	SNANT																		
4618	69.5	72.6	68.2	69.3	74.4	76.0	72.3	C	С	71.6	56.7	65.1	69.1	C	С					
4619	69.9	D	D	\mathbf{z}	82.2	70.0	74.7	70.0	71.4	72.9	58.2	60.0	M							
4620	43.2	C	C	53.1	С	C	48.0	50.5	38.4	22.1	C	46.1	47.1	41.0	49.2	36.9				
4621	76.6	C	C	84.9	C	84.5	81.6	87.0	79.9	С	65.7	73.2	68.9	С	C	65.0	75.3			
4622	73.4	C	84.3	73.0	72.6	79.1	78.2	C	С	71.1	69.9	69.0	C	С	65.5	71.5	С			
4623	70.3	72.1	79.3	M	80.0	71.0	72.2	65.9	C	С	С	C	76.0	64.4	65.5	56.6				
4624	68.3	63.8	C	C	C	67.8	68.9	69.5	C	75.0	C	71.7	65.2	71.6	66.0	63.0	С	С		
4625	81.7	s	84.5	90.4	84.5	79.5	76.8	77.9	78.0								_	-		
4626	72.9	С	66.7	С	81.5	69.8	78.1	74.3	C	C	C	77.4	71.6	С	67.7	71.6	С	70.1		
1EAN	73.6																			
S.D.	9.36																			
N	23																			

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX V

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

GROUP I	•	
ANIMAL#	ORGAN	OBSERVATION
1101		NO REMARKABLE OBSERVATIONS
1102	LUNGS	DISCOLORED FOCI; SLIGHT LEFT AND DIAPHRAGMATIC LOBES - 0.1 CM IN DIAMETER, TAN
1103	LUNGS	DISCOLORED FOCI; SLIGHT; LEFT 0.1 CM IN DIAMETER, RED
1104		NO REMARKABLE OBSERVATIONS
1105		NO REMARKABLE OBSERVATIONS
1106		NO REMARKABLE OBSERVATIONS
1107	EXTERN	AL EXAM ULCERATION RIGHT UPPER LATERAL EXTERNAL FINDING NOT CONFIRMED
	SKIN	SCAB; MODERATE RIGHT UPPER LATERAL- 1.5 X 2.0 CM, RED TISSUE SAVED
1108	LUNGS	DISCOLORED FOCI; SLIGHT ALL LOBES - 0.1 CM IN DIAMETER, TAN
1109		NO REMARKABLE OBSERVATIONS
1110	LUNGS	DISCOLORED FOCI; SLIGHT ALL LOBES - 0.1 CM IN DIAMETER, TAN
1111		NO REMARKABLE OBSERVATIONS
1112		NO REMARKABLE OBSERVATIONS

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX V

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

GROUP I	0 MG/M3		
ANIMAL#		ORGAN	OBSERVATION
1113			NO REMARKABLE OBSERVATIONS
1114		KIDNEY	DILATED RENAL PELVIS; SLIGHT; RIGHT
1115		EXTERNAL EXAM	ALOPECIA EXTREMITIES/SNOUT EXTERNAL FINDING CONFIRMED
1116		KIDNEY	DILATED RENAL PELVIS; SLIGHT; RIGHT
1117			NO REMARKABLE OBSERVATIONS
1118		EXTERNAL EXAM	MASS LOWER DORSAL EXTERNAL FINDING NOT CONFIRMED ABSCESS LOWER DORSAL - 1.0 CM IN DIAMETER, TAN, THICK MATERIAL TISSUE SAVED
1119			NO REMARKABLE OBSERVATIONS
1120			NO REMARKABLE OBSERVATIONS
1121			NO REMARKABLE OBSERVATIONS
1122			NO REMARKABLE OBSERVATIONS
1123			NO REMARKABLE OBSERVATIONS
1124			NO REMARKABLE OBSERVATIONS
1125		EXTERNAL EXAM	ALOPECIA EXTREMITIES/SNOUT EXTERNAL FINDING CONFIRMED

Huntingdon Life Sciences 00-4202

Sponsor Study No: 211-TAME-1G ${\tt APPENDIX}\ {\tt V}$

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

PAGE 421

INDIVIDUAL PARENTAL NECROPSY OBSERVATIONS GROUP I 0 MG/M3 ANIMAL# ORGAN OBSERVATION 1126 NO REMARKABLE OBSERVATIONS

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX V

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

GROUP II	2000 MG/M3		
ANIMAL#		ORGAN	OBSERVATION
2101			DILATED RENAL PELVIS; SLIGHT; RIGHT ALOPECIA EXTREMITIES/SNOUT EXTERNAL FINDING CONFIRMED
2102			NO REMARKABLE OBSERVATIONS
2103		KIDNEY	DILATED RENAL PELVIS; SLIGHT; BILATERAL
2104			NO REMARKABLE OBSERVATIONS
2105			NO REMARKABLE OBSERVATIONS
2106		LUNGS	DISCOLORED FOCI; MODERATE ALL LOBES, WHITE, 0.1 CM IN DIAMETER
2107			NO REMARKABLE OBSERVATIONS
2108			NO REMARKABLE OBSERVATIONS
2109			NO REMARKABLE OBSERVATIONS
2110		EXTERNAL EXAM	ALOPECIA EXTREMITIES/SNOUT EXTERNAL FINDING CONFIRMED
2111			NO REMARKABLE OBSERVATIONS
2112			NO REMARKABLE OBSERVATIONS
2113		EXTERNAL EXAM	INCISORS MALOCCLUDED EXTERNAL FINDING CONFIRMED
		EXTERNAL EXAM	INCISORS BROKEN/MISSING EXTERNAL FINDING CONFIRMED

Huntingdon Life Sciences 00-4202 PAGE 423

Sponsor Study No: 211-TAME-1G

APPENDIX V

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

GROUP II	2000 MG/M3		INDIVIDUAL PARENTAL NECROPSY OBSERVATIONS
ANIMAL#		ORGAN	OBSERVATION
2114			NO REMARKABLE OBSERVATIONS
2115			NO REMARKABLE OBSERVATIONS
2116		KIDNEY	DILATED RENAL PELVIS; MODERATE; RIGHT
2117			NO REMARKABLE OBSERVATIONS
2118		KIDNEY	DILATED RENAL PELVIS; SLIGHT; RIGHT
2119		EXTERNAL EXAM	ALOPECIA EXTREMITIES/SNOUT EXTERNAL FINDING CONFIRMED
		EXTERNAL EXAM	EYE(S)- APPEAR DAMAGED; RIGHT EXTERNAL FINDING CONFIRMED TISSUE SAVED
2120			NO REMARKABLE OBSERVATIONS
2121			NO REMARKABLE OBSERVATIONS
2122		LUNGS	DISCOLORED FOCI; MODERATE ALL LOBES; 0.1 CM IN DIAMETER, TAN
		EXTERNAL EXAM	ALOPECIA EXTREMITIES/SNOUT EXTERNAL FINDING CONFIRMED
		EXTERNAL EXAM	ALOPECIA GENERAL EXTERNAL FINDING CONFIRMED
2123		EXTERNAL EXAM	INCISORS BROKEN/MISSING EXTERNAL FINDING CONFIRMED
2124			NO REMARKABLE OBSERVATIONS

Huntingdon Life Sciences 00-4202 PAGE 424

Sponsor Study No: 211-TAME-1G

APPENDIX V

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

GROUP II	2000 MG/M3		
ANIMAL#	ORGAN	OBSERVATION	
2125		NO REMARKABLE OBSERVATIONS	
2126	EXTERNAL EXA	M INCISORS BROKEN/MISSING EXTERNAL FINDING CONFIRMED	

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX V

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

GROUP III	10000 MG/M3		INDIVIDUAL PARENTAL NECROPSY OBSERVATIONS
ANIMAL#	·	ORGAN	OBSERVATION
3101			NO REMARKABLE OBSERVATIONS
3102			NO REMARKABLE OBSERVATIONS
3103		EXTERNAL EXAM	INCISORS MALOCCLUDED EXTERNAL FINDING CONFIRMED
3104			NO REMARKABLE OBSERVATIONS
3105			NO REMARKABLE OBSERVATIONS
3106		EXTERNAL EXAM	INCISORS BROKEN/MISSING EXTERNAL FINDING CONFIRMED
3107		EXTERNAL EXAM	ALOPECIA EXTREMITIES/SNOUT EXTERNAL FINDING CONFIRMED
3108			NO REMARKABLE OBSERVATIONS
3109		KIDNEY	DILATED RENAL PELVIS; MODERATE; RIGHT
3110			NO REMARKABLE OBSERVATIONS
3111		EXTERNAL EXAM	ALOPECIA EXTREMITIES/SNOUT EXTERNAL FINDING CONFIRMED
3112			NO REMARKABLE OBSERVATIONS
3113		EXTERNAL EXAM	ALOPECIA EXTREMITIES/SNOUT EXTERNAL FINDING CONFIRMED
3114			NO REMARKABLE OBSERVATIONS

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX V

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

GROUP III	10000 MG/M3		
ANIMAL#	OF		OBSERVATION
3115			NO REMARKABLE OBSERVATIONS
3116			NO REMARKABLE OBSERVATIONS
3117	LŬ	JNGS	DISCOLORED FOCI; SLIGHT ALL LOBES - 0.1 CM IN DIAMETER, TAN
3118			NO REMARKABLE OBSERVATIONS
3119			NO REMARKABLE OBSERVATIONS
3120			NO REMARKABLE OBSERVATIONS
3121			NO REMARKABLE OBSERVATIONS
3122			NO REMARKABLE OBSERVATIONS
3123			NO REMARKABLE OBSERVATIONS
3124			NO REMARKABLE OBSERVATIONS
3125			NO REMARKABLE OBSERVATIONS
3126	GC	ONADS E	PIDIDYMIDES- ABSCESS; RIGHT CAUDA; 2.0 X 1.2 CM, TAN, SOFT, THICK GREEN MATERIAL

Huntingdon Life Sciences 00-4202 PAGE 427

Sponsor Study No: 211-TAME-1G

APPENDIX V

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

GROUP IV	20000 MG/M3		INDIVIDUAL PARENTAL NECROPSY OBSERVATIONS
ANIMAL#		ORGAN	OBSERVATION
4101			NO REMARKABLE OBSERVATIONS
4102			NO REMARKABLE OBSERVATIONS
4103			NO REMARKABLE OBSERVATIONS
4104		EXTERNAL EXAM	ALOPECIA EXTREMITIES/SNOUT EXTERNAL FINDING CONFIRMED
4105		KIDNEY	DILATED RENAL PELVIS; MODERATE; RIGHT
4106		GONADS EXTERNAL EXAM EXTERNAL EXAM	EPIDIDYMIDES- ABSCESS; LEFT CAUDA, 1.0 CM IN DIAMETER, SOFT, GREEN, THICK MATERIAL INCISORS MALOCCLUDED EXTERNAL FINDING CONFIRMED INCISORS BROKEN/MISSING EXTERNAL FINDING CONFIRMED
4107		EXTERNAL EXAM	ALOPECIA EXTREMITIES/SNOUT EXTERNAL FINDING CONFIRMED
4108			NO REMARKABLE OBSERVATIONS
4109		EXTERNAL EXAM	ALOPECIA EXTREMITIES/SNOUT EXTERNAL FINDING CONFIRMED
4110			NO REMARKABLE OBSERVATIONS
4111			NO REMARKABLE OBSERVATIONS
4112		•••	NO REMARKABLE OBSERVATIONS

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX V

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

GROUP IV	20000 MG/M3		INDIVIDUAL PARENTAL NECROPSY OBSERVATIONS
ANIMAL#		ORGAN	OBSERVATION
4113		EXTERNAL EXAM	ALOPECIA EXTREMITIES/SNOUT EXTERNAL FINDING CONFIRMED
4114			NO REMARKABLE OBSERVATIONS
4115			NO REMARKABLE OBSERVATIONS
4116			NO REMARKABLE OBSERVATIONS
4117		LUNGS	DISCOLORED FOCI; MODERATE ALL LOBES; 0.1 CM IN DIAMETER, TAN
4118		EXTERNAL EXAM	INCISORS BROKEN/MISSING EXTERNAL FINDING CONFIRMED
4119			NO REMARKABLE OBSERVATIONS
4120			NO REMARKABLE OBSERVATIONS
4121			NO REMARKABLE OBSERVATIONS
4122		EXTERNAL EXAM	ALOPECIA EXTREMITIES/SNOUT EXTERNAL FINDING CONFIRMED
4123		EXTERNAL EXAM	INCISORS MALOCCLUDED EXTERNAL FINDING CONFIRMED INCISORS BROKEN/MISSING
4124			EXTERNAL FINDING CONFIRMED
4125			NO REMARKABLE OBSERVATIONS NO REMARKABLE OBSERVATIONS

Sponsor Study No: 211-TAME-1G

Huntingdon Life Sciences 00-4202

APPENDIX V

PAGE 429

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

GROUP IV	20000 MG/M3		
ANIMAL#	ORGAN	OBSERVATION	•
4126		NO REMARKABLE OBSERVATIONS	

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX V

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PARENTAL NECROPSY OBSERVATIONS

ROUP I 0 MG	/M3	INDIVIDUAL PARENTAL NECROPSY OBSERVATIONS
ANIMAL#	ORGAN	OBSERVATION
1601	ESTROUS CYCLE	DIESTRUS
1602	EXTERNAL EXAM	INCISORS MALOCCLUDED EXTERNAL FINING CONFIRMED
	EXTERNAL EXAM	INCISORS BROKEN/MISSING EXTERNAL FINDING CONFIRMED
	ESTROUS CYCLE	DIESTRUS
1603	ESTROUS CYCLE	DIESTRUS
1604	EXTERNAL EXAM	INCISORS MALOCCLUDED EXTERNAL FINDING CONFIRMED
	EXTERNAL EXAM	INCISORS BROKEN/MISSING EXTERNAL FINDING CONFIRMED
	ESTROUS CYCLE	DIESTRUS
1605	EXTERNAL EXAM	ALOPECIA GENERAL EXTERNAL FINDING CONFIRMED
	ESTROUS CYCLE	DIESTRUS
1606 DIED	ESTROUS CYCLE	DIESTRUS
1607	ESTROUS CYCLE	DIESTRUS
1608	ESTROUS CYCLE	DIESTRUS
1609 NP	EXTERNAL EXAM	ALOPECIA EXTREMITIES/SNOUT EXTERNAL FINDING CONFIRMED
	ESTROUS CYCLE	PROESTRUS
1610	LUNGS	DISCOLORED FOCI; MODERATE
	ESTROUS CYCLE	ALL LOBES; 0.1 CM IN DIAMETER, TAN DIESTRUS

DIED=FOUND DEAD

NP=NOT PREGNANT

Huntingdon Life Sciences 00-4202 PAGE 431

Sponsor Study No: 211-TAME-1G

APPENDIX V

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PARENTAL NECROPSY OBSERVATIONS

GROUP I	0 MG/M3	
ANIMAL#	ORGAN	OBSERVATION
1611 T	TLL ESTROUS CYCLE	DIESTRUS
1612	ESTROUS CYCLE	PROESTRUS
1613	ESTROUS CYCLE	ESTRUS
1614	ESTROUS CYCLE	DIESTRUS
1615	ESTROUS CYCLE	DIESTRUS
1616	ESTROUS CYCLE	METESTRUS
1617	ESTROUS CYCLE	DIESTRUS
1618	ESTROUS CYCLE	METESTRUS
1619	EXTERNAL EXAM	ALOPECIA EXTREMITIES/SNOUT EXTERNAL FINDING CONFIRMED
	EXTERNAL EXAM	ALOPECIA GENERAL EXTERNAL FINDING CONFIRMED
	ESTROUS CYCLE	DIESTRUS
1620	ESTROUS CYCLE	DIESTRUS
1621	EXTERNAL EXAM	ALOPECIA EXTREMITIES/SNOUT
	ESTROUS CYCLE	EXTERNAL FINDING CONFIRMED DIESTRUS
1622	LUNGS	DISCOLORED FOCI; SLIGHT ALL LOBES - LESS THAN 0.1 CM IN DIAMETER, TAN
	ESTROUS CYCLE	LEFT AND AZYGOUS LOBES - 0.1 CM IN DIAMETER, RED DIESTRUS

TLL=TOTAL LITTER LOSS

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX V

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PARENTAL NECROPSY OBSERVATIONS

GROUP I	0 MG/M3		
ANIMAL#		ORGAN	OBSERVATION
1623		ESTROUS CYCLE	DIESTRUS
1624		ESTROUS CYCLE	DIESTRUS
1625	NP	EXTERNAL EXAM	ALOPECIA EXTREMITIES/SNOUT EXTERNAL FINDING CONFIRMED
		ESTROUS CYCLE	DIESTRUS
1626		LUNGS	DISCOLORED FOCI; SLIGHT ALL LOBES - 0.1 CM IN DIAMETER, TAN
		ESTROUS CYCLE	DIESTRUS
	•		

NP=NOT PREGNANT

Sponsor Study No: 211-TAME-1G

APPENDIX V

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PARENTAL NECROPSY OBSERVATIONS

GROUP II	2000 MG/M3		INDIVIDUAL FARBNIAL NECROFSI OBSERVATIONS
ANIMAL#		ORGAN	OBSERVATION
2601		ESTROUS CYCLE	DIESTRUS
2602			DILATED RENAL PELVIS; EXTREME; BILATERAL DIESTRUS
2603		ESTROUS CYCLE	DIESTRUS
2604		LUNGS	DISCOLORED FOCI; SLIGHT ALL LOBES - LESS THAN 0.1 CM IN DIAMETER, TAN
		ESTROUS CYCLE	DIESTRUS
2605		EXTERNAL EXAM	MASS RIGHT UPPER LATERAL - 2.0 X 2.5 CM, TAN, FIRM EXTERNAL FINDING CONFIRMED RIGHT AXILLARY LYMPH NODES ENLARGERD, MODERATE TISSUES SAVED
		ESTROUS CYCLE	PROESTRUS
2606		LUNGS	DISCOLORED FOCI; MODERATE ALL LOBES; 0.1 CM TO 0.2 CM IN DIAMETER, TAN
		ESTROUS CYCLE	DIESTRUS
2607		ESTROUS CYCLE	ESTRUS
2608		EXTERNAL EXAM	ALOPECIA EXTREMITIES/SNOUT EXTERNAL FINDING CONFIRMED
		ESTROUS CYCLE	DIESTRUS
2609	NP	ESTROUS CYCLE	DIESTRUS
2610		ESTROUS CYCLE	DIESTRUS

NP=NOT PREGNANT

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX V

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PARENTAL NECROPSY OBSERVATIONS

GROUP II	2000 MG/M3		
ANIMAL#		ORGAN	OBSERVATION
2611		EXTERNAL EXAM	INCISORS MALOCCLUDED EXTERNAL FINDING CONFIRMED
		EXTERNAL EXAM	INCISORS BROKEN/MISSING EXTERNAL FINDING CONFIRMED
		ESTROUS CYCLE	DIESTRUS
2612		LUNGS	DISCOLORED FOCI; MODERATE ALL LOBES - 0.1 CM IN DIAMETER, TAN
		LIVER	ADHESION; EXTREME BETWEEN LEFT AND MEDIAN LOBES, AND TO THE DIAPHRAGM DIAPHRAGM SAVED WITH SAMPLE OF LIVER
		ESTROUS CYCLE	DIESTRUS
2613		ESTROUS CYCLE	DIESTRUS
2614		EXTERNAL EXAM	INCISORS MALOCCLUDED EXTERNAL FINDING CONFIRMED
		EXTERNAL EXAM	INCISORS BROKEN/MISSING EXTERNAL FINDING CONFIRMED
		ESTROUS CYCLE	DIESTRUS
2615		EXTERNAL EXAM	INCISORS BROKEN/MISSING EXTERNAL FINDING CONFIRMED
		ESTROUS CYCLE	ESTRUS
2616		ESTROUS CYCLE	DIESTRUS
2617		ESTROUS CYCLE	PROESTRUS
2618		KIDNEY ESTROUS CYCLE	DILATED RENAL PELVIS; SLIGHT; LEFT DIESTRUS

Huntingdon Life Sciences 00-4202

Sponsor Study No: 211-TAME-1G

APPENDIX V

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PARENTAL NECROPSY OBSERVATIONS

GROUP II	2000 MG/M3		INDIVIDUAL PARENTAL NECROPSY OBSERVATIONS
ANIMAL#		ORGAN	OBSERVATION
2619		ESTROUS CYCLE	DIESTRUS
2620		KIDNEY ESTROUS CYCLE	DILATED RENAL PELVIS; EXTREME; LEFT ESTRUS
2621		ESTROUS CYCLE	DIESTRUS
2622		ESTROUS CYCLE	DIESTRUS
2623		ESTROUS CYCLE	DIESTRUS
2624		ESTROUS CYCLE	DIESTRUS
2625		ESTROUS CYCLE	DIESTRUS
2626		EXTERNAL EXAM	ALOPECIA EXTREMITIES/SNOUT EXTERNAL FINDING CONFIRMED
		ESTROUS CYCLE	METESTRUS

Sponsor Study No: 211-TAME-1G

APPENDIX V

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PARENTAL NECROPSY OBSERVATIONS

GROUP III	10000 MG/M3		
ANIMAL#		ORGAN	OBSERVATION
3601		ESTROUS CYCLE	DIESTRUS
3602		ESTROUS CYCLE	DIESTRUS
3603		ESTROUS CYCLE	DIESTRUS
3604		ESTROUS CYCLE	DIESTRUS
3605	NP	ESTROUS CYCLE	DIESTRUS
3606		ESTROUS CYCLE	METESTRUS
3607		EXTERNAL EXAM	ALOPECIA EXTREMITIES/SNOUT
		ESTROUS CYCLE PROESTRUS	EXTERNAL FINDING NOT CONFIRMED PROESTRUS
3608		ESTROUS CYCLE	DIESTRUS
3609		ESTROUS CYCLE	DIESTRUS
3610		ESTROUS CYCLE	DIESTRUS
3611		ESTROUS CYCLE	DIESTRUS
3612		ESTROUS CYCLE	DIESTRUS
3613		ESTROUS CYCLE	DIESTRUS
3614		ESTROUS CYCLE	PROESTRUS
3615		LUNGS	DISCOLORED FOCI
		ESTROUS CYCLE	ALL LOBES; TAN, 0.1 CM - 0.2 CM IN DIAMETER DIESTRUS

NP=NOT PREGNANT

Huntingdon Life Sciences 00-4202

Sponsor Study No: 211-TAME-1G

APPENDIX V

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PARENTAL NECROPSY OBSERVATIONS

GROUP III 10000 MG	, ma	***************************************
ANIMAL#	ORGAN	OBSERVATION
3616	LUNGS	DISCOLORED FOCI; SLIGHT ALL LOBES - 0.1 CM IN DIAMETER, TAN
	ESTROUS CYCLE	DIESTRUS
3617	ESTROUS CYCLE	DIESTRUS
3618 NNMD	ESTROUS CYCLE	ESTRUS
3619	ESTROUS CYCLE	DIESTRUS
3620	ESTROUS CYCLE	DIESTRUS
3621	ESTROUS CYCLE	DIESTRUS
3622	ESTROUS CYCLE	ESTRUS
3623	OVARY	CYST(S); RIGHT
	ESTROUS CYCLE	1.3 CM IN DIAMETER, RED DIESTRUS
3624		NO REMARKABLE OBSERVATIONS
3625	EXTERNAL EXAM	ALOPECIA EXTREMITIES/SNOUT
	EXTERNAL EXAM	EXTERNAL FINDING CONFIRMED ALOPECIA GENERAL
		EXTERNAL FINDING CONFIRMED
	ESTROUS CYCLE	DIESTRUS
3626	ESTROUS CYCLE	DIESTRUS

NNMD=NOT PREG., NO MATING DATE

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX V

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PARENTAL NECROPSY OBSERVATIONS

GROUP IV	20000 MG/M3		
ANIMAL#		ORGAN	OBSERVATION
4601		ESTROUS CYCLE	DIESTRUS
4602 N	PAD	THYMUS	DISCOLORED FOCI; SLIGHT; BILATERAL 0.1-0.2 CM IN DIAMETER, RED TISSUE SAVED
		THORACIC CAVITY	
4603		ESTROUS CYCLE	DIESTRUS
4604		LUNGS	DISCOLORED FOCI; SLIGHT
		ESTROUS CYCLE	ALL LOBES - 0.1 CM IN DIAMETER, TAN DIESTRUS
4605		ESTROUS CYCLE	DIESTRUS
4606		ESTROUS CYCLE	DIESTRUS
4607		ESTROUS CYCLE	DIESTRUS
4608		ESTROUS CYCLE	DIESTRUS
4609	NP	ESTROUS CYCLE	DIESTRUS
4610		LUNGS	DISCOLORED FOCI; SLIGHT
		ESTROUS CYCLE	ALL LOBES - 0.1 CM IN DIAMETER, TAN DIESTRUS
4611		LUNGS	DISCOLORED FOCI; SLIGHT
		EXTERNAL EXAM	ALL LOBES - 0.1 CM IN DIAMETER, TAN EYE(S) - APPEAR DAMAGED
		ESTROUS CYCLE	EXTERNAL FINDING NOT CONFIRMED PROESTRUS

NP=NOT PREGNANT NPAD=ACCIDENTAL DEATH, NOT PG

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX V

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PARENTAL NECROPSY OBSERVATIONS

GROUP IV	20000 MG/M3		INDIVIDUAL PARENTAL NECROPSY OBSERVATIONS
ANIMAL#		ORGAN	OBSERVATION
4612		EXTERNAL EXAM	INCISORS MALOCCLUDED EXTERNAL FINDING CONFIRMED DIESTRUS
4613		ESTROUS CYCLE	DIESTRUS
4614		KIDNEY UTERUS ESTROUS CYCLE	DILATED RENAL PELVIS; SLIGHT; RIGHT CYST(S); SLIGHT; RIGHT RIGHT HORN - 0.3 CM IN DIAMETER, CLEAR DIESTRUS
4615		ESTROUS CYCLE	DIESTRUS
4616		ESTROUS CYCLE	DIESTRUS
4617	NP	ESTROUS CYCLE	ESTRUS
4618		LUNGS ESTROUS CYCLE	DISCOLORED FOCI; SLIGHT ALL LOBES - 0.1 CM IN DIAMETER, TAN DIESTRUS
4619		ESTROUS CYCLE	DIESTRUS
4620		ESTROUS CYCLE	DIESTRUS
4621		ESTROUS CYCLE	DIESTRUS
4622		LUNGS ESTROUS CYCLE	DISCOLORED FOCI; SLIGHT ALL LOBES - 0.1 CM IN DIAMETER, TAN ESTRUS
4623		ESTROUS CYCLE	DIESTRUS

NP=NOT PREGNANT

Huntingdon Life Sciences 00-4202

Sponsor Study No: 211-TAME-1G

APPENDIX V

PAGE 440

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PARENTAL NECROPSY OBSERVATIONS

GROUP IV	20000 MG/M3		
ANIMAL#		ORGAN	OBSERVATION
4624		ESTROUS CYCLE	DIESTRUS
4625		ESTROUS CYCLE	PROESTRUS
4626		ESTROUS CYCLE	DIESTRUS
	ANIMAL# 	ANIMAL# 4624 4625	ANIMAL# ORGAN 4624 ESTROUS CYCLE 4625 ESTROUS CYCLE

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP I	0 MG/M	3			
FEMALE#	PUP# S'	TATUS	DAY	ORGAN	OBSERVATION
1601	1M	к	28		NO REMARKABLE OBSERVATIONS
1001	2M	C	4		NO REMARKABLE OBSERVATIONS
	5M	ĸ	28		NO REMARKABLE OBSERVATIONS
	6M	K	28		NO REMARKABLE OBSERVATIONS
	7M	С	4		NO REMARKABLE OBSERVATIONS
	8F	С	4		NO REMARKABLE OBSERVATIONS
	9F	C	4		NO REMARKABLE OBSERVATIONS
	10F	K	28		NO REMARKABLE OBSERVATIONS
	11F	K	28		NO REMARKABLE OBSERVATIONS
	12F	K	28		NO REMARKABLE OBSERVATIONS
	14F	C	4		NO REMARKABLE OBSERVATIONS
	15F	C	4		NO REMARKABLE OBSERVATIONS
	16F	D	4 5	STOMACH	MILK IN STOMACH
	18F	C	4		NO REMARKABLE OBSERVATIONS
1602	3M	к	28		NO REMARKABLE OBSERVATIONS
	4M	K	28		NO REMARKABLE OBSERVATIONS
	5M	C	4		NO REMARKABLE OBSERVATIONS
	7M	С	4		NO REMARKABLE OBSERVATIONS
	8M	K	28		NO REMARKABLE OBSERVATIONS
	10F	K	28		NO REMARKABLE OBSERVATIONS
	12F	K	28	KIDNEY	M CYSTIC KIDNEY; SLIGHT; LEFT CORTEX - 0.1 CM IN DIAMETER, CLEAR TISSUE SAVED
	13F	K	20	KIDNEY	M CYSTIC KIDNEY; SLIGHT; LEFT
	135	K	20 .	KIDNEI	CORTEX - 0.1 CM IN DIAMETER, CLEAR TISSUE SAVED
1603	2M	С	4		NO REMARKABLE OBSERVATIONS
-	3M	Ċ	4		NO REMARKABLE OBSERVATIONS
	6M	Ċ	4		NO REMARKABLE OBSERVATIONS
	7M	ĸ	28		NO REMARKABLE OBSERVATIONS
	8M	K	28		NO REMARKABLE OBSERVATIONS
	9M	K	28		NO REMARKABLE OBSERVATIONS

SEX CODES: M-Male, F=Female, U=Undetermined

PUP STATUS CODES: D-DIED C-CULLED K-SCHEDULED SACRIFICE

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

OUP I	0	MG/I	EN.			INDIVIDUAL PUP NECKOPSY OBSERVATIONS
EMALE#	PU	JP# :	STATUS	DAY	ORGAN	OBSERVATION
1603	(CONT	UNU	 ED)			
		10F	K	28		NO REMARKABLE OBSERVATIONS
		11F	K	28		NO REMARKABLE OBSERVATIONS
		12F	K	28		NO REMARKABLE OBSERVATIONS
1604		1M	C	4		NO REMARKABLE OBSERVATIONS
		2M		4		NO REMARKABLE OBSERVATIONS
		3M	C	4		NO REMARKABLE OBSERVATIONS
		4M	K	28		NO REMARKABLE OBSERVATIONS
		5M	K	28		NO REMARKABLE OBSERVATIONS
		6M	C	4		NO REMARKABLE OBSERVATIONS
		8M	C	4		NO REMARKABLE OBSERVATIONS
		10M	ĸ	28		NO REMARKABLE OBSERVATIONS
		11F	K	28		NO REMARKABLE OBSERVATIONS
		12F	K	28		NO REMARKABLE OBSERVATIONS
		13F	K	28		NO REMARKABLE OBSERVATIONS
		14F	С	4		NO REMARKABLE OBSERVATIONS
1605		2M	С	4		NO REMARKABLE OBSERVATIONS
		ЗМ		4		NO REMARKABLE OBSERVATIONS
		5M	C	4		NO REMARKABLE OBSERVATIONS
		7M	K	28		NO REMARKABLE OBSERVATIONS
		9M	K	28		NO REMARKABLE OBSERVATIONS
		10M	С	4		NO REMARKABLE OBSERVATIONS
		13M	C	4		NO REMARKABLE OBSERVATIONS
		14M	K	28		NO REMARKABLE OBSERVATIONS
		15F	K	28		NO REMARKABLE OBSERVATIONS
1606	DPP	1F	S		LUNGS	LUNG FLOTATION TEST - STILLBORN NEGATIVE
					STOMACH	MILK UNDETERMINED
					GROSS EXAM	AUTOLYSIS POST-MORTEM CHANGES OBVIOUS AT THE TIME OF NECROPSY
		2M	U	1		NO REMARKABLE OBSERVATIONS
		3M		1		NO REMARKABLE OBSERVATIONS NO REMARKABLE OBSERVATIONS
		311	U			NO REMARKABLE OBSERVATIONS

SEX CODES: M-Male, F=Female, U=Undetermined

PUP STATUS CODES: S-STILLBORN C-CULLED K-SCHEDULED SACRIFICE U-UNSCHEDULED SACRIFICE

DPP=DIED POST PARTUM

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-IG

APPENDIX W

PAGE 443

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP I	0 MG/M3	3		
FEMALE#	PUP# ST	TATUS	DAY ORGAN	OBSERVATION
1606	(CONTINUE))		
	4M	Ū	1	NO REMARKABLE OBSERVATIONS
	5M	U	1	NO REMARKABLE OBSERVATIONS
	6M	U	1	NO REMARKABLE OBSERVATIONS
	7M	U	1	NO REMARKABLE OBSERVATIONS
	8M	U	1	NO REMARKABLE OBSERVATIONS
	9M	U	1	NO REMARKABLE OBSERVATIONS
	10M	Ū	1	NO REMARKABLE OBSERVATIONS
	11M	U	1	NO REMARKABLE OBSERVATIONS
	12F	U	1	NO REMARKABLE OBSERVATIONS
	13F	U	1	NO REMARKABLE OBSERVATIONS
	14F	U	1	NO REMARKABLE OBSERVATIONS
	15F	υ	1	NO REMARKABLE OBSERVATIONS
1607	3M	С	4	NO REMARKABLE OBSERVATIONS
	4 M	K	28	NO REMARKABLE OBSERVATIONS
	5M	K	28	NO REMARKABLE OBSERVATIONS
	6M	K	28	NO REMARKABLE OBSERVATIONS
	7F	C	4	NO REMARKABLE OBSERVATIONS
	8F	C	4	NO REMARKABLE OBSERVATIONS
	9F	K	28	NO REMARKABLE OBSERVATIONS
	10F	C	4	NO REMARKABLE OBSERVATIONS
	13F	K	28	NO REMARKABLE OBSERVATIONS
	14F	C	4	NO REMARKABLE OBSERVATIONS
	15F	K	28	NO REMARKABLE OBSERVATIONS
	16F	С	4	NO REMARKABLE OBSERVATIONS
1608	2M	С	4	NO REMARKABLE OBSERVATIONS
	3M	C	4	NO REMARKABLE OBSERVATIONS
	4M	K	28	NO REMARKABLE OBSERVATIONS
	5M	K	28	NO REMARKABLE OBSERVATIONS
	6M	K	28	NO REMARKABLE OBSERVATIONS
	9F	K	28	NO REMARKABLE OBSERVATIONS
	10F	C	4	NO REMARKABLE OBSERVATIONS
	11F	K	28	NO REMARKABLE OBSERVATIONS

SEX CODES: M-Male, F=Female, U=Undetermined

PUP STATUS CODES: C-CULLED K-SCHEDULED SACRIFICE U-UNSCHEDULED SACRIFICE

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP I	0 MG	/M3			INDIVIDUAL PUP NECROPSY OBSERVATIONS
FEMALE#	PUP#	STATUS	DAY	ORGAN	OBSERVATION
1608	(CONTIN	(18D)			
1000	13:		28		NO REMARKABLE OBSERVATIONS
	14		4		NO REMARKABLE OBSERVATIONS
	15		4		NO REMARKABLE OBSERVATIONS
1610	21	м к	28		NO REMARKABLE OBSERVATIONS
	31	M K	28		NO REMARKABLE OBSERVATIONS
	41	M K	28		NO REMARKABLE OBSERVATIONS
	6:		28		NO REMARKABLE OBSERVATIONS
	7:		28		NO REMARKABLE OBSERVATIONS
	83		28		NO REMARKABLE OBSERVATIONS
	9:		4		NO REMARKABLE OBSERVATIONS
	11	-	4		NO REMARKABLE OBSERVATIONS
	13		4		NO REMARKABLE OBSERVATIONS
	141	F C	4		NO REMARKABLE OBSERVATIONS
1611	TLL 1	M S		LUNGS	LUNG FLOTATION TEST - STILLBORN
					NEGATIVE
				STOMACH	MILK UNDETERMINED
				GROSS EXAM	AUTOLYSIS
					POST-MORTEM CHANGES OBVIOUS AT THE TIME OF NECROPSY
					CANNIBALIZED
				GROSS EXAM	INTERNAL SEX UNDETERMINED
1612	11	M C	4		NO REMARKABLE OBSERVATIONS
	21		28		NO REMARKABLE OBSERVATIONS
	41		28		NO REMARKABLE OBSERVATIONS
	51		28		NO REMARKABLE OBSERVATIONS
	61		4		NO REMARKABLE OBSERVATIONS
	81		28		NO REMARKABLE OBSERVATIONS
	101		4		NO REMARKABLE OBSERVATIONS
	111		28		NO REMARKABLE OBSERVATIONS
	121	F K	28		NO REMARKABLE OBSERVATIONS

SEX CODES: M-Male, F=Female, U=Undetermined

PUP STATUS CODES: S-STILLBORN C-CULLED K-SCHEDULED SACRIFICE

TLL=TOTAL LITTER LOSS

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

				INDIVIDUAL PUP NECROPSY OBSERVATIONS
ROUP I	0 MG/M:	3 		
FEMALE#	PUP# S'	ratus	DAY ORGAN	OBSERVATION
1613	2M	K	28	NO REMARKABLE OBSERVATIONS
	4M	K	28	NO REMARKABLE OBSERVATIONS
	5M	K	28	NO REMARKABLE OBSERVATIONS
	6F	K	28	NO REMARKABLE OBSERVATIONS
	7F	С	`4	NO REMARKABLE OBSERVATIONS
	8F	C	4	NO REMARKABLE OBSERVATIONS
	9F	C	4	NO REMARKABLE OBSERVATIONS
	10F	C	4	NO REMARKABLE OBSERVATIONS
	11F	C	4	NO REMARKABLE OBSERVATIONS
	12F	C	4	NO REMARKABLE OBSERVATIONS
	13F	С	4	NO REMARKABLE OBSERVATIONS
	14F	K	28	NO REMARKABLE OBSERVATIONS
	15F	C	4	NO REMARKABLE OBSERVATIONS
	16F	K	28	NO REMARKABLE OBSERVATIONS
1614	1M	C	4	NO REMARKABLE OBSERVATIONS
	2M	C	4	NO REMARKABLE OBSERVATIONS
	3 M	C	4	NO REMARKABLE OBSERVATIONS
	4M	K	28	NO REMARKABLE OBSERVATIONS
	7M	С	4	NO REMARKABLE OBSERVATIONS
	8M	K	28	NO REMARKABLE OBSERVATIONS
	9M	C	4	NO REMARKABLE OBSERVATIONS
	10M	ĸ	28	NO REMARKABLE OBSERVATIONS
	13F	K	28	NO REMARKABLE OBSERVATIONS
	14F	С	4	NO REMARKABLE OBSERVATIONS
	15F	K	28	NO REMARKABLE OBSERVATIONS
	16F	K	28	NO REMARKABLE OBSERVATIONS
	17F	C	4	NO REMARKABLE OBSERVATIONS
1615	1M	к	28	NO REMARKABLE OBSERVATIONS
	2M	K	28	NO REMARKABLE OBSERVATIONS
	5M	K	28	NO REMARKABLE OBSERVATIONS
	6F	K	28	NO REMARKABLE OBSERVATIONS
	7F	K	28	NO REMARKABLE OBSERVATIONS

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP I	0 MG/M	3				
FEMALE#	PUP# STATUS DAY ORGAN			OBSERVATION		
1615	(CONTINUE)	 D)				
	10F	C	4	NO REMARKABLE OBSERVATIONS		
	11F	K	28	NO REMARKABLE OBSERVATIONS		
	12F	C	4	NO REMARKABLE OBSERVATIONS		
1616	зм	K	28	NO REMARKABLE OBSERVATIONS		
	4M	K	28	NO REMARKABLE OBSERVATIONS		
	5M	K	28	NO REMARKABLE OBSERVATIONS		
	6M	C	4	NO REMARKABLE OBSERVATIONS		
	7F	K	28	NO REMARKABLE OBSERVATIONS		
	8F	K	28	NO REMARKABLE OBSERVATIONS		
	9 F	C	4	NO REMARKABLE OBSERVATIONS		
	10F	ĸ	28	NO REMARKABLE OBSERVATIONS		
	12F	С	4	NO REMARKABLE OBSERVATIONS		
1617	1M	K	28	NO REMARKABLE OBSERVATIONS		
	5M	K	28	NO REMARKABLE OBSERVATIONS		
	6M	K	28	NO REMARKABLE OBSERVATIONS		
	8F	K	28	NO REMARKABLE OBSERVATIONS		
	10F	K	28 KIDNEY	M CYSTIC KIDNEY; SLIGHT; BILATERAL CORTEX - 0.1 CM IN DIAMETER, CLEAR		
				TISSUE SAVED		
	11F	D	2 GROSS E			
				POST-MORTEM CHANGES OBVIOUS AT THE TIME OF NECROPSY		
	12F	C	4	NO REMARKABLE OBSERVATIONS		
	13F	K	28	NO REMARKABLE OBSERVATIONS		
	15F	С	4	NO REMARKABLE OBSERVATIONS		
1618	3M	K	28	NO REMARKABLE OBSERVATIONS		
	4M	K	28	NO REMARKABLE OBSERVATIONS		
	5M	K	28	NO REMARKABLE OBSERVATIONS		
	6 F	K	28	NO REMARKABLE OBSERVATIONS		
	8F	C	4	NO REMARKABLE OBSERVATIONS		
	9F	C	4	NO REMARKABLE OBSERVATIONS		
	10F	ĸ	28	NO REMARKABLE OBSERVATIONS		

SEX CODES: M-Male, F=Female, U=Undetermined

PUP STATUS CODES: D-DIED C-CULLED K-SCHEDULED SACRIFICE

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-IG

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP I	0 MG/M3	3			
FEMALE#	PUP# SI	ratus	DAY ORGAN	OBSERVATION	-
1618	(CONTINUED)				-
	11F	C	4	NO REMARKABLE OBSERVATIONS	
	13F	K	28	NO REMARKABLE OBSERVATIONS	
	14F	C	4	NO REMARKABLE OBSERVATIONS	
1619	2M	K	28	NO REMARKABLE OBSERVATIONS	
1013	3M	ĸ	28	NO REMARKABLE OBSERVATIONS	
	4M	C	4	NO REMARKABLE OBSERVATIONS	
	5M	ĸ	28	NO REMARKABLE OBSERVATIONS	
	6M	C	4	NO REMARKABLE OBSERVATIONS	
	9F	C	4	NO REMARKABLE OBSERVATIONS	
	10F	C	4	NO REMARKABLE OBSERVATIONS	
	12F	K	28	NO REMARKABLE OBSERVATIONS	
	13F	K	28	NO REMARKABLE OBSERVATIONS	
	14F	K	28	NO REMARKABLE OBSERVATIONS	
1620	1M	С	4	NO REMARKABLE OBSERVATIONS	
1020	2M	ĸ	28	NO REMARKABLE OBSERVATIONS	
	3M	K	28	NO REMARKABLE OBSERVATIONS	
	5M	C	4	NO REMARKABLE OBSERVATIONS	
	6M	ĸ	28	NO REMARKABLE OBSERVATIONS	
	8F	ĸ	28	NO REMARKABLE OBSERVATIONS	
	11F	ĸ	28	NO REMARKABLE OBSERVATIONS	
	12F	ĸ	28	NO REMARKABLE OBSERVATIONS	
	13F	C	4	NO REMARKABLE OBSERVATIONS	
	14F	C	4	NO REMARKABLE OBSERVATIONS	
	15F	Ċ	4	NO REMARKABLE OBSERVATIONS	
	16F	C	4	NO REMARKABLE OBSERVATIONS	
1621	1M	K	28	NO REMARKABLE OBSERVATIONS	
1021	2M	C	4	NO REMARKABLE OBSERVATIONS	
	3M	ĸ	28	NO REMARKABLE OBSERVATIONS	
	6M	C	4	NO REMARKABLE OBSERVATIONS	
	7M	C	4	NO REMARKABLE OBSERVATIONS	
	8M	C	4	NO REMARKABLE OBSERVATIONS	

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

0 MG/M	3		INDIVIDUAL PUP NECROPSY OBSERVATIONS
		DAY ORGAN	OBSERVATION
•	•		NO DEMONSTRATIONS
			NO REMARKABLE OBSERVATIONS
17F	K	28	NO REMARKABLE OBSERVATIONS
1M	K	28	NO REMARKABLE OBSERVATIONS
4M	K	28	NO REMARKABLE OBSERVATIONS
5M	K	28	NO REMARKABLE OBSERVATIONS
7M	С	4	NO REMARKABLE OBSERVATIONS
8F	K	28	NO REMARKABLE OBSERVATIONS
10F	ĸ	28	NO REMARKABLE OBSERVATIONS
11F	K	28	NO REMARKABLE OBSERVATIONS .
1M	K	28	NO REMARKABLE OBSERVATIONS
2M			NO REMARKABLE OBSERVATIONS
4M			NO REMARKABLE OBSERVATIONS
6F	K	28	NO REMARKABLE OBSERVATIONS
			NO REMARKABLE OBSERVATIONS
		28	NO REMARKABLE OBSERVATIONS
11F	C	4	NO REMARKABLE OBSERVATIONS
1 M	к	28	NO REMARKABLE OBSERVATIONS
			NO REMARKABLE OBSERVATIONS
13F	C	4	NO REMARKABLE OBSERVATIONS
- J	_	-	
	PUP# S' (CONTINUE) 9M 10M 13F 14F 15F 16F 17F 1M 4M 5M 7M 8F 10F 11F 1M 2M 4M 6F 8F 9F 11F 1M 3M 4M 7F 9F 10F 11F 12F	(CONTINUED) 9M	PUP# STATUS DAY ORGAN (CONTINUED) 9M K 28 10M C 4 13F C 4 14F K 28 15F K 28 16F C 4 17F K 28 1M K 28 4M K 28 5M K 28 7M C 4 8F K 28 10F K 28 11F K 28 11F K 28 11F C 4 1M K 28 2M K 28 2M K 28 4M K 28 4M K 28 4M K 28 4M K 28 4M K 28 4F

Sponsor Study No: 211-TAME-1G APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

(GROUP I	0 MG/M3											
	FEMALE#	PUP# ST	TATUS	DAY ORGAN	OBSERVATION								
	1626	1M	K	28	NO REMARKABLE	OBSERVATIONS							
		2M	K	28	NO REMARKABLE	OBSERVATIONS							
		3F	С	4	NO REMARKABLE	OBSERVATIONS							
		4 F	K	28	NO REMARKABLE	OBSERVATIONS							
		5 F	С	4	NO REMARKABLE	OBSERVATIONS							
		7F	K	28	NO REMARKABLE	OBSERVATIONS							
		10F	C	4	NO REMARKABLE	OBSERVATIONS							
		11F	K	28	NO REMARKABLE	OBSERVATIONS							
		13F	K	28	NO REMARKABLE	OBSERVATIONS							

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP II	2000 MG	5/M3			INDIVIDUAL FOR MECKOTO! OSDEK		
FEMALE#	PUP# ST	 RUTUS	DAY	ORGAN	OBSERVATION		
2601	2M	ĸ	28		NO REMARKABLE OBSERVATIONS		
	3M	ĸ	28		NO REMARKABLE OBSERVATIONS		
	7M	K	28		NO REMARKABLE OBSERVATIONS		
	8F	K	28		NO REMARKABLE OBSERVATIONS		
	9 F	K	28		NO REMARKABLE OBSERVATIONS		
	10F	ĸ	28		NO REMARKABLE OBSERVATIONS		
2602	1M	ĸ	28		NO REMARKABLE OBSERVATIONS		
	2M	C	4		NO REMARKABLE OBSERVATIONS		
	3M	\mathbf{z}	1	GROSS EXAM	CANNIBALIZED		
				GROSS EXAM	INTERNAL SEX UNDETERMINED		
				STOMACH	MILK UNDETERMINED		
	4M	K	28		NO REMARKABLE OBSERVATIONS		
	5M	ĸ	28		NO REMARKABLE OBSERVATIONS		
	8M	C	4		NO REMARKABLE OBSERVATIONS		
	9F	С	4		NO REMARKABLE OBSERVATIONS		
	11F	K	28		NO REMARKABLE OBSERVATIONS		
	12F	ĸ	28		NO REMARKABLE OBSERVATIONS		
	14F	K	28		NO REMARKABLE OBSERVATIONS		
	15F	C	4		NO REMARKABLE OBSERVATIONS		
2603	1M	K	28		NO REMARKABLE OBSERVATIONS		
	2M	K	28		NO REMARKABLE OBSERVATIONS		
	3M	K	28		NO REMARKABLE OBSERVATIONS		
	6M	C	4		NO REMARKABLE OBSERVATIONS		
	8F	K	28		NO REMARKABLE OBSERVATIONS		
	9F	ĸ	28		NO REMARKABLE OBSERVATIONS		
	10F	C	4		NO REMARKABLE OBSERVATIONS		
	11F	C	4		NO REMARKABLE OBSERVATIONS		
	12F	C	4		NO REMARKABLE OBSERVATIONS		
	13F	K	28		NO REMARKABLE OBSERVATIONS		
	15F	C	4		NO REMARKABLE OBSERVATIONS		

SEX CODES: M-Male, F=Female, U=Undetermined

PUP STATUS CODES: C-CULLED Z-CANNIBALIZED K-SCHEDULED SACRIFICE

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

ROUP II	2000				
FEMALE#	PUP#	STATUS	DAY	ORGAN	OBSERVATION
2604	1M	ı z	23	GROSS EXAM	CANNIBALIZED
					PARTIALY CANNIBALIZED, HEAD, NECK, BOTH FORELIMB AND PART OF THORACIC COLUMN PRESENT FRONTAL BONES FRACTURED
				STOMACH	MILK UNDETERMINED
	3M	K	28	210141011	NO REMARKABLE OBSERVATIONS
	4M		28		NO REMARKABLE OBSERVATIONS
	5M		4		NO REMARKABLE OBSERVATIONS
	6M		28		NO REMARKABLE OBSERVATIONS
	7 F		4		NO REMARKABLE OBSERVATIONS
	8F	C	4		NO REMARKABLE OBSERVATIONS
	9F		28		NO REMARKABLE OBSERVATIONS
	10F	K	28		NO REMARKABLE OBSERVATIONS
	12F	D	8	GROSS EXAM	AUTOLYSIS
					POST-MORTEM CHANGES OBVIOUS AT THE TIME OF NECROPSY
				GROSS EXAM	INTERNAL SEX UNDETERMINED
				STOMACH	NO MILK IN STOMACH
	14F	K	28		NO REMARKABLE OBSERVATIONS
	16F	D	4	STOMACH	MILK IN STOMACH
2605	1M		28		NO REMARKABLE OBSERVATIONS
	3M		4		NO REMARKABLE OBSERVATIONS
	5M	K	28		NO REMARKABLE OBSERVATIONS
	6M		28		NO REMARKABLE OBSERVATIONS
	9F		28		NO REMARKABLE OBSERVATIONS
	10F		4		NO REMARKABLE OBSERVATIONS
	11F		28		NO REMARKABLE OBSERVATIONS
	12F		28		NO REMARKABLE OBSERVATIONS
	13F	С	4		NO REMARKABLE OBSERVATIONS
2606	1M		28		NO REMARKABLE OBSERVATIONS
	3M		4		NO REMARKABLE OBSERVATIONS
	4M		4		NO REMARKABLE OBSERVATIONS
	6M	K	28		NO REMARKABLE OBSERVATIONS

SEX CODES: M-Male, F=Female, U=Undetermined

PUP STATUS CODES: D-DIED C-CULLED Z-CANNIBALIZED K-SCHEDULED SACRIFICE

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

ROUP II	2000 M	G/M3		INDIVIDUAL POP NECROPSY OBSERVATIONS
FEMALE#	PUP# S'	TATUS	DAY ORGAN	OBSERVATION
2606	(CONTINUE)	 D)		
	7M	K	28	NO REMARKABLE OBSERVATIONS
	8F	K	28	NO REMARKABLE OBSERVATIONS
	9F	С	4	NO REMARKABLE OBSERVATIONS
	10F	C	4	NO REMARKABLE OBSERVATIONS
	12F	K	28	NO REMARKABLE OBSERVATIONS
	14F	K	28	NO REMARKABLE OBSERVATIONS
2607	1M	С	4	NO REMARKABLE OBSERVATIONS
	3M	K	28	NO REMARKABLE OBSERVATIONS
	4M	C	4	NO REMARKABLE OBSERVATIONS
	5M	K	28	NO REMARKABLE OBSERVATIONS
	6M	K	28	NO REMARKABLE OBSERVATIONS
	7M	C	4	NO REMARKABLE OBSERVATIONS
	M8	C	4	NO REMARKABLE OBSERVATIONS
	9M	C	4	NO REMARKABLE OBSERVATIONS
	12F	K	28	NO REMARKABLE OBSERVATIONS
	13F	K	28	NO REMARKABLE OBSERVATIONS
	14F	C	4	NO REMARKABLE OBSERVATIONS
	15F	K	28	NO REMARKABLE OBSERVATIONS
2608	2M	ĸ	28	NO REMARKABLE OBSERVATIONS
	3M	C	4	NO REMARKABLE OBSERVATIONS
	5M	С	4	NO REMARKABLE OBSERVATIONS
	6M	K	28	NO REMARKABLE OBSERVATIONS
	7M	C	4	NO REMARKABLE OBSERVATIONS
	M8	K	28	NO REMARKABLE OBSERVATIONS
	9F	K	28	NO REMARKABLE OBSERVATIONS
	10F	K	28	NO REMARKABLE OBSERVATIONS
	11F	K	28	NO REMARKABLE OBSERVATIONS
	12F	C	4	NO REMARKABLE OBSERVATIONS
	14F	C	4	NO REMARKABLE OBSERVATIONS
	15F	C	4	NO REMARKABLE OBSERVATIONS

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

ROUP II	2000	MG/M3		
FEMALE#	PUP#	STATUS	DAY ORGAN	OBSERVATION
				NO DEMARKADE E ODGEDVANTONG
2610	11		28	NO REMARKABLE OBSERVATIONS NO REMARKABLE OBSERVATIONS
	41		28	NO REMARKABLE OBSERVATIONS NO REMARKABLE OBSERVATIONS
	5N		28	NO REMARKABLE OBSERVATIONS NO REMARKABLE OBSERVATIONS
	6 E		4	NO REMARKABLE OBSERVATIONS NO REMARKABLE OBSERVATIONS
	71		4	
	81		28	NO REMARKABLE OBSERVATIONS
	91		28	NO REMARKABLE OBSERVATIONS
	101		4	NO REMARKABLE OBSERVATIONS
	121		4	NO REMARKABLE OBSERVATIONS
	131	F K	28	NO REMARKABLE OBSERVATIONS
2611	11	1 C	4	NO REMARKABLE OBSERVATIONS
	21	4 C	4	NO REMARKABLE OBSERVATIONS
	41	4 K	28	NO REMARKABLE OBSERVATIONS
	61	4 K	28	NO REMARKABLE OBSERVATIONS
	71	4 K	28	NO REMARKABLE OBSERVATIONS
	101	? K	28	NO REMARKABLE OBSERVATIONS
	118	7 K	28	NO REMARKABLE OBSERVATIONS
	121	F K	28	NO REMARKABLE OBSERVATIONS
2612	1.1	и к	28	NO REMARKABLE OBSERVATIONS
	31	4 K	28	NO REMARKABLE OBSERVATIONS
	41		28	NO REMARKABLE OBSERVATIONS
	61	4 C	4	NO REMARKABLE OBSERVATIONS
	71		4	NO REMARKABLE OBSERVATIONS
	18		4	NO REMARKABLE OBSERVATIONS
	113		28	NO REMARKABLE OBSERVATIONS
	121		28	NO REMARKABLE OBSERVATIONS
	131		28	NO REMARKABLE OBSERVATIONS
2613	11	M K	28	NO REMARKABLE OBSERVATIONS
2010	31		28	NO REMARKABLE OBSERVATIONS
	41		28	NO REMARKABLE OBSERVATIONS
	51		4	NO REMARKABLE OBSERVATIONS
	וכ		7	NO REPARRABLE OBSERVATIONS

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP II	2000 M	G/M3		INDIVIDUAL TOT MUCKOTOT ODDBAVATIONS				
FEMALE#	PUP# STATUS		B DAY ORGAN	OBSERVATION				
2613	(CONTINUED)							
2013	7F	C	4	NO REMARKABLE OBSERVATIONS				
	8F	C	4	NO REMARKABLE OBSERVATIONS				
	9F	K	28	NO REMARKABLE OBSERVATIONS				
	10F	K	28	NO REMARKABLE OBSERVATIONS				
	11F	С	4	NO REMARKABLE OBSERVATIONS				
	12F	С	4	NO REMARKABLE OBSERVATIONS				
	15F	K	28	NO REMARKABLE OBSERVATIONS				
2614	1M	K	28	NO REMARKABLE OBSERVATIONS				
	2M	K	28	NO REMARKABLE OBSERVATIONS				
	3M	C	4	NO REMARKABLE OBSERVATIONS				
	4M	C	4	NO REMARKABLE OBSERVATIONS				
	5M	K	28	NO REMARKABLE OBSERVATIONS				
	6M	C	4	NO REMARKABLE OBSERVATIONS				
	9M	C	4	NO REMARKABLE OBSERVATIONS				
	11F	K	28	NO REMARKABLE OBSERVATIONS				
•	12F	K	28	NO REMARKABLE OBSERVATIONS				
	14F	K	28	NO REMARKABLE OBSERVATIONS				
2615	1M	ĸ	28	NO REMARKABLE OBSERVATIONS				
	4M	K	28	NO REMARKABLE OBSERVATIONS				
	5M	K	28	NO REMARKABLE OBSERVATIONS				
	6F	C	4	NO REMARKABLE OBSERVATIONS				
	7F	C	4	NO REMARKABLE OBSERVATIONS				
	10F	ĸ	28	NO REMARKABLE OBSERVATIONS				
	11F	K	28	NO REMARKABLE OBSERVATIONS				
	12F	K	28	NO REMARKABLE OBSERVATIONS				
	13F	C	4	NO REMARKABLE OBSERVATIONS				
	14F	C	4	NO REMARKABLE OBSERVATIONS				
2616	1M	C	4	NO REMARKABLE OBSERVATIONS				
	2M	C	4	NO REMARKABLE OBSERVATIONS				
	3M	C	4	NO REMARKABLE OBSERVATIONS				
	4 M	K	28	NO REMARKABLE OBSERVATIONS				

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

					INDIVIDUAL PUP NECROPSI OBSERVATIONS
GROUP II	2000	MG/M3			
FEMALE#	PUP#	STATUS	DAY	ORGAN	OBSERVATION
2616	(CONTINU				
	5M		28		NO REMARKABLE OBSERVATIONS
	7N		28		NO REMARKABLE OBSERVATIONS
	9 F		4		NO REMARKABLE OBSERVATIONS
	10F		28		NO REMARKABLE OBSERVATIONS
	12E		28		NO REMARKABLE OBSERVATIONS
	13E		28		NO REMARKABLE OBSERVATIONS
	15F	F C	4		NO REMARKABLE OBSERVATIONS
2617	11	n s		LUNGS	LUNG FLOTATION TEST - STILLBORN
					NEGATIVE
				STOMACH	NO MILK IN STOMACH
	2M	N K	28		NO REMARKABLE OBSERVATIONS
	314	4 K	28		NO REMARKABLE OBSERVATIONS
	41	И K	28		NO REMARKABLE OBSERVATIONS
	5M	d D	15	STOMACH	MILK IN STOMACH
	7 F	₹ K	28		NO REMARKABLE OBSERVATIONS
	9 F	? K	28		NO REMARKABLE OBSERVATIONS
	11F	F C	4		NO REMARKABLE OBSERVATIONS
	12F	F C	4		NO REMARKABLE OBSERVATIONS
	13E	F K	28		NO REMARKABLE OBSERVATIONS
	14F	? C	4		NO REMARKABLE OBSERVATIONS
	15F	F C	4		NO REMARKABLE OBSERVATIONS
	16F	7 C	4		NO REMARKABLE OBSERVATIONS
2618	1M	M C	4		NO REMARKABLE OBSERVATIONS
	2M	4 C	4		NO REMARKABLE OBSERVATIONS
	3N	d C	4		NO REMARKABLE OBSERVATIONS
	4 N	4 K	28		NO REMARKABLE OBSERVATIONS
	5M	4 K	28		NO REMARKABLE OBSERVATIONS
	6M	1 K	28		NO REMARKABLE OBSERVATIONS
	10F	? K	28		NO REMARKABLE OBSERVATIONS
	11F	? C	4		NO REMARKABLE OBSERVATIONS
	13F	F K	28		NO REMARKABLE OBSERVATIONS
	14 F	F K	28		NO REMARKABLE OBSERVATIONS

SEX CODES: M-Male, F=Female, U=Undetermined

PUP STATUS CODES: S-STILLBORN D-DIED C-CULLED K-SCHEDULED SACRIFICE

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP II	2000 M	3/M3		
FEMALE#	PUP# S	ratus	DAY ORGAN	OBSERVATION
2619	1M	C	4	NO REMARKABLE OBSERVATIONS
	2M	K	28	NO REMARKABLE OBSERVATIONS
	3M	K	28	NO REMARKABLE OBSERVATIONS
	6M	C	4	NO REMARKABLE OBSERVATIONS
	7M	C	4	NO REMARKABLE OBSERVATIONS
	M8	C	4	NO REMARKABLE OBSERVATIONS
	9 M	K	28	NO REMARKABLE OBSERVATIONS
	10M	С	4	NO REMARKABLE OBSERVATIONS
	11F	K	28	NO REMARKABLE OBSERVATIONS
	12F	K	28	NO REMARKABLE OBSERVATIONS
	13F	С	4	NO REMARKABLE OBSERVATIONS
	14F	C	4	NO REMARKABLE OBSERVATIONS
	15F	K	28	NO REMARKABLE OBSERVATIONS
2620	2M	K	28	NO REMARKABLE OBSERVATIONS
	3M	K	28	NO REMARKABLE OBSERVATIONS
	4M	K	28	NO REMARKABLE OBSERVATIONS
	8F	K	28	NO REMARKABLE OBSERVATIONS
	9F	K	28	NO REMARKABLE OBSERVATIONS
	10F	K	28	NO REMARKABLE OBSERVATIONS
2621	1M	K	28	NO REMARKABLE OBSERVATIONS
	2M	K	28	NO REMARKABLE OBSERVATIONS
	3M	K	28	NO REMARKABLE OBSERVATIONS
	5F	С	4	NO REMARKABLE OBSERVATIONS
	7F	C	4	NO REMARKABLE OBSERVATIONS
	8F	K	28	NO REMARKABLE OBSERVATIONS
	9 F	C	4	NO REMARKABLE OBSERVATIONS
	10F	K	28	NO REMARKABLE OBSERVATIONS
	13F	K	28	NO REMARKABLE OBSERVATIONS
2622	1M	ĸ	28	NO REMARKABLE OBSERVATIONS
	2M	K	28	NO REMARKABLE OBSERVATIONS
	3M	С	4	NO REMARKABLE OBSERVATIONS

Sponsor Study No: 211-TAME-1G

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP II	2000	MG/M3		
FEMALE#	PUP#	STATUS	DAY ORGAN	N OBSERVATION
2622	(CONTINU	JED)		
	41	-	4	NO REMARKABLE OBSERVATIONS
	7M		28	NO REMARKABLE OBSERVATIONS
	9 F	r K	28	NO REMARKABLE OBSERVATIONS
	10F	K	28	NO REMARKABLE OBSERVATIONS
	12F	r C	4	NO REMARKABLE OBSERVATIONS
	13F	K	28	NO REMARKABLE OBSERVATIONS
2623	1M	ı ĸ	28	NO REMARKABLE OBSERVATIONS
	2M	ı K	28	NO REMARKABLE OBSERVATIONS
	5M	I K	28	NO REMARKABLE OBSERVATIONS
	6M	1 C	4	NO REMARKABLE OBSERVATIONS
	7M	I C	4	NO REMARKABLE OBSERVATIONS
	8M	I C	4	NO REMARKABLE OBSERVATIONS
	9 F	K	28	NO REMARKABLE OBSERVATIONS
	10F	, C	4	NO REMARKABLE OBSERVATIONS
	11F	K	28	NO REMARKABLE OBSERVATIONS
	12F	, C	4	NO REMARKABLE OBSERVATIONS
	15F	у К	28	NO REMARKABLE OBSERVATIONS
2624	2M	I C	4	NO REMARKABLE OBSERVATIONS
	3M		4	NO REMARKABLE OBSERVATIONS
	4M		4	NO REMARKABLE OBSERVATIONS
	5M		4	NO REMARKABLE OBSERVATIONS
	6M	I C	4	NO REMARKABLE OBSERVATIONS
	818		28	NO REMARKABLE OBSERVATIONS
	9M		28	NO REMARKABLE OBSERVATIONS
	10M	ı K	28	NO REMARKABLE OBSERVATIONS
	11F		28	NO REMARKABLE OBSERVATIONS
	12F		28	NO REMARKABLE OBSERVATIONS
	13F		4	NO REMARKABLE OBSERVATIONS
	14F		4	NO REMARKABLE OBSERVATIONS
	15F		4	NO REMARKABLE OBSERVATIONS
	18F	' K	28	NO REMARKABLE OBSERVATIONS

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

FEMALE#	#מוזם	STATUS	אמנו	OPCAN	OBSERVATION
					OBSERVALION
2625	1M	ı ĸ	28		NO REMARKABLE OBSERVATIONS
2020	2M		28		NO REMARKABLE OBSERVATIONS
	3M		4		NO REMARKABLE OBSERVATIONS
	5M		28		NO REMARKABLE OBSERVATIONS
	6M		4		NO REMARKABLE OBSERVATIONS
	8M		4		NO REMARKABLE OBSERVATIONS
	9 F		28		NO REMARKABLE OBSERVATIONS
	10F		28		NO REMARKABLE OBSERVATIONS
	11F	C	4		NO REMARKABLE OBSERVATIONS
	12F		1	STOMACH	NO MILK IN STOMACH
				LUNGS	LUNG FLOTATION TEST - FOUND DEAD POSITIVE
	13F	C	4		NO REMARKABLE OBSERVATIONS
	14F	C	4		NO REMARKABLE OBSERVATIONS
	15F	K	28		NO REMARKABLE OBSERVATIONS
	16F	C	4	STOMACH	MILK IN STOMACH
	19F	Z	0	STOMACH	MILK IN STOMACH
				GROSS EXAM	CANNIBALIZED
2626	1M	K	28		NO REMARKABLE OBSERVATIONS
	2M	K	28		NO REMARKABLE OBSERVATIONS
	4M	K	28		NO REMARKABLE OBSERVATIONS
	5 F	C	4		NO REMARKABLE OBSERVATIONS
	6 F	K	28		NO REMARKABLE OBSERVATIONS
	7F	K	28		NO REMARKABLE OBSERVATIONS
	9 F	K	28		NO REMARKABLE OBSERVATIONS
	11F	D	1	LUNGS	LUNG FLOTATION TEST - FOUND DEAD
					POSITIVE
				STOMACH	MILK IN STOMACH
	12F	C	4		NO REMARKABLE OBSERVATIONS

SEX CODES: M-Male, F=Female, U=Undetermined

PUP STATUS CODES: D-DIED C-CULLED Z-CANNIBALIZED K-SCHEDULED SACRIFICE

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP III	10000	MG/M3						
FEMALE#	PUP# S	TATUS	DAY	ORGAN	OBSERVATION			
3601	2M	K	28		NO REMARKABLE OBSERVATIONS			
	3M	K	28		NO REMARKABLE OBSERVATIONS			
	5M	C	4		NO REMARKABLE OBSERVATIONS			
	6M	C	4		NO REMARKABLE OBSERVATIONS			
	7M	C	4		NO REMARKABLE OBSERVATIONS			
	8M	C	4		NO REMARKABLE OBSERVATIONS			
	9M	K	28		NO REMARKABLE OBSERVATIONS			
	10F	K	28		NO REMARKABLE OBSERVATIONS			
	11F	K	28		NO REMARKABLE OBSERVATIONS			
	13F	K	28		NO REMARKABLE OBSERVATIONS			
3602	1M	ĸ	28		NO REMARKABLE OBSERVATIONS			
	4M	K	28		NO REMARKABLE OBSERVATIONS			
	5M	D	3	STOMACH	MILK IN STOMACH			
	6M	C	4		NO REMARKABLE OBSERVATIONS			
	M8	K	28		NO REMARKABLE OBSERVATIONS			
	9F	K	28		NO REMARKABLE OBSERVATIONS			
	10M	С	4		NO REMARKABLE OBSERVATIONS			
	11F	K	28		NO REMARKABLE OBSERVATIONS			
	13F	K	28		NO REMARKABLE OBSERVATIONS			
3603	1F	D	0	LUNGS	LUNG FLOTATION TEST - FOUND DEAD POSITIVE			
				STOMACH	NO MILK IN STOMACH			
	3M	K	28		NO REMARKABLE OBSERVATIONS			
	4M	K	28		NO REMARKABLE OBSERVATIONS			
	5M	K	28		NO REMARKABLE OBSERVATIONS			
	6 F	C	4		NO REMARKABLE OBSERVATIONS			
	7F	K	28		NO REMARKABLE OBSERVATIONS			
	8F	K	28		NO REMARKABLE OBSERVATIONS			
	9F	C	4		NO REMARKABLE OBSERVATIONS			
	10F	C	4		NO REMARKABLE OBSERVATIONS			
	11F	K	28		NO REMARKABLE OBSERVATIONS			
	13F	C	4		NO REMARKABLE OBSERVATIONS			

SEX CODES: M-Male, F=Female, U=Undetermined

PUP STATUS CODES: D-DIED C-CULLED K-SCHEDULED SACRIFICE

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP III	10000 1	MG/M3					
FEMALE#	PUP# S	TATUS	DAY ORGAN	OBSERVATION			
3604	зм	С	4	NO REMARKABLE OBSERVATIONS			
3004	4M	K	28	NO REMARKABLE OBSERVATIONS			
	5M	K	28	NO REMARKABLE OBSERVATIONS			
	6M	C	4	NO REMARKABLE OBSERVATIONS			
	7M	ĸ	28	NO REMARKABLE OBSERVATIONS			
	8F	ĸ	28	NO REMARKABLE OBSERVATIONS			
	9F	C	4	NO REMARKABLE OBSERVATIONS			
	10F	ĸ	28	NO REMARKABLE OBSERVATIONS			
	12F	C	4	NO REMARKABLE OBSERVATIONS			
	14F	K	28	NO REMARKABLE OBSERVATIONS			
				*** ***********************************			
3606	1M	K	28	NO REMARKABLE OBSERVATIONS			
	2M	D	15 STOMACH	NO MILK IN STOMACH			
	ЗМ	K	28	NO REMARKABLE OBSERVATIONS			
	4M	ĸ	28	NO REMARKABLE OBSERVATIONS			
	5F	C	4	NO REMARKABLE OBSERVATIONS			
	6F	ĸ	28	NO REMARKABLE OBSERVATIONS			
	7F	K	28	NO REMARKABLE OBSERVATIONS			
	8F	C	4	NO REMARKABLE OBSERVATIONS			
	11F	C	4	NO REMARKABLE OBSERVATIONS			
	12F	K	28	NO REMARKABLE OBSERVATIONS			
3607	2M	к	28	NO REMARKABLE OBSERVATIONS			
3007	4M	K	28	NO REMARKABLE OBSERVATIONS			
	5M	K	28	NO REMARKABLE OBSERVATIONS			
	7F	ĸ	28	NO REMARKABLE OBSERVATIONS			
	8F	C	4	NO REMARKABLE OBSERVATIONS			
	9F	Č	4	NO REMARKABLE OBSERVATIONS			
	10F	C	4	NO REMARKABLE OBSERVATIONS			
	11F	C	4	NO REMARKABLE OBSERVATIONS			
	12F	ĸ	28	NO REMARKABLE OBSERVATIONS			
	13F	ĸ	28	NO REMARKABLE OBSERVATIONS			

SEX CODES: M-Male, F=Female, U=Undetermined

PUP STATUS CODES: D-DIED C-CULLED K-SCHEDULED SACRIFICE

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP III	10000	MG/M3		INDIVIDUAL FOR NECROPS! OBSERVATIONS
FEMALE#	PUP# S	TATUS	DAY ORGAN	OBSERVATION
3608	1U	S	GROSS EXAM	CANNIBALIZED
			STOMACH	MILK UNDETERMINED
	2M	K	28	NO REMARKABLE OBSERVATIONS
	3M	K	28	NO REMARKABLE OBSERVATIONS
	4M	K	28	NO REMARKABLE OBSERVATIONS
	7M	C	4	NO REMARKABLE OBSERVATIONS
	8M	C	4	NO REMARKABLE OBSERVATIONS
	9M	C	4	NO REMARKABLE OBSERVATIONS
	10M	C	4	NO REMARKABLE OBSERVATIONS
	11M	C	4	NO REMARKABLE OBSERVATIONS
	12M	C	4	NO REMARKABLE OBSERVATIONS
	15F	K	28	NO REMARKABLE OBSERVATIONS
	16F	K	28	NO REMARKABLE OBSERVATIONS
	17F	C	4	NO REMARKABLE OBSERVATIONS
	18F	C	4	NO REMARKABLE OBSERVATIONS
	19F	K	28	NO REMARKABLE OBSERVATIONS
3609	2M	K	28	NO REMARKABLE OBSERVATIONS
	3M	ĸ	28	NO REMARKABLE OBSERVATIONS
	5M	K	28	NO REMARKABLE OBSERVATIONS
	9 F	K	28	NO REMARKABLE OBSERVATIONS
3610	1M	ĸ	28	NO REMARKABLE OBSERVATIONS
	4M	K	28	NO REMARKABLE OBSERVATIONS
	5M	С	4	NO REMARKABLE OBSERVATIONS
	6M	K	28	NO REMARKABLE OBSERVATIONS
	7F	C	4	NO REMARKABLE OBSERVATIONS
	9 F	K	28	NO REMARKABLE OBSERVATIONS
	10F	K	28	NO REMARKABLE OBSERVATIONS
	12F	K	28	NO REMARKABLE OBSERVATIONS
3611	2M	K	28	NO REMARKABLE OBSERVATIONS
	5M	K	28	NO REMARKABLE OBSERVATIONS

SEX CODES: M-Male, F=Female, U=Undetermined

PUP STATUS CODES: S-STILLBORN C-CULLED K-SCHEDULED SACRIFICE

6M K 28 NO REMARKABLE OBSERVATIONS

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-IG

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP III	10000 1	MG/M3	:	INDIVIDUAL FOR MECKOPSI OBSERVATIONS
FEMALE#	PUP# S	ratus	DAY ORGAN	OBSERVATION
3611	(CONTINUE)	 D)		
	7F	K	28	NO REMARKABLE OBSERVATIONS
	8F	K	28	NO REMARKABLE OBSERVATIONS
	9 F	K	28	NO REMARKABLE OBSERVATIONS
3612	1M	s	LUNGS	LUNG FLOTATION TEST - STILLBORN NEGATIVE
			STOMACH	NO MILK IN STOMACH
	4M	C	4	NO REMARKABLE OBSERVATIONS
	5M	K	28	NO REMARKABLE OBSERVATIONS
	7M	С	4	NO REMARKABLE OBSERVATIONS
	8M	K	28	NO REMARKABLE OBSERVATIONS
	9M	K	28	NO REMARKABLE OBSERVATIONS
	10F	K	28	NO REMARKABLE OBSERVATIONS
	11F	K	28	NO REMARKABLE OBSERVATIONS
	13F	K	28	NO REMARKABLE OBSERVATIONS
3613	1M	K	28	NO REMARKABLE OBSERVATIONS
	2M	K	28	NO REMARKABLE OBSERVATIONS
	4M	K	28	NO REMARKABLE OBSERVATIONS
	6M	С	4	NO REMARKABLE OBSERVATIONS
	7M	C	4	NO REMARKABLE OBSERVATIONS
	8F	K	28	NO REMARKABLE OBSERVATIONS
	10F	K	28	NO REMARKABLE OBSERVATIONS
	12F	D	2 STOMACH	MILK IN STOMACH
	13F	C	4	NO REMARKABLE OBSERVATIONS
	14F	K	28	NO REMARKABLE OBSERVATIONS
3614	1M	С	4	NO REMARKABLE OBSERVATIONS
	2M	K	28	NO REMARKABLE OBSERVATIONS
	5M	ĸ	28	NO REMARKABLE OBSERVATIONS
	6M	K	28	NO REMARKABLE OBSERVATIONS
	7M	C	4	NO REMARKABLE OBSERVATIONS
	M8	C	4	NO REMARKABLE OBSERVATIONS
	9F	K	28	NO REMARKABLE OBSERVATIONS

SEX CODES: M-Male, F=Female, U=Undetermined

PUP STATUS CODES: S-STILLBORN D-DIED C-CULLED K-SCHEDULED SACRIFICE

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP III	10000 N	4G/M3					
FEMALE#	PUP# ST	ratus	DAY	ORGAN	OBSERVATION		
3614	(CONTINUE))					
3011	10F	K	28		NO REMARKABLE OBSERVATIONS		
	12F	ĸ	28		NO REMARKABLE OBSERVATIONS		
	14F	C	4		NO REMARKABLE OBSERVATIONS		
3615	1M	s		GROSS EXAM	CANNIBALIZED		
				STOMACH	MILK UNDETERMINED		
	2M	K	28		NO REMARKABLE OBSERVATIONS		
	4M	K	28		NO REMARKABLE OBSERVATIONS		
	5M	K	28		NO REMARKABLE OBSERVATIONS		
	6F	K	28		NO REMARKABLE OBSERVATIONS		
	8F	С	4		NO REMARKABLE OBSERVATIONS		
	9F	C	4		NO REMARKABLE OBSERVATIONS		
	10F	ĸ	28		NO REMARKABLE OBSERVATIONS		
	13F	K	28		NO REMARKABLE OBSERVATIONS		
	14F	С	4		NO REMARKABLE OBSERVATIONS		
3616	1M	K	28		NO REMARKABLE OBSERVATIONS		
	4M	C	4		NO REMARKABLE OBSERVATIONS		
	5M	C	4		NO REMARKABLE OBSERVATIONS		
	6M	K	28		NO REMARKABLE OBSERVATIONS		
	7M	K	28		NO REMARKABLE OBSERVATIONS		
	8F	C	4		NO REMARKABLE OBSERVATIONS		
	9F	K	28		NO REMARKABLE OBSERVATIONS		
	10F	С	4		NO REMARKABLE OBSERVATIONS		
	12F	C	4		NO REMARKABLE OBSERVATIONS		
	13F	С	4		NO REMARKABLE OBSERVATIONS		
	14F	C	4		NO REMARKABLE OBSERVATIONS		
	15F	K	28		NO REMARKABLE OBSERVATIONS		
	16F	K	28		NO REMARKABLE OBSERVATIONS		
	17F	C	4		NO REMARKABLE OBSERVATIONS		
	19F	C	4		NO REMARKABLE OBSERVATIONS		

SEX CODES: M-Male, F=Female, U=Undetermined

PUP STATUS CODES: S-STILLBORN C-CULLED K-SCHEDULED SACRIFICE

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP III	10000 N	NG/M3			
FEMALE#	PUP# SI	TATUS	DAY	ORGAN	OBSERVATION
3617	2M	K	28		NO REMARKABLE OBSERVATIONS
	3M	K	28		NO REMARKABLE OBSERVATIONS
	4 M	K	28		NO REMARKABLE OBSERVATIONS
	5F	K	28		NO REMARKABLE OBSERVATIONS
	6F	C	4		NO REMARKABLE OBSERVATIONS
	9F	C	4		NO REMARKABLE OBSERVATIONS
	11F	C	4		NO REMARKABLE OBSERVATIONS
	12F	K	28	•	NO REMARKABLE OBSERVATIONS
	13F	K	28		NO REMARKABLE OBSERVATIONS
	14F	С	4		NO REMARKABLE OBSERVATIONS
3619	1 F	D	0	LUNGS	LUNG FLOTATION TEST - FOUND DEAD POSITIVE
				STOMACH	MILK IN STOMACH
	3M	K	28		NO REMARKABLE OBSERVATIONS
	4M	к	28		NO REMARKABLE OBSERVATIONS
	5M	C	4		NO REMARKABLE OBSERVATIONS
	6M	Ċ	4		NO REMARKABLE OBSERVATIONS
	8M	Ċ	4		NO REMARKABLE OBSERVATIONS
	9M	ĸ	28		NO REMARKABLE OBSERVATIONS
	10F	ĸ	28		NO REMARKABLE OBSERVATIONS
	11F	K	28		NO REMARKABLE OBSERVATIONS
	13F	C	4		NO REMARKABLE OBSERVATIONS
	15F	Ċ	4		NO REMARKABLE OBSERVATIONS
	16F	C	4		NO REMARKABLE OBSERVATIONS
	17F	ĸ	28		NO REMARKABLE OBSERVATIONS
	18F	s		GROSS EXAM	AUTOLYSIS
					POST-MORTEM CHANGES OBVIOUS AT THE TIME OF NECROPSY
				GROSS EXAM	INTERNAL SEX UNDETERMINED
				LUNGS	LUNG FLOTATION TEST - STILLBORN NEGATIVE
				STOMACH	MILK UNDETERMINED

SEX CODES: M-Male, F=Female, U=Undetermined

PUP STATUS CODES: S-STILLBORN D-DIED C-CULLED K-SCHEDULED SACRIFICE

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP III	10000	MG/M3	3	INDIVIDUAL FOF INSCROPS! OBSERVATIONS			
FEMALE#	PUP# S	TATUS	DAY ORGAN	OBSERVATION			
3620	1M	С	4	NO REMARKABLE OBSERVATIONS			
	2M	K	28	NO REMARKABLE OBSERVATIONS			
	4M	K	28	NO REMARKABLE OBSERVATIONS			
	5M	K	28	NO REMARKABLE OBSERVATIONS			
	7M	C	4	NO REMARKABLE OBSERVATIONS			
	8M	C	4	NO REMARKABLE OBSERVATIONS			
	10F	K	28	NO REMARKABLE OBSERVATIONS			
	12F	K	28	NO REMARKABLE OBSERVATIONS			
	13F	K	28	NO REMARKABLE OBSERVATIONS			
3621	1M	С	4	NO REMARKABLE OBSERVATIONS			
	3M	С	4	NO REMARKABLE OBSERVATIONS			
	4M	С	4	NO REMARKABLE OBSERVATIONS			
	5M	K	28	NO REMARKABLE OBSERVATIONS			
	6M	C	4	NO REMARKABLE OBSERVATIONS			
	8M	K	28	NO REMARKABLE OBSERVATIONS			
	9F	ĸ	28	NO REMARKABLE OBSERVATIONS			
	10M	ĸ	28	NO REMARKABLE OBSERVATIONS			
	11F	C	4	NO REMARKABLE OBSERVATIONS			
	13F	C	4	NO REMARKABLE OBSERVATIONS			
	15F	ĸ	28	NO REMARKABLE OBSERVATIONS			
	16F	ĸ	28	NO REMARKABLE OBSERVATIONS			
	17F	C	4	NO REMARKABLE OBSERVATIONS			
3622	1M	ĸ	28	NO REMARKABLE OBSERVATIONS			
	2M	K	28	NO REMARKABLE OBSERVATIONS			
	4M	K	28	NO REMARKABLE OBSERVATIONS			
	6F	K	28	NO REMARKABLE OBSERVATIONS			
	8F	K	28	NO REMARKABLE OBSERVATIONS			
	10F	K	28	NO REMARKABLE OBSERVATIONS			
3623	1M	ĸ	28	NO REMARKABLE OBSERVATIONS			
	2M	K	28	NO REMARKABLE OBSERVATIONS			
	4M	K	28	NO REMARKABLE OBSERVATIONS			

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP III	10000	MG/M3	}	
FEMALE#	PUP# S	STATUS	DAY ORGAN	OBSERVATION
3623	(CONTINUE	ED)		
	5F		28	NO REMARKABLE OBSERVATIONS
	6 F	K	28	NO REMARKABLE OBSERVATIONS
	7F	ĸ	28	NO REMARKABLE OBSERVATIONS
3624	2M	K	28	NO REMARKABLE OBSERVATIONS
	3M	K	28	NO REMARKABLE OBSERVATIONS
	4M	K	28	NO REMARKABLE OBSERVATIONS
	7F	С	4	NO REMARKABLE OBSERVATIONS
	8F	K	28	NO REMARKABLE OBSERVATIONS
	9F	K	28	NO REMARKABLE OBSERVATIONS
	10F	K	28	NO REMARKABLE OBSERVATIONS
	11F	C	4	NO REMARKABLE OBSERVATIONS
	13F	С	4	NO REMARKABLE OBSERVATIONS
3625	1M	ĸ	28	NO REMARKABLE OBSERVATIONS
	2M	K	28	NO REMARKABLE OBSERVATIONS
	3M	K	28	NO REMARKABLE OBSERVATIONS
	4 F	K	28	NO REMARKABLE OBSERVATIONS
	7F	K	28	NO REMARKABLE OBSERVATIONS
	8F	K	28	NO REMARKABLE OBSERVATIONS
3626	2M		28	NO REMARKABLE OBSERVATIONS
	4M	K	28	NO REMARKABLE OBSERVATIONS
	5M	K	28	NO REMARKABLE OBSERVATIONS
	8F	K	28	NO REMARKABLE OBSERVATIONS
	9F	K	28	NO REMARKABLE OBSERVATIONS
	10F	ĸ	28	NO REMARKABLE OBSERVATIONS

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP IV	20000	мд/мз	3		INDIVIDUAL PUP NECROPSY OBSERVATIONS		
FEMALE#	PUP# S	TATUS	DAY C	RGAN	OBSERVATION		
4601	1F	D	0 L	UNGS	LUNG FLOTATION TEST - FOUND DEAD POSITIVE		
				STOMACH	NO MILK IN STOMACH		
	2M	K	28	TOMACII	NO REMARKABLE OBSERVATIONS		
	3M	K	28		NO REMARKABLE OBSERVATIONS		
	4F	K		CIDNEY	M CYSTIC KIDNEY; SLIGHT; RIGHT		
			20 .		CORTEX - 0.1 CM IN DIAMETER, CLEAR		
				,	TISSUE SAVED		
	5F	K	28		NO REMARKABLE OBSERVATIONS		
	6 F	K	28		NO REMARKABLE OBSERVATIONS		
4603	зм	к	28		NO REMARKABLE OBSERVATIONS		
	4M	C	4		NO REMARKABLE OBSERVATIONS		
	5M	C	4		NO REMARKABLE OBSERVATIONS		
	6M	C	4		NO REMARKABLE OBSERVATIONS		
	7M	K	28		NO REMARKABLE OBSERVATIONS		
	8M	C	4		NO REMARKABLE OBSERVATIONS		
	10M	K	28		NO REMARKABLE OBSERVATIONS		
	12F	K	28		NO REMARKABLE OBSERVATIONS		
	14F	ĸ	28		NO REMARKABLE OBSERVATIONS		
	15F	K	28		NO REMARKABLE OBSERVATIONS		
4604	1M	K	28		NO REMARKABLE OBSERVATIONS		
	2M	C	4		NO REMARKABLE OBSERVATIONS		
	4M	K	28		NO REMARKABLE OBSERVATIONS		
	6 M	C	4		NO REMARKABLE OBSERVATIONS		
	7M	C	4		NO REMARKABLE OBSERVATIONS		
	8M	K	28		NO REMARKABLE OBSERVATIONS		
	9M	C	4		NO REMARKABLE OBSERVATIONS		
	10F	K	28		NO REMARKABLE OBSERVATIONS		
	12F	С	4		NO REMARKABLE OBSERVATIONS		
	14F	K	28		NO REMARKABLE OBSERVATIONS		
	15F	K	28		NO REMARKABLE OBSERVATIONS		

SEX CODES: M-Male, F=Female, U=Undetermined

PUP STATUS CODES: D-DIED C-CULLED K-SCHEDULED SACRIFICE

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP IV	20000 1	мG/мз				
FEMALE#	PUP# S	ratus	DAY ORGAN	OBSERVATION		
4605	1M	K	28	NO REMARKABLE OBSERVATIONS		
	3M	ĸ	28	NO REMARKABLE OBSERVATIONS		
	5M	K	28	NO REMARKABLE OBSERVATIONS		
	6 F	C	4	NO REMARKABLE OBSERVATIONS		
	7F	C	4	NO REMARKABLE OBSERVATIONS		
	9 F	C	4	NO REMARKABLE OBSERVATIONS		
	11F	С	4	NO REMARKABLE OBSERVATIONS		
	13F	K	28	NO REMARKABLE OBSERVATIONS		
	14F	K	28	NO REMARKABLE OBSERVATIONS		
	15F	K	28	NO REMARKABLE OBSERVATIONS		
	16F	C	4	NO REMARKABLE OBSERVATIONS		
	17F	C	4	NO REMARKABLE OBSERVATIONS		
	18F	C	4	NO REMARKABLE OBSERVATIONS		
4606	2M	к	28	NO REMARKABLE OBSERVATIONS		
	3 M	C	4	NO REMARKABLE OBSERVATIONS		
	4M	C	4	NO REMARKABLE OBSERVATIONS		
	6M	K	28	NO REMARKABLE OBSERVATIONS		
	7M	K	28	NO REMARKABLE OBSERVATIONS		
	9F	K	28	NO REMARKABLE OBSERVATIONS		
	10F	K	28	NO REMARKABLE OBSERVATIONS		
	12F	C	4	NO REMARKABLE OBSERVATIONS		
	13F	C	4	NO REMARKABLE OBSERVATIONS		
	14F	K	28	NO REMARKABLE OBSERVATIONS		
4607	1M	K	28	NO REMARKABLE OBSERVATIONS		
	2M	K	28	NO REMARKABLE OBSERVATIONS		
	3F	K	28	NO REMARKABLE OBSERVATIONS		
	4 F	K	28	NO REMARKABLE OBSERVATIONS		
	7F	K	28	NO REMARKABLE OBSERVATIONS		
4608	1F	D	0 GROSS EXAM			
				POST-MORTEM CHANGES OBVIOUS AT THE TIME OF NECROPSY		
			GROSS EXA	M INTERNAL SEX UNDETERMINED		

SEX CODES: M-Male, F=Female, U=Undetermined

PUP STATUS CODES: D-DIED C-CULLED K-SCHEDULED SACRIFICE

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

ROUP IV	20000 1	4G/M3	;		
FEMALE#	PUP# S	PATUS	DAY	ORGAN	OBSERVATION
4608	(CONTINUE))			
	•	,	I	LUNGS	LUNG FLOTATION TEST - FOUND DEAD
					POSITIVE
			5	STOMACH	MILK UNDETERMINED
	4M	K	28		NO REMARKABLE OBSERVATIONS
	5M	K	28		NO REMARKABLE OBSERVATIONS
	6M	K	28		NO REMARKABLE OBSERVATIONS
	7F	С	4		NO REMARKABLE OBSERVATIONS
	8F	C	4		NO REMARKABLE OBSERVATIONS
	9F	K	28		NO REMARKABLE OBSERVATIONS
	10F	С	4		NO REMARKABLE OBSERVATIONS
	11F	K	28		NO REMARKABLE OBSERVATIONS
	12F	C	4		NO REMARKABLE OBSERVATIONS
	15F	K	28		NO REMARKABLE OBSERVATIONS
4610	2M	K	28		NO REMARKABLE OBSERVATIONS
	3M	K	28		NO REMARKABLE OBSERVATIONS
	5M	K	28		NO REMARKABLE OBSERVATIONS
	6M	С	4		NO REMARKABLE OBSERVATIONS
	7M	C	4		NO REMARKABLE OBSERVATIONS
	8F	C	4		NO REMARKABLE OBSERVATIONS
	9F	C	4		NO REMARKABLE OBSERVATIONS
	11F	K	28		NO REMARKABLE OBSERVATIONS
	12F	K	28		NO REMARKABLE OBSERVATIONS
	13F	C	4		NO REMARKABLE OBSERVATIONS
	14F	С	4		NO REMARKABLE OBSERVATIONS
	15F	K	28		NO REMARKABLE OBSERVATIONS
4611	1M	K	28		NO REMARKABLE OBSERVATIONS
	3M	K	28		NO REMARKABLE OBSERVATIONS
	5M	K	28		NO REMARKABLE OBSERVATIONS
	7M	C	4		NO REMARKABLE OBSERVATIONS
	10M	С	4		NO REMARKABLE OBSERVATIONS
	11M	С	4		NO REMARKABLE OBSERVATIONS
	12F	K	28		NO REMARKABLE OBSERVATIONS

SEX CODES: M-Male, F=Female, U=Undetermined PUP STATUS CODES: C-CULLED K-SCHEDULED SACRIFICE

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP IV	20000	мG/мз			
FEMALE#	PUP# S	TATUS	DAY ORGAN	OBSERVATION	
4611	(CONTINUE	D)			
	13F		28	NO REMARKABLE	OBSERVATIONS
4612	1M	K	28	NO REMARKABLE	OBSERVATIONS
	2M	C	4	NO REMARKABLE	OBSERVATIONS
	4M	ĸ	28	NO REMARKABLE	OBSERVATIONS
	5M	K	28	NO REMARKABLE	OBSERVATIONS
	6M	C	4	NO REMARKABLE	OBSERVATIONS
	7M	C	4	NO REMARKABLE	OBSERVATIONS
	9F	K	28	NO REMARKABLE	OBSERVATIONS
	10F	K	28	NO REMARKABLE	OBSERVATIONS
	11F	C	4	' NO REMARKABLE	OBSERVATIONS
	12F	K	28	NO REMARKABLE	OBSERVATIONS
	13F	C	4	NO REMARKABLE	OBSERVATIONS
	14F	C	4	NO REMARKABLE	OBSERVATIONS
4613	3M	к	28	NO REMARKABLE	OBSERVATIONS
	4M	C	4	NO REMARKABLE	
	5M	C	4	NO REMARKABLE	
	6M	C	4	NO REMARKABLE	
	7M	K	28	NO REMARKABLE	
	8M	С	4	NO REMARKABLE	
	9M	K	28	NO REMARKABLE	
	10M	C	4	NO REMARKABLE	
	11M	C	4	NO REMARKABLE	
	12F	K	28	NO REMARKABLE	
	13F	K	28	NO REMARKABLE	
	15F	K	28	NO REMARKABLE	
4614	3M	K	28	NO REMARKABLE	ODSPRIATIONS
4014	4M	K	28	NO REMARKABLE	
	4M 5M	K	28 28	NO REMARKABLE	
		C	4		
	6M 7M	C	4	NO REMARKABLE NO REMARKABLE	
	7M 8M	ď			
	814	C	4	NO REMARKABLE	OBSERVATIONS

SEX CODES: M-Male, F=Female, U=Undetermined PUP STATUS CODES: C-CULLED K-SCHEDULED SACRIFICE

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP IV	20000 1	MG/M3			
FEMALE#	PUP# S	ratus	DAY	ORGAN	OBSERVATION
4614	(CONTINUE))			
	•	C	4		NO REMARKABLE OBSERVATIONS
	10M	C	4		NO REMARKABLE OBSERVATIONS
	11F	ĸ	28		NO REMARKABLE OBSERVATIONS
	12F	D	2	STOMACH	NO MILK IN STOMACH
	14F	ĸ	28		NO REMARKABLE OBSERVATIONS
	16F	С	4		NO REMARKABLE OBSERVATIONS
	17F	K	28		NO REMARKABLE OBSERVATIONS
4615	1M	С	4		NO REMARKABLE OBSERVATIONS
	2M	К	28		NO REMARKABLE OBSERVATIONS
	3M	С	4		NO REMARKABLE OBSERVATIONS
	4M	С	4		NO REMARKABLE OBSERVATIONS
	5M	K	28		NO REMARKABLE OBSERVATIONS
	7M	K	28		NO REMARKABLE OBSERVATIONS
	M8	D	8	GROSS EXAM	AUTOLYSIS
					POST-MORTEM CHANGES OBVIOUS AT THE TIME OF NECROPSY
				STOMACH	MILK IN STOMACH
	9M	C	4		NO REMARKABLE OBSERVATIONS
	10M	C	4		NO REMARKABLE OBSERVATIONS
	12F	K	28		NO REMARKABLE OBSERVATIONS
	13F	C	4		NO REMARKABLE OBSERVATIONS
	14F	K	28		NO REMARKABLE OBSERVATIONS
	15F	K	28		NO REMARKABLE OBSERVATIONS
	17F	С	4		NO REMARKABLE OBSERVATIONS
4616	1M	С	4		NO REMARKABLE OBSERVATIONS
	4M	K	28		NO REMARKABLE OBSERVATIONS
	5M	ĸ	28		NO REMARKABLE OBSERVATIONS
	6M	K	28		NO REMARKABLE OBSERVATIONS
	7F	ĸ	28		NO REMARKABLE OBSERVATIONS
	8F	K	28		NO REMARKABLE OBSERVATIONS
	9F	C	4		NO REMARKABLE OBSERVATIONS
	12F	K	28		NO REMARKABLE OBSERVATIONS

SEX CODES: M-Male, F=Female, U=Undetermined

PUP STATUS CODES: D-DIED C-CULLED K-SCHEDULED SACRIFICE

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP IV	20000 1	MG/M3	}		1.01.120.20 101 1120.0011 0120.0011
FEMALE#	PUP# S	ratus	DAY	ORGAN	OBSERVATION
4618	1M	K	28		NO REMARKABLE OBSERVATIONS
1010	2M	K	28		NO REMARKABLE OBSERVATIONS
	5M	K	28		NO REMARKABLE OBSERVATIONS
	6 F	K	28		NO REMARKABLE OBSERVATIONS
	7 F	C	4		NO REMARKABLE OBSERVATIONS
	8F	Ċ	4		NO REMARKABLE OBSERVATIONS
	9F	ĸ	28		NO REMARKABLE OBSERVATIONS
	10F	ĸ	28		NO REMARKABLE OBSERVATIONS
	13F	C	4		NO REMARKABLE OBSERVATIONS
	14F	C	4		NO REMARKABLE OBSERVATIONS
4619	1M	D	0	GROSS EXAM	AUTOLYSIS POST-MORTEM CHANGES OBVIOUS AT TIME OF NECROPSY
				GROSS EXAM	CANNIBALIZED
				GROSS EXAM	INTERNAL SEX UNDETERMINED
				LUNGS	LUNG FLOTATION TEST - FOUND DEAD
					POSITIVE
				STOMACH	MILK UNDETERMINED
	2F	D	0	GROSS EXAM	AUTOLYSIS
					POST-MORTEM CHANGES OBVIOUS AT THE TIME OF NECROPSY
				GROSS EXAM	CANNIBALIZED
				GROSS EXAM	INTERNAL SEX UNDETERMINED
				LUNGS	LUNG FLOTATION TEST - FOUND DEAD POSITIVE
				STOMACH	MILK UNDETERMINED
	ЗМ	Z	1	LUNGS	LUNG FLOTATION TEST - FOUND DEAD POSITIVE
				GROSS EXAM	CANNIBALIZED
				STOMACH	MILK IN STOMACH
	6M	K	28		NO REMARKABLE OBSERVATIONS
	7M	K	28		NO REMARKABLE OBSERVATIONS
	8M	K	28		NO REMARKABLE OBSERVATIONS
	9 F	ĸ	28		NO REMARKABLE OBSERVATIONS
	10F	K	28		NO REMARKABLE OBSERVATIONS

SEX CODES: M-Male, F=Female, U=Undetermined

PUP STATUS CODES: D-DIED C-CULLED Z-CANNIBALIZED K-SCHEDULED SACRIFICE

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

GROUP IV	20000	MG/M3	3	INDIVIDUAL PUP NECROPSY OBSERVATIONS
FEMALE#	PUP# S	TATUS	DAY ORGAN	OBSERVATION
4619	(CONTINUE	D)		
4019	11F		28	NO REMARKABLE OBSERVATIONS
4620	1M	С	4	NO REMARKABLE OBSERVATIONS
	2M	C	4	NO REMARKABLE OBSERVATIONS
	4M	С	4	NO REMARKABLE OBSERVATIONS
	5M	C	4	NO REMARKABLE OBSERVATIONS
	6M	K	28	NO REMARKABLE OBSERVATIONS
	8M	ĸ	28	NO REMARKABLE OBSERVATIONS
	9M	K	28	NO REMARKABLE OBSERVATIONS
	10M	C	4	NO REMARKABLE OBSERVATIONS
	12F	K	28	NO REMARKABLE OBSERVATIONS
	13F	K	28	NO REMARKABLE OBSERVATIONS
	14F	K	28	NO REMARKABLE OBSERVATIONS
4621	1M	С	4	NO REMARKABLE OBSERVATIONS
	2M	C	4	NO REMARKABLE OBSERVATIONS
	4M	C	4	NO REMARKABLE OBSERVATIONS
	6M	K	28	NO REMARKABLE OBSERVATIONS
	7M	K	28	NO REMARKABLE OBSERVATIONS
	8M	K	28	NO REMARKABLE OBSERVATIONS
	9F	C	4	NO REMARKABLE OBSERVATIONS
	10F	K	28	NO REMARKABLE OBSERVATIONS
	12F	K	28	NO REMARKABLE OBSERVATIONS
	13F	C	4	NO REMARKABLE OBSERVATIONS
	14F	C	4	NO REMARKABLE OBSERVATIONS
	15F	ĸ	28	NO REMARKABLE OBSERVATIONS
4622	1M	С	4	NO REMARKABLE OBSERVATIONS
	4M	K	28	NO REMARKABLE OBSERVATIONS
	5M	K	28	NO REMARKABLE OBSERVATIONS
	6M	K	28	NO REMARKABLE OBSERVATIONS
	7M	C	4	NO REMARKABLE OBSERVATIONS
	8M	C	4	NO REMARKABLE OBSERVATIONS
	10F	K	28	NO REMARKABLE OBSERVATIONS

SEX CODES: M-Male, F=Female, U=Undetermined PUP STATUS CODES: C-CULLED K-SCHEDULED SACRIFICE

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

ROUP IV	20000	MG/M3		INDIVIDUAL PUP NECROPSY OBSERVATIONS
FEMALE#	PUP#	STATUS	DAY ORGAN	OBSERVATION
4622	(CONTINU	ED)		
	11F	K	28	NO REMARKABLE OBSERVATIONS
	12F	C.	4	NO REMARKABLE OBSERVATIONS
	13F	C	4	NO REMARKABLE OBSERVATIONS
	14F	K	28	NO REMARKABLE OBSERVATIONS
	16F	С	4	NO REMARKABLE OBSERVATIONS
4623	1M		28	NO REMARKABLE OBSERVATIONS
	2M		28	NO REMARKABLE OBSERVATIONS
	4M		28	NO REMARKABLE OBSERVATIONS
	5F		28	NO REMARKABLE OBSERVATIONS
	6 F		28	NO REMARKABLE OBSERVATIONS
	8F		4	NO REMARKABLE OBSERVATIONS
	9F		4	NO REMARKABLE OBSERVATIONS
	10F		4	NO REMARKABLE OBSERVATIONS
	11F		4	NO REMARKABLE OBSERVATIONS
	12F	K	28	NO REMARKABLE OBSERVATIONS
4624	1M		28	NO REMARKABLE OBSERVATIONS
	2M		4	NO REMARKABLE OBSERVATIONS
	3M		4	NO REMARKABLE OBSERVATIONS
	4M		4	NO REMARKABLE OBSERVATIONS
	7M		28	NO REMARKABLE OBSERVATIONS
	8M		4	NO REMARKABLE OBSERVATIONS
	9M		28	NO REMARKABLE OBSERVATIONS
	10F		4	NO REMARKABLE OBSERVATIONS
	11F		28	NO REMARKABLE OBSERVATIONS
	13F		28	NO REMARKABLE OBSERVATIONS
	15F		28	NO REMARKABLE OBSERVATIONS
	16F		4	NO REMARKABLE OBSERVATIONS
	17F	С	4	NO REMARKABLE OBSERVATIONS
4625	1F	s	LUNGS	LUNG FLOTATION TEST - STILLBORN NEGATIVE
			STOMACH	NO MILK IN STOMACH

SEX CODES: M-Male, F=Female, U=Undetermined

PUP STATUS CODES: S-STILLBORN C-CULLED K-SCHEDULED SACRIFICE

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX W

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP NECROPSY OBSERVATIONS

20000 N	MG/M3	3	
PUP# ST	ratus	DAY ORGAN	OBSERVATION
(CONTINUE	D)		
2M	K	28	NO REMARKABLE OBSERVATIONS
4M	K	28	NO REMARKABLE OBSERVATIONS
5M	K	28	NO REMARKABLE OBSERVATIONS
6 F	K	28	NO REMARKABLE OBSERVATIONS
7F	K	28	NO REMARKABLE OBSERVATIONS
8F	K	28	NO REMARKABLE OBSERVATIONS
			NO REMARKABLE OBSERVATIONS
		28	NO REMARKABLE OBSERVATIONS
		4	NO REMARKABLE OBSERVATIONS
		4	NO REMARKABLE OBSERVATIONS
		4	NO REMARKABLE OBSERVATIONS
			NO REMARKABLE OBSERVATIONS
12F		28	NO REMARKABLE OBSERVATIONS
13F	C	4	NO REMARKABLE OBSERVATIONS
14F	K		NO REMARKABLE OBSERVATIONS
16F	С	4	NO REMARKABLE OBSERVATIONS
	PUP# S' (CONTINUE) 2M 4M 5M 6F 7F 8F 1M 2M 3M 4M 5M 8F 9F 10F 11F 12F 13F 14F	PUP# STATUS (CONTINUED) 2M K 4M K 5M K 6F K 7F K 8F K 1M C 2M K 3M C 4M K 5M K 5M K 1M C 1M C 1M C 1M C 1M C 1M C 1M C 1M K	2M K 28 4M K 28 5M K 28 5M K 28 6F K 28 7F K 28 8F K 28 1M C 4 2M K 28 3M C 4 4M K 28 5M K 28 5M K 28 6F C 4 9F C 4 10F C 4 11F K 28 12F K 28 13F C 4 14F K 28

SEX CODES: M-Male, F=Female, U=Undetermined PUP STATUS CODES: C-CULLED K-SCHEDULED SACRIFICE

00-4202 211-TAME-1G

Page 476 Final Report

ı		-	í
			l
	Organ and Final Body Weights	Appendix X	

Key to Abbreviations:

g = Grams

Note:

- 1. Values below 0.0001 could not be reported as % Final Body Weights (Adrenals and Pituitary), due to computer limitations.
- 2. The spleen weight for Animal No. 4618 and the pituitary and adrenal weights for Animal No. 1612 were post-fixative weights. These weights were considered acceptable for use in statistical evaluation.

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX X

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ORGAN AND FINAL BODY WEIGHTS

0 MG/M3 MALES GROUP I LIVER LUNGS BRAIN SPLEEN FINAL BODY Animal Number WEIGHT Weight %FBW %Brain Weight %FBW %Brain Weight %FBW %Brain Weight %FBW %Brain g g g g g 22.4969 0.0376 10.2008 1.7365 0.0029 0.7874 2.2054 0.0037 1.0000 599 1101 0.9843 0.0016 0.4463 1102 477 17.3507 0.0363 7.6196 1.7698 0.0037 0.7772 2.2771 0.0048 1.0000 0.7244 0.0015 0.3181 1103 557 17.9402 0.0322 9.2518 1.8797 0.0034 0.9694 1.9391 0.0035 1.0000 0.7820 0.0014 0.4033 1104 557 21.8720 0.0393 9.4422 1.9799 0.0036 0.8547 2.3164 0.0042 1.0000 0.8611 0.0015 1105 624 24.3387 0.0390 10.6842 1.8736 0.0030 0.8225 2.2780 0.0036 1.0000 1.0077 0.0016 0.4424 1106 497 17.6080 0.0354 8.2138 1.8048 0.0036 0.8419 2.1437 0.0043 1.0000 0.8730 0.0018 0.4072 1107 591 22.3450 0.0378 9.4148 2.0658 0.0035 0.8704 2.3734 0.0040 1.0000 1.0079 0.0017 0.4247 1108 579 20.0368 0.0346 8.5183 2.0183 0.0035 0.8580 2.3522 0.0041 1.0000 0.8476 0.0015 0.3603 1109 543 18.0703 0.0333 8.0152 1.9552 0.0036 0.8672 2.2545 0.0042 0.9155 0.0017 1.0000 0.4061 1110 505 18.0754 0.0358 7.9379 1.4505 0.0029 0.6370 2.2771 0.0045 1.0000 0.7625 0.0015 0.3349 1111 537 17.4987 0.0326 7.8473 1.8269 0.0034 0.8193 2.2299 0.0042 1.0000 0.6286 0.0012 0.2819 1112 465 15.3730 0.0331 7.2072 1.5040 0.0032 0.7051 2.1330 0.0046 1.0000 0.6012 0.0013 0.2819 1113 603 18.5813 0.0308 8.2926 1.6984 0.0028 0.7580 2.2407 0.0037 1.0000 0.6665 0.0011 0.2975 1114 21.2016 0.0355 9.3929 2.2600 0.0038 1.0012 2.2572 0.0038 1.0000 0.7430 0.0012 0.3292 1115 538 18.8087 0.0350 8.7005 1.7791 0.0033 0.8230 2.1618 0.0040 1.0000 0.8450 0.0016 0.3909 1116 562 17.6882 0.0315 8.0288 1.8137 0.0032 0.8232 2.2031 0.0039 1.0000 0.7383 0.0013 0.3351 1117 552 20.4174 0.0370 9.8530 1.8782 0.0034 0.9064 2.0722 0.0038 1.0000 0.8183 0.0015 0.3949 1118 556 21.8913 0.0394 9.7079 1.9469 0.0035 0.8634 2.2550 0.0041 0.8760 0.0016 1.0000 0.3885 1119 492 17.4687 0.0355 8.4207 1.8637 0.0038 0.8984 2.0745 0.0042 1.0000 0.7677 0.0016 0.3701 1120 539 18.4923 0.0343 7.9953 1.7615 0.0033 0.7616 2.3129 0.0043 1.0000 0.8101 0.0015 0.3503 1121 560 17.7024 0.0316 8.1721 2.0748 0.0037 0.9578 2.1662 0.0039 1.0000 0.7416 0.0013 0.3424 1122 516 17.5563 0.0340 8.0100 1.6273 0.0032 0.7424 2.1918 0.0042 1.0000 0.9560 0.0019 0.4362 1123 614 22.7672 0.0371 9.6701 2.0858 0.0034 0.8859 2.3544 0.0038 1.0000 0.9658 0.0016 0.4102 1124 565 18.1313 0.0321 8.4391 1.6459 0.0029 0.7661 2.1485 0.0038 1.0000 0.8263 0.0015 0.3846 1125 545 19.7560 0.0363 8.7023 2.2022 0.0040 0.9700 2.2702 0.0042 1.0000 0.9005 0.0017 0.3967 1126 16.0478 0.0311 8.1952 1.9596 0.0038 1.0007 1.9582 0.0038 1.0000 0.7779 0.0015 0.3973

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX X

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ORGAN AND FINAL BODY WEIGHTS

MALES GROUP II 2000 MG/M3 LIVER LUNGS BRAIN SPLEEN FINAL BODY Animal Number WEIGHT Weight %FBW %Brain Weight %FBW %Brain Weight %FBW Weight %FBW %Brain g g g g g 2101 556 20.1218 0.0362 9.0346 1.8635 0.0034 0.8367 2.2272 0.0040 1.0000 0.8360 0.0015 0.3754 2102 579 19.7896 0.0342 9.8133 1.8599 0.0032 0.9223 2.0166 0.0035 1,0000 0.7383 0.0013 0.3661 2103 614 21.2093 0.0345 9.6851 1.8337 0.0030 0.8373 2.1899 0.0036 1.0000 0.7875 0.0013 0.3596 2104 526 18.9732 0.0361 9.2031 1.7804 0.0034 0.8636 2.0616 0.0039 1.0000 0.7326 0.0014 0.3554 2105 559 19.8291 0.0355 9.3371 1.6315 0.0029 0.7682 2.1237 0.0038 1.0000 0.6459 0.0012 0.3041 2106 574 21.1271 0.0368 9.1218 1.8828 0.0033 0.8129 2.3161 0.0040 1.0000 0.7689 0.0013 2107 510 19.7781 0.0388 8.4594 2.0644 0.0041 0.8830 2.3380 0.0046 1.0000 0.6296 0.0012 0.2693 2108 640 21.6660 0.0339 9.9738 2.2090 0.0035 1.0169 2.1723 0.0034 1.0000 0.9569 0.0015 0.4405 2109 548 18.5960 0.0339 8.6097 1.8478 0.0034 0.8555 2.1599 0.0039 1.0000 0.8908 0.0016 0.4124 2110 571 17.4615 0.0306 8.1190 1.9725 0.0035 0.9171 2.1507 0.0038 1.0000 0.6207 0.0011 0.2886 2111 483 16.5504 0.0343 7.5284 1.5592 0.0032 0.7092 2.1984 0.0046 1.0000 0.7440 0.0015 2112 564 19.1117 0.0339 8.7564 2.1826 0.0039 1.7965 0.0032 0.8231 1.0000 0.7828 0.0014 0.3587 2113 499 18.3221 0.0367 8.7365 1.6118 0.0032 0.7685 2.0972 0.0042 1.0000 0.7845 0.0016 0.3741 2114 534 20.7666 0.0389 9.9729 1.8102 0.0034 0.8693 2.0823 0.0039 1.0000 0.9001 0.0017 0.4323 2115 462 16.0110 0.0347 7.9235 1.6704 0.0036 0.8266 2.0207 0.0044 1.0000 0.6553 0.0014 0.3243 2116 521 17.4132 0.0334 8.6140 1.9578 0.0038 0.9685 2.0215 0.0039 1.0000 0.7630 0.0015 2117 19.6346 0.0345 569 8.7451 1.8548 0.0033 0.8261 2.2452 0.0039 1.0000 0.9415 0.0017 0.4193 2118 1.9981 0.0034 588 19.0889 0.0325 8.6855 0.9091 2.1978 0.0037 1.0000 0.9020 0.0015 0.4104 2119 589 21.2031 0.0360 9.4328 2.1652 0.0037 0.9633 2.2478 0.0038 1.0000 0.8218 0.0014 0.3656 2120 606 23.3283 0.0385 10.9698 1.8685 0.0031 0.8786 2.1266 0.0035 1.0000 0.7940 0.0013 0.3734 2121 554 21.7166 0.0392 9.6932 1.9246 0.0035 0.8590 2.2404 0.0040 1.0000 0.7424 0.0013 0.3314 2122 545 20.0775 0.0369 7.9133 1.9299 0.0035 0.7606 2.5372 0.0047 1.0000 0.6573 0.0012 0.2591 2123 466 16.3209 0.0350 7.7380 1.9125 0.0041 0.9067 2.1092 0.0045 1.0000 0.6519 0.0014 0.3091 2124 464 14.8875 0.0321 7.0694 1.6304 0.0035 0.7742 2.1059 0.0045 1.0000 0.6591 0.0014 0.3130 2125 565 19.4861 0.0345 8.2300 1.8005 0.0032 0.7604 2.3677 0.0042 1.0000 0.7792 0.0014 0.3291 2126 17.1161 0.0320 7.8818 1.6223 0.0030 0.7471 2.1716 0.0041 1.0000 0.9869 0.0018 0.4545

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX X

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ORGAN AND FINAL BODY WEIGHTS

		LIV	ER		LUN	3S		BRA	IN		SPL	EEN	
Animal Number	FINAL BODY WEIGHT	Weight	 %FBW	%Brain	Weight	 %FBW	%Brain	Weight	 %FBW	 %Brain	-	 %FBW	 %Brain
	g	g			g			g			g		
3101	505	18.6666	0.0369	9.2565	1.7553	0.0035	0.8704	2.0166	0.0040	1.0000	0.5841	0.0012	0.2896
3102	606	24.8287	0.0410	12.0610	1.9585	0.0032	0.9514	2.0586	0.0034	1.0000	0.8936	0.0015	0.4341
3103	455	15.8455	0.0348	6.7310	1.6399	0.0036	0.6966	2.3541	0.0052	1.0000	0.5893	0.0013	0.2503
3104	589	20.7107	0.0352	9.4990	1.6533	0.0028	0.7583	2.1803	0.0037	1.0000	0.8859	0.0015	0.4063
3105	590	23.5471	0.0399	10.2844	1.8219	0.0031	0.7957	2.2896	0.0039	1.0000	0.7352	0.0012	0.3211
3106	576	22.1565	0.0384	9.6944	1.7024	0.0030	0.7449	2.2855	0.0040	1.0000	0.7490	0.0013	0.3277
3107	570	22.3535	0.0392	8.9723	2.0608	0.0036	0.8272	2.4914	0.0044	1.0000	0.7889	0.0014	0.3166
3108	551	20.5651	0.0373	9.0823	1.8193	0.0033	0.8035	2.2643	0.0041	1.0000	0.7884	0.0014	0.3482
3109	653	22.9446	0.0351	9.4617	2.2500	0.0034	0.9278	2.4250	0.0037	1.0000	0.9895	0.0015	0.4080
3110	654	24.6541	0.0377	10.3750	2.3495	0.0036	0.9887	2.3763	0.0036	1.0000	0.9922	0.0015	0.4175
3111	551	19.8857	0.0361	8.8240	2.0083	0.0036	0.8912	2.2536	0.0041	1.0000	0.6383	0.0012	0.2832
3112	444	16.3376	0.0368	8.3143	1.5640	0.0035	0.7959	1.9650	0.0044	1.0000	0.6918	0.0016	0.3521
3113	488	14.9928	0.0307	7.3765	1.5501	0.0032	0.7627	2.0325	0.0042	1.0000	0.6428	0.0013	0.3163
3114	564	23.1620	0.0410	9.5849	2.1121	0.0037	0.8740	2.4165	0.0043	1.0000	0.8977	0.0016	0.3719
3115	548	20.0596	0.0366	9.6930	1.8114	0.0033	0.8753	2.0695	0.0038	1.0000	1.0107	0.0018	0.4884
3116	477	20.1615	0.0423	8.8230	1.8872	0.0040	0.8259	2.2851	0.0048	1.0000	0.6132	0.0013	0.2683
3117	511	19.6514	0.0384	8.7855	1.9648	0.0038	0.8784	2.2368	0.0044	1.0000	0.8656	0.0017	0.3870
3118	534	20.0322	0.0375	8.4088	1.9689	0.0037	0.8265	2.3823	0.0045	1.0000	0.9238	0.0017	0.3878
3119	552	20.7954	0.0377	9.4229	1.5993	0.0029	0.7247	2.2069	0.0040	1.0000	0.9510	0.0017	0.4309
3120	577	20.8367	0.0361	9.1542	1.8459	0.0032	0.8110	2.2762	0.0039	1.0000	0.6895	0.0012	0.3029
3121	413	16.2763	0.0394	7.1281	1.6677	0.0040	0.7304	2.2834	0.0055	1.0000	0.8745	0.0021	0.3830
3122	590	21.7344	0.0369	9.7477	2.0580	0.0035	0.9230	2.2297	0.0038	1.0000	0.8059	0.0014	0.3614
3123	455	18.9083	0.0415	8.3216	1.8729	0.0041	0.8243	2.2722	0.0050	1.0000	0.8653	0.0019	0.3808
3124	574	21.4250	0.0373	9.2457	2.0255	0.0035	0.8741	2.3173	0.0040	1.0000	0.8356	0.0015	0.360
3125	581	21.4224	0.0369	9.0279	2.0480	0.0035	0.8631	2.3729	0.0041	1.0000	0.7914	0.0014	0.333
3126	590	19.9805	0.0339	8.4473	2.2077	0.0037	0.9334	2.3653	0.0040	1.0000	0.7815	0.0013	0.330

MALES

PAGE 480

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

GROUP IV

APPENDIX X

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ORGAN AND FINAL BODY WEIGHTS

20000 MG/M3 LIVER LUNGS BRAIN SPLEEN Animal FINAL BODY Number WEIGHT Weight %FBW %Brain Weight %FBW %Brain Weight %FBW %Brain Weight %FBW g g g g q 22.6452 0.0505 11.3181 1.6632 0.0037 0.8313 2.0008 0.0045 1.0000 4101 448 0.8539 0.0019 0.4268 4102 499 20.4322 0.0410 9.6342 1.5468 0.0031 0.7293 2.1208 0.0043 1.0000 0.8265 0.0017 0.3897 4103 494 20.5014 0.0415 9.7140 1.7128 0.0035 0.8116 2.1105 0.0043 1.0000 0.6210 0.0013 23.9835 0.0477 11.6600 1.8179 0.0036 0.8838 4104 503 2.0569 0.0041 1.0000 0.7198 0.0014 0.3499 4105 583 30.0226 0.0515 12.9074 2.1158 0.0036 0.9096 2.3260 0.0040 1.0000 0.6194 0.0011 0.2663 4106 497 25.6682 0.0517 12.8238 2.0231 0.0041 1.0107 2.0016 0.0040 1.0000 1.1513 0.0023 0.5752 4107 508 22.7105 0.0447 9.8965 1.9963 0.0039 0.8699 2.2948 0.0045 1.0000 0.7114 0.0014 0.3100 4108 705 31.6509 0.0449 13.7948 2.0079 0.0028 0.8751 2.2944 0.0033 1.0000 1.0255 0.0015 0.4470 4109 519 21.0801 0.0406 9.4981 2.1060 0.0041 0.9489 2.2194 0.0043 1.0000 0.8559 0.0016 0.3856 4110 586 24.4324 0.0417 10.6515 1.9382 0.0033 0.8450 2.2938 0.0039 1.0000 1.0443 0.0018 0.4553 4111 497 21.4288 0.0432 9.9980 1.5624 0.0031 0.7290 2.1433 0.0043 1.0000 0.6935 0.0014 0.3236 4112 541 23.1628 0.0428 10.4785 1.8803 0.0035 0.8506 2.2105 0.0041 1.0000 0.8232 0.0015 0.3724 4113 580 22.9053 0.0395 10.6068 2.0420 0.0035 0.9456 2.1595 0.0037 1.0000 0.7913 0.0014 0.3664 4114 528 25.9721 0.0492 11.5145 1.7756 0.0034 0.7872 2.2556 0.0043 1.0000 0.9916 0.0019 0.4396 4115 495 20.7077 0.0418 9.5528 2.1677 0.0044 1.7945 0.0036 0.8278 1.0000 0.6441 0.0013 0.2971 4116 615 25.0162 0.0407 10.6661 1.9812 0.0032 0.8447 2.3454 0.0038 1.0000 1.0939 0.0018 0.4664 4117 576 24.3897 0.0424 10.5074 1.9831 0.0034 0.8543 2.3212 0.0040 1.0000 1.0366 0.0018 0.4466 4118 21.3675 0.0445 9.8878 481 1.8710 0.0039 0.8658 2.1610 0.0045 1.0000 0.7943 0.0017 0.3676 4119 521 23.3227 0.0447 10.2351 1.7277 0.0033 0.7582 2.2787 0.0044 1.0000 0.7651 0.0015 0.3358 4120 489 20.1541 0.0412 9.7978 1.6947 0.0035 0.8239 2.0570 0.0042 1.0000 0.5594 0.0011 0.2719 27.0633 0.0468 11.6552 4121 579 2.1460 0.0037 0.9242 2.3220 0.0040 1.0000 0.9047 0.0016 0.3896 4122 565 20.1866 0.0357 9.1301 2.0430 0.0036 0.9240 2.2110 0.0039 1.0000 0.7594 0.0013 0.3435 4123 497 18.9113 0.0381 8.5425 1.6533 0.0033 0.7468 2.2138 0.0045 1.0000 0.7253 0.0015 0.3276 4124 521 19.1858 0.0368 9.1010 1.8478 0.0035 0.8765 2.1081 0.0040 1.0000 0.8753 0.0017 0.4152 4125 544 18.9621 0.0349 8.8911 1.6300 0.0030 0.7643 2.1327 0.0039 1.0000 0.7875 0.0014 4126 23.0650 0.0415 10.6531 1.8951 0.0034 0.8753 2.1651 0.0039 1.0000 1.0536 0.0019 0.4866

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX X

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ORGAN AND FINAL BODY WEIGHTS

MALES GROUP I 0 MG/M3 KIDNEYS PROSTATE SEM.VES & CO.GL. ADRENALS FINAL BODY Animal Number WEIGHT Weight %FBW Weight %FBW %Brain %Brain Weight %FBW Weight %FBW %Brain g g g g g _______ 1101 599 4.2063 0.0070 1.9073 1.0680 0.0018 2.0612 0.0034 0.0565 0.4843 0.9346 0.0256 1102 477 3.4874 0.0073 1.5315 1.2228 0.0026 0.5370 1.7844 0.0037 0.7836 0.0480 0.0001 0.0211 1103 557 3.5507 0.0064 1.8311 0.7788 0.0014 0.4016 1.7295 0.0031 0.8919 0.0555 0.0286 1104 557 4.0250 0.0072 1.7376 1.1712 0.0021 0.5056 2.0297 0.0036 0.0542 0.8762 0.0234 1105 624 4.5647 0.0073 2.0038 1.2406 0.0020 0.5446 3.3534 0.0054 1.4721 0.0636 0.0001 0.0279 1106 497 3.7354 0.0075 1.7425 1.1854 0.0024 0.5530 2.2240 0.0045 1.0375 0.0492 0.0230 1107 591 4.2470 0.0072 1.7894 0.9744 0.0016 0.4106 2.1994 0.0037 0.9267 0.0616 0.0001 0.0260 1108 579 4.7543 0.0082 2.0212 0.8132 0.0014 0.3457 2.2609 0.0039 0.9612 0.0658 0.0001 0.0280 1109 543 4.4394 0.0082 1.9691 1.5941 0.0029 0.7071 1.6971 0.0031 0.7528 0.0618 0.0001 0.0274 1110 505 3.9755 0.0079 1.7459 1.0750 0.0021 0.4721 1.4629 0.0029 0.6424 0.0578 0.0001 0.0254 1111 537 3.9984 0.0074 1.7931 1.2924 0.0024 0.5796 2.3990 0.0045 1.0758 0.0473 0.0212 1112 465 3.4613 0.0074 1.6227 1.0549 0.0023 0.4946 1.9266 0.0041 0.9032 0.0696 0.0001 0.0326 1113 603 3.9703 0.0066 1.7719 1.0591 0.0018 0.4727 1.4521 0.0024 0.6481 0.0665 0.0001 0.0297 1114 597 4.2499 0.0071 1.8828 0.9802 0.0016 0.4343 1.6303 0.0027 0.7223 0.0665 0.0001 0.0295 1115 538 4.3165 0.0080 1.9967 1.2733 0.0024 0.5890 1.9783 0.0037 0.9151 0.0612 0.0001 0.0283 1116 562 4.1509 0.0074 1.8841 1.1329 0.0020 0.5142 2.0362 0.0036 0.0635 0.0001 0.9242 0.0288 1117 552 4.0972 0.0074 1.9772 1.2079 0.0022 0.5829 1.9835 0.0036 0.9572 0.0667 0.0001 0.0322 1118 556 4.8171 0.0087 2.1362 1.6201 0.0029 0.7184 1.8981 0.0034 0.8417 0.0649 0.0001 0.0288 1119 492 3.8518 0.0078 1.8567 1.2731 0.0026 0.6137 1.5906 0.0032 0.7667 0.0551 0.0001 0.0266 1120 539 3.9040 0.0072 1.6879 1.4309 0.0027 0.6187 1.8782 0.0035 0.8121 0.0679 0.0001 0.0294 1121 560 4.1908 0.0075 1.9346 1.4758 0.0026 0.6813 1.4753 0.0026 0.6811 0.0675 0.0001 0.0312 1122 516 4.0762 0.0079 1.8597 0.8706 0.0017 0.3972 1.9928 0.0039 0.9092 0.0567 0.0001 0.0259 1123 614 4.9230 0.0080 2.0910 1.4159 0.0023 0.6014 1.2505 0.0020 0.5311 0.0627 0.0001 0.0266 1124 565 2.0252 4.3512 0.0077 1.1701 0.0021 0.5446 2.2019 0.0039 1.0249 0.0537 0.0250 1125 545 4.5139 0.0083 1.9883 1.0672 0.0020 0.4701 1.5945 0.0029 0.7024 0.0612 0.0001 0.0270 1126 516 3.8840 0.0075 1.9835 1.1700 0.0023 0.5975 1.4480 0.0028 0.7395 0.0564 0.0001 0.0288

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX X

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ORGAN AND FINAL BODY WEIGHTS

GROUP II 2000 MG/M3 MALES KIDNEYS PROSTATE SEM.VES & CO.GL. ADRENALS Animal FINAL BODY Number WEIGHT Weight %FBW %Brain Weight %FBW Weight %FBW %Brain %Brain Weight %FBW g g g g g 2101 556 4.4779 0.0081 2.0106 1.1174 0.0020 0.5017 1.3851 0.0025 0.0700 0.0001 0.6219 0.0314 2102 579 4.1038 0.0071 2.0350 1.1066 0.0019 0.5487 1.6852 0.0029 0.8357 0.0599 0.0001 0.0297 2103 614 4.6797 0.0076 2.1369 1.3751 0.0022 0.6279 1.6426 0.0027 0.7501 0.0717 0.0001 0.0327 2104 526 4.0664 0.0077 1.9724 1.2223 0.0023 0.5929 1.4200 0.0027 0.6888 0.0467 0.0227 2105 559 4.8856 0.0087 2.3005 1.0205 0.0018 0.4805 1.8345 0.0033 0.8638 0.0517 0.0243 2106 4.4309 0.0077 1.9131 1.0869 0.0019 574 0.4693 2.3741 0.0041 1.0250 0.0686 0.0001 0.0296 2107 510 4.3777 0.0086 1.8724 1.1549 0.0023 0.4940 2.1246 0.0042 0.9087 0.0675 0.0001 0.0289 2108 640 4.7480 0.0074 2.1857 1.5000 0.0023 0.6905 2.1262 0.0033 0.9788 0.0762 0.0001 0.0351 2109 548 4.7208 0.0086 2.1857 0.7230 0.0013 0.3347 2.1349 0.0039 0.9884 0.0591 0.0001 0.0274 2110 571 4.6469 0.0081 2.1606 1.4122 0.0025 0.6566 2.2549 0.0039 1.0484 0.0517 0.0240 3.8152 0.0079 1.0573 0.0022 2111 483 1.7354 0.4809 1.8771 0.0039 0.0632 0.0001 0.8538 0.0287 2112 4.6515 0.0082 2.1312 1.2630 0.0022 564 0.5787 2.6213 0.0046 0.0634 0.0001 1.2010 0.0290 2113 499 4.5001 0.0090 2.1458 1.0204 0.0020 0.4866 1.9769 0.0040 0.9426 0.0586 0.0001 0.0279 2114 534 4.5265 0.0085 2.1738 1,2454 0.0023 0.5981 2.3406 0.0044 1.1240 0.0554 0.0001 0.0266 2115 462 3.4813 0.0075 1.7228 1.0367 0.0022 0.5130 1.9428 0.0042 0.9614 0.0421 0.0208 2116 521 4.3772 0.0084 2.1653 1.4185 0.0027 0.7017 1.8070 0.0035 0.8939 0.0638 0.0001 0.0316 2117 4.6738 0.0082 1.3681 0.0024 569 2.0817 0.6093 2.2253 0.0039 0.9911 0.0640 0.0001 0.0285 2118 588 4.3735 0.0074 1.9899 1.2452 0.0021 0.5666 2.3289 0.0040 1.0597 0.0586 0.0267 2119 2.0221 589 4.5452 0.0077 1.1033 0.0019 0.4908 2.4633 0.0042 1.0959 0.0816 0.0001 0.0363 2120 606 5.6859 0.0094 2.6737 1.4088 0.0023 0.6625 2.2866 0.0038 1.0752 0.0642 0.0001 0.0302 2121 554 4.5755 0.0083 2.0423 1.6454 0.0030 0.7344 2.6839 0.0048 0.0805 0.0001 1.1980 0.0359 2122 4.8182 0.0088 1.8990 1.9178 0.0035 545 0.7559 2.8595 0.0053 1.1270 0.0480 0.0189 2123 466 4.2635 0.0092 2.0214 1.0095 0.0022 0.4786 1.4453 0.0031 0.0560 0.0001 0.6852 0.0266 2124 464 3.7797 0.0081 1.7948 1.2295 0.0026 0.5838 2.5036 0.0054 1.1889 0.0468 0.0001 0.0222 2125 565 4.4562 0.0079 1.8821 1.2158 0.0022 0.5135 2.2556 0.0040 0.9527 0.0520 0.0220 2126 535 4.0134 0.0075 1.8481 1.1953 0.0022 0.5504 2.5349 0.0047 1.1673 0.0563 0.0001 0.0259

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX X

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ORGAN AND FINAL BODY WEIGHTS

		KIDNEYS			PRO	STATE		SEM	SEM.VES & CO.GL.			ADRENALS	
Animal Number	MEIGHT MEIGHT G	Weight g	%FBW	%Brain	Weight g	*FBW	%Brain	Weight g	 %FBW	 %Brain	Weight g	%FBW	%Brair
3101	505	4.1235	0.0082	2.0448	1.1520	0.0023	0.5713	1.6567	0.0033	0.8215	0.0561	0.0001	0.0278
3102	606	5.2109	0.0086	2.5313	1.4190	0.0023	0.6893	1.4488	0.0024	0.7038	0.0564		0.0274
3103	455	4.1824	0.0092	1.7766	0.6522	0.0014	0.2770	1.5869	0.0035	0.6741	0.0545	0.0001	0.0232
3104	589	4.7041	0.0080	2.1575	1.3239	0.0022	0.6072	1.1756	0.0020	0.5392	0.0676	0.0001	0.0310
3105	590	4.8085	0.0082	2.1001	1.2794	0.0022	0.5588	1.7250	0.0029	0.7534	0.0767	0.0001	0.0335
3106	576	4.5433	0.0079	1.9879	1.4220	0.0025	0.6222	2.2817	0.0040	0.9983	0.0570		0.0249
3107	570	4.8676	0.0085	1.9538	1.1049	0.0019	0.4435	2.3269	0.0041	0.9340	0.0658	0.0001	0.0264
3108	551	4.1818	0.0076	1.8468	1.4262	0.0026	0.6299	2.1496	0.0039	0.9493	0.0515		0.022
3109	653	5.3950	0.0083	2.2247	0.7679	0.0012	0.3167	2.4965	0.0038	1.0295	0.0722	0.0001	0.029
3110	654	5.9091	0.0090	2.4867	1.9337	0.0030	0.8137	2.5826	0.0039	1.0868	0.0731	0.0001	0.030
3111	551	4.8705	0.0088	2.1612	1.0905	0.0020	0.4839	2.0631	0.0037	0.9155	0.0712	0.0001	0.031
3112	444	4.5179	0.0102	2.2992	0.9221	0.0021	0.4693	1.3343	0.0030	0.6790	0.0603	0.0001	0.030
3113	488	3.9772	0.0081	1.9568	1.0819	0.0022	0.5323	1.9619	0.0040	0.9653	0.0878	0.0002	0.043
3114	564	5.6269	0.0100	2.3285	1.8552	0.0033	0.7677	2.0870	0.0037	0.8636	0.0682	0.0001	0.028
3115	548	5.2815	0.0096	2.5521	1.0961	0.0020	0.5296	2.0917	0.0038	1.0107	0.0766	0.0001	0.037
3116	477	4.1612	0.0087	1.8210	1.3821	0.0029	0.6048	2.5337	0.0053	1.1088	0.0575	0.0001	0.025
3117	511	5.4173	0.0106	2.4219	1.5140	0.0030	0.6769	1.9889	0.0039	0.8892	0.0444		0.019
3118	534	5.7647	0.0108	2.4198	1.5728	0.0029	0.6602	2.4325	0.0046	1.0211	0.0758	0.0001	0.031
3119	552	5.0320	0.0091	2.2801	1.2182	0.0022	0.5520	1.6546	0.0030	0.7497	0.0677	0.0001	0.030
3120	577	4.8708	0.0084	2.1399	1.1332	0.0020	0.4978	2.6141	0.0045	1.1484	0.0694	0.0001	0.030
3121	413	4.5890	0.0111	2.0097	1.1966	0.0029	0.5240	2.1794	0.0053	0.9545	0.0658	0.0002	0.028
3122	590	5.1224	0.0087	2.2973	1.3923	0.0024	0.6244	2.4627	0.0042	1.1045	0.0530		0.023
3123	455	4.2333	0.0093	1.8631	1.2058	0.0026	0.5307	2.0593	0.0045	0.9063	0.0810	0.0002	0.035
3124	574	4.9341	0.0086	2.1292	2.0678	0.0036	0.8923	1.8365	0.0032	0.7925	0.0509		0.022
3125	581	4.6554	0.0080	1.9619	1.3531	0.0023	0.5702	2.0738	0.0036	0.8740	0.0644	0.0001	0.027
3126	590	4.7800	0.0081	2.0209	1.0694	0.0018	0.4521	1.6696	0.0028	0.7059	0.0705	0.0001	0.029

Sponsor Study No: 211-TAME-1G

APPENDIX X

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ORGAN AND FINAL BODY WEIGHTS

MALES GROUP IV 20000 MG/M3 KIDNEYS PROSTATE SEM.VES & CO.GL. Animal FINAL BODY ------Number WEIGHT Weight %FBW %Brain Weight %FBW %Brain Weight %FBW %Brain Weight %FBW %Brain g q g g g 4101 448 5.0960 0.0114 2.5470 1.1769 0.0026 0.5882 1.8013 0.0040 0.9003 0.0558 0.0001 0.0279 4102 499 4.3804 0.0088 2.0654 1.0180 0.0020 0.4800 1.9627 0.0039 0.9255 0.0632 0.0001 0.0298 4103 494 4.1029 0.0083 1.9440 1.4002 0.0028 0.6634 2.3184 0.0047 1.0985 0.0519 0.0001 0.0246 4104 503 4.3938 0.0087 2.1361 1.5685 0.0031 0.7626 1.7717 0.0035 0.8613 0.0595 0.0001 0.0289 4105 583 5.6067 0.0096 2.4104 1.3991 0.0024 0.6015 2.0324 0.0035 0.8738 0.0861 0.0001 0.0370 4106 497 5.7875 0.0117 2.8914 0.9847 0.0020 0.4920 1.6126 0.0032 0.8057 0.0672 0.0001 0.0336 4107 508 5.4077 0.0106 2.3565 1.5970 0.0031 0.6959 1.6599 0.0033 0.7233 0.0485 0.0211 4108 705 6.1193 0.0087 2.6671 1.3641 0.0019 0.5945 2.3660 0.0034 1.0312 0.0794 0.0001 0.0346 4109 519 4.7454 0.0091 2.1381 1.4917 0.0029 0.6721 1.9304 0.0037 0.8698 0.0608 0.0001 0.0274 4110 586 5.4969 0.0094 2.3964 1.0864 0.0019 0.4736 2.2278 0.0038 0.9712 0.0676 0.0001 0.0295 4111 497 4.2835 0.0086 1.9986 1.4906 0.0030 0.6955 2.7011 0.0054 1.2603 0.0629 0.0001 0.0293 4112 541 5.0288 0.0093 2.2750 1.5264 0.0028 0.6905 2.0419 0.0038 0.9237 0.0784 0.0001 0.0355 5.1091 0.0088 4113 580 2.3659 0.9484 0.0016 0.4392 2.0301 0.0035 0.9401 0.0765 0.0001 0.0354 4114 528 5.3039 0.0100 2.3514 1.5570 0.0029 0.6903 2.8529 0.0054 1.2648 0.0693 0.0001 0.0307 4115 495 4.6910 0.0095 2.1640 1.1085 0.0022 0.5114 1.6135 0.0033 0.7443 0.0617 0.0001 0.0285 4116 615 5.2602 0.0086 2.2428 0.8293 0.0013 0.3536 2.0170 0.0033 0.8600 0.0890 0.0001 0.0379 1.4123 0.0025 4117 576 6.0410 0.0105 2.6025 0.6084 2.4157 0.0042 1.0407 0.0766 0.0001 0.0330 4118 481 5.6253 0.0117 2.6031 1.2993 0.0027 0.6012 2.2644 0.0047 1.0478 0.0529 0.0001 0.0245 4119 521 4.5364 0.0087 1.9908 0.8537 0.0016 0.3746 1.9969 0.0038 0.8763 0.0641 0.0001 0.0281 4120 489 4.5255 0.0092 2.2000 1.0722 0.0022 0.5212 2.0281 0.0041 0.9860 0.0644 0.0001 0.0313 4121 579 5.7865 0.0100 2.4920 1.2369 0.0021 0.5327 1.9016 0.0033 0.8189 0.0640 0.0001 0.0276 4122 565 5.4250 0.0096 2.4536 1.4450 0.0026 0.6536 2.1615 0.0038 0.9776 0.0727 0.0001 0.0329 4123 497 4.4892 0.0090 2.0278 1.1215 0.0023 0.5066 2.2979 0.0046 1.0380 0.0481 0.0217 4124 521 4.9002 0.0094 2.3245 1.1005 0.0021 0.5220 2.4068 0.0046 1.1417 0.0608 0.0001 0.0288 4125 544 4.1831 0.0077 1.9614 1.1114 0.0020 0.5211 1.8960 0.0035 0.8890 0.0494 0.0232 4126 5.2085 0.0094 2.4057 1.3242 0.0024 0.6116 1.7605 0.0032 0.8131 0.0681 0.0001 0.0315 ------

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX X

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ORGAN AND FINAL BODY WEIGHTS

0 MG/M3 MALES GROUP I ______ PITUITARY TESTIS - LEFT TESTIS - RIGHT TESTES Animal FINAL BODY Number WEIGHT Weight %FBW %Brain Weight %FBW Weight %FBW %Brain %Brain Weight %FBW g g g g ______ 1101 599 0.0110 0.0050 1.7645 0.0029 0.8001 1.8312 0.0031 0.8303 3.5882 0.0060 1.6270 1102 477 0.0118 0.0052 1.7934 0.0038 0.7876 1.8064 0.0038 0.7933 3.5923 0.0075 1.5776 1103 557 0.0062 0.0120 1.4750 0.0026 0.7607 1.5013 0.0027 0.7742 2.9738 0.0053 1.5336 1104 557 0.0134 0.0058 1.7818 0.0032 0.7692 1.7651 0.0032 0.7620 3.5431 0.0064 1.5296 1105 624 0.0106 0.0047 1.7245 0.0028 0.7570 1.7029 0.0027 0.7475 3.4204 0.0055 1.5015 1106 497 0.0052 1.6909 0.0034 0.0112 0.7888 1.6886 0.0034 0.7877 3.3758 0.0068 1.5748 1107 591 0.0136 0.0057 1.7510 0.0030 0.7378 1.8319 0.0031 0.7718 3.5762 0.0061 1.5068 1108 579 0.0119 0.0051 1.8143 0.0031 0.7713 1.8862 0.0033 0.8019 3.6942 0.0064 1.5705 1109 543 0.0194 0.0086 1.7904 0.0033 0.7941 1.7441 0.0032 0.7736 3.5347 0.0065 1110 505 0.0146 0.0064 1.5886 0.0031 0.6976 1.6544 0.0033 0.7265 3.2310 0.0064 1.4189 1111 537 0.0099 1.7359 0.0032 0.0044 0.7785 1.9423 0.0036 0.8710 3.4527 0.0064 1.5484 1112 465 0.0117 0.0055 1.4832 0.0032 0.6954 1.4886 0.0032 0.6979 2.9822 0.0064 1.3981 1113 603 0.0132 0.0059 1.9013 0.0032 0.8485 1.7958 0.0030 0.8014 3.6872 0.0061 1.6456 1114 597 0.0131 0.0058 1.8663 0.0031 0.8268 1.8217 0.0031 0.8071 3.6793 0.0062 1.6300 1115 538 0.0108 0.0050 1.8260 0.0034 0.8447 1.8237 0.0034 0.8436 3.6344 0.0068 1.6812 1116 562 0.0133 0.0060 1.4645 0.0026 1.4987 0.0027 0.6647 0.6803 2.9560 0.0053 1.3417 1117 552 0.0101 0.0049 1.7221 0.0031 0.8310 1.6896 0.0031 0.8154 3.3724 0.0061 1.6274 1118 556 0.0134 0.0059 1.6177 0.0029 0.7174 1.6620 0.0030 0.7370 3.2739 0.0059 1.4518 1119 492 0.0188 0.0091 1.4923 0.0030 0.7194 1.4608 0.0030 0.7042 2.9471 0.0060 1.4206 1120 539 0.0148 0.0064 1.7535 0.0033 0.7581 1.6367 0.0030 0.7076 3.3853 0.0063 1.4637 1121 1.6774 0.0030 560 0.0209 0.0096 1.7030 0.0030 0.7862 0.7744 3.3743 0.0060 1.5577 1122 516 0.0117 0.0053 1.6916 0.0033 0.7718 1.8508 0.0036 0.8444 3.5399 0.0069 1.6151 1123 614 0.0064 0.0150 1.8917 0.0031 0.8035 1.9079 0.0031 0.8104 3.7928 0.0062 1.6109 1124 565 0.0118 0.0055 1.7233 0.0030 0.8021 1.7124 0.0030 0.7970 3.4275 0.0061 1.5953 1125 545 0.0058 0.0026 1.7806 0.0033 0.7843 1.8382 0.0034 0.8097 3.6032 0.0066 1.5872 1126 516 0.0111 0.0057 1.8977 0.0037 0.9691 1.8527 0.0036 0.9461 3.7335 0.0072 1.9066

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX X

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ORGAN AND FINAL BODY WEIGHTS

MALES GR	OUP II 20	00 MG/M3					PODI METGH							
		PITU	ITARY		TESTIS - LEFT				ris - Ri	 GHT	TESTES			
Animal Number	FINAL BODY WEIGHT	Weight	 %FBW	 %Brain	 Weight	 %FBW	%Brain	Weight	 %FBW	%Brain	Weight	*FBW	 %Brain	
	g	g			g			g			g			
2101	556	0.0110		0.0049	1.7081	0.0031	0.7669	1.7503	0.0032	0.7859	3.4498	0.0062	1.5489	
2102	579	0.0109		0.0054	1.8623	0.0032	0.9235	1.9177	0.0033	0.9510	3.7594	0.0065	1.8642	
2103	614	0.0152		0.0069	1.9277	0.0031	0.8803	1.9160	0.0031	0.8749	3.8223	0.0062	1.7454	
2104	526	0.0113		0.0055	1.5993	0.0030	0.7758	1.6490	0.0031	0.7999	3.2394	0.0062	1.5713	
2105	559	0.0136		0.0064	1.6521	0.0030	0.7779	1.5373	0.0027	0.7239	3.1843	0.0057	1.4994	
2106	574	0.0114		0.0049	1.6242	0.0028	0.7013	1.6630	0.0029	0.7180	3.2795	0.0057	1.4160	
2107	510	0.0157		0.0067	1.6455	0.0032	0.7038	1.7139	0.0034	0.7331	3.3711	0.0066	1.4419	
2108	640	0.0174		0.0080	1.7934	0.0028	0.8256	1.8351	0.0029	0.8448	3.6290	0.0057	1.6706	
2109	548	0.0175		0.0081	1.7390	0.0032	0.8051	1.7229	0.0031	0.7977	3.5011	0.0064	1.6210	
2110	571	0.0127		0.0059	1.5882	0.0028	0.7385	1.5906	0.0028	0.7396	3.1699	0.0056	1.4739	
2111	483	0.0115		0.0052	1.5802	0.0033	0.7188	1.5930	0.0033	0.7246	3.1668	0.0066	1.4405	
2112	564	0.0148		0.0068	1.7034	0.0030	0.7804	1.6564	0.0029	0.7589	3.3515	0.0059	1.5356	
2113	499	0.0110		0.0052	1.6141	0.0032	0.7696	1.6435	0.0033	0.7837	3.2484	0.0065	1.5489	
2114	534	0.0120		0.0058	1.9537	0.0037	0.9382	1.9598	0.0037	0.9412	3.9044	0.0073	1.8750	
2115	462	0.0085		0.0042	1.6064	0.0035	0.7950	1.5877	0.0034	0.7857	3.1894	0.0069	1.5784	
2116	521	0.0114		0.0056	1.6604	0.0032	0.8214	1.6867	0.0032	0.8344	3.3332	0.0064	1.6489	
2117	569	0.0123		0.0055	1.7625	0.0031	0.7850	1.8050	0.0032	0.8039	3.5607	0.0063	1.5859	
2118	588	0.0135		0.0061	1.8093	0.0031	0.8232	1.6689	0.0028	0.7594	3.4695	0.0059	1.5786	
2119	589	0.0143		0.0064	1.9735	0.0034	0.8780	1.9826	0.0034	0.8820	3.9467	0.0067	1.7558	
2120	606	0.0117		0.0055	1.8724	0.0031	0.8805	1.8317	0.0030	0.8613	3.6974	0.0061	1.7386	
2121	554	0.0106		0.0047	1.8077	0.0033	0.8069	1.8327	0.0033	0.8180	3.6306	0.0066	1.6205	
2122	545	0.0153		0.0060	1.7296	0.0032	0.6817	1.7525	0.0032	0.6907	3.4763	0.0064	1.3701	
2123	466	0.0114		0.0054	1.4590	0.0031	0.6917	1.5552	0.0033	0.7373	3.0047	0.0065	1.4246	
2124	464	0.0114		0.0054	1.7183	0.0037	0.8159	1.7473	0.0038	0.8297	3.4527	0.0074	1.6395	
2125	565	0.0124		0.0052	1.7011	0.0030	0.7185	1.6952	0.0030	0.7160	3.3517	0.0059	1.4156	
2126	535	0.0128		0.0059	1.8784	0.0035	0.8650	1.8765	0.0035	0.8641	3.7871	0.0071	1.7439	

Huntingdon Life Sciences 00-4202 PAGE 487
Sponsor Study No: 211-TAME-IG

APPENDIX X

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ORGAN AND FINAL BODY WEIGHTS

MALES GROUP III 10000 MG/M3 PITUITARY TESTIS - LEFT TESTIS - RIGHT TESTES Animal FINAL BODY ------Number WEIGHT Weight %FBW %Brain Weight %FBW %Brain Weight %FBW %Brain Weight %FBW %Brain g g g g g 3101 505 0.0101 0.0050 1.8875 0.0037 0.9360 1.8732 0.0037 0.9289 3.7519 0.0074 1.8605 3102 606 0.0126 0.0061 1.6271 0.0027 0.7904 1.7594 0.0029 0.8547 3.3753 0.0056 1.6396 3103 455 0.0099 0.0042 1.5377 0.0034 0.6532 1.6625 0.0037 0.7062 3.1989 0.0070 1.3589 3104 589 0.0105 0.0048 1.4905 0.0025 0.6836 1.4555 0.0025 0.6676 2.9437 0.0050 1.3501 3105 590 0.0159 0.0069 1.5986 0.0027 0.6982 1.6157 0.0027 0.7057 3.2127 0.0054 1.4032 3106 576 0.0128 0.0056 1.5952 0.0028 0.6980 1.6094 0.0028 0.7042 3.1966 0.0055 1.3986 3107 570 0.0120 0.0048 1.7814 0.0031 0.7150 1.6989 0.0030 0.6819 3.4769 0.0061 1.3956 3108 551 0.0086 0.0038 1.6464 0.0030 0.7271 1.6511 0.0030 0.7292 3.2920 0.0060 1.4539 3109 653 0.0164 0.0068 1.8159 0.0028 0.7488 1.7356 0.0027 0.7157 3.6163 0.0055 1.4913 3110 654 0.0201 0.0085 1.7860 0.0027 0.7516 1.8456 0.0028 0.7767 3.6323 0.0056 1.5286 3111 551 0.0137 0.0061 1.8297 0.0033 0.8119 1.7524 0.0032 0.7776 3.5806 0.0065 1.5888 3112 444 0.0100 0.0051 1.4246 0.0032 0.7250 1.4490 0.0033 0.7374 2.8638 0.0064 1.4574 3113 488 0.0095 0.0047 1.7931 0.0037 0.8822 1.7737 0.0036 0.8727 3.5311 0.0072 1.7373 3114 564 0.0147 0.0061 1.7568 0.0031 0.7270 1.9555 0.0035 0.8092 3.7045 0.0066 1.5330 3115 548 0.0125 0.0060 1.9226 0.0035 0.9290 1.9425 0.0035 0.9386 3.8594 0.0070 1.8649 3116 477 0.0083 0.0036 1.6221 0.0034 0.7099 1.6506 0.0035 0.7223 3.2802 0.0069 1.4355 3117 511 0.0119 0.0053 1.5392 0.0030 0.6881 1.5065 0.0029 0.6735 3.0426 0.0060 1.3602 3118 534 0.0089 0.0037 1.5217 0.0029 0.6388 1.6036 0.0030 0.6731 3.1364 0.0059 1.3165 3119 552 0.0127 0.0058 1.5775 0.0029 1.5216 0.0028 0.7148 0.6895 3.0893 0.0056 1.3998 3120 577 0.0129 0.0057 1.9207 0.0033 0.8438 1.9106 0.0033 0.8394 3.8181 0.0066 1.6774 3121 413 0.0125 0.0055 1.8589 0.0045 0.8141 1.7482 0.0042 0.7656 3.5833 0.0087 1.5693 3122 590 0.0108 0.0048 1.7832 0.0030 0.7997 1.8056 0.0031 0.8098 3.5840 0.0061 1.6074 3123 455 0.0125 0.0055 1.8098 0.0040 0.7965 1.7673 0.0039 0.7778 3.5693 0.0078 1.5709 3124 0.0147 574 0.0063 1.7264 0.0030 0.7450 1.7188 0.0030 0.7417 3.4319 0.0060 1.4810 3125 581 0.0099 0.0042 1.5450 0.0027 0.6511 1.5616 0.0027 0.6581 3.1228 0.0054 1.3160 3126 0.0161 0.0068 1.8278 0.0031 0.7728 1.8801 0.0032 0.7949 3.7087 0.0063 1.5680

Huntingdon Life Sciences 00-4202 PAGE 488 APPENDIX X

Sponsor Study No: 211-TAME-1G

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY

INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ORGAN AND FINAL BODY WEIGHTS

MALES GROUP IV 20000 MG/M3 ------PITUITARY TESTIS - LEFT TESTIS - RIGHT TESTES FINAL BODY Animal Number Weight %FBW WEIGHT %Brain Weight %FBW %Brain Weight %FBW %Brain Weight %FBW %Brain g g g g ------4101 448 0.0107 0.0053 1.5210 0.0034 0.7602 1.5673 0.0035 0.7833 3.0822 0.0069 1.5405 4102 499 0.0103 0.0049 1.8976 0.0038 0.8948 1.9003 0.0038 0.8960 3.8153 0.0077 1.7990 4103 0.0052 494 0.0110 1.6872 0.0034 0.7994 1.6875 0.0034 0.7996 3.3624 0.0068 1.5932 4104 503 0.0118 0.0057 1.7380 0.0035 0.8450 1.7735 0.0035 0.8622 3.5026 0.0070 1.7029 4105 583 0.0171 0.0074 1.8630 0.0032 0.8009 1.8459 0.0032 0.7936 3.7053 0.0064 1.5930 4106 497 0.0114 0.0057 1.3114 0.0026 0.6552 1.3418 0.0027 0.6704 2.6495 0.0053 1.3237 4107 508 0.0104 0.0045 1.5445 0.0030 0.6730 1.4878 0.0029 0.6483 3.0263 0.0060 1.3188 4108 705 0.0174 0.0076 1.6932 0.0024 0.7380 1.6843 0.0024 0.7341 3.3931 0.0048 1.4789 4109 519 0.0177 0.0080 1.9320 0.0037 0.8705 1.9545 0.0038 0.8806 3.8472 0.0074 1.7334 4110 586 0.0117 0.0051 1.6555 0.0028 0.7217 1.7355 0.0030 0.7566 3.3874 0.0058 4111 497 0.0154 0.0072 1.6699 0.0034 0.7791 1.7555 0.0035 0.8191 3.4211 0.0069 1.5962 4112 541 0.0094 0.0043 1.9218 0.0036 0.8694 1.9237 0.0036 0.8703 3.8358 0.0071 1.7353 4113 580 0.0117 0.0054 1.7234 0.0030 0.7981 1.7117 0.0029 0.7926 3.4294 0.0059 1.5881 4114 528 0.0170 0.0075 1.7893 0.0034 0.7933 1.7306 0.0033 0.7672 3.5087 0.0066 1.5556 4115 495 0.0102 0.0047 1.6309 0.0033 0.7524 1.7019 0.0034 0.7851 3.3234 0.0067 1.5331 4116 615 0.0122 0.0052 1.8417 0.0030 0.7852 1.8638 0.0030 0.7947 3.6986 0.0060 1.5770 4117 576 0.0132 0.0057 1.5849 0.0028 0.6828 1.6600 0.0029 0.7151 3.2290 0.0056 1.3911 4118 481 0.0122 0.0056 1.6097 0.0034 0.7449 1.6744 0.0035 0.7748 3.2233 0.0067 1.4916 4119 521 0.0116 0.0051 1.7647 0.0034 0.7744 1.6740 0.0032 0.7346 3.4290 0.0066 1.5048 4120 489 0.0107 0.0052 1.8562 0.0038 0.9024 1.9649 0.0040 0.9552 3.8062 0.0078 1.8504 4121 579 0.0130 0.0056 1.6130 0.0028 0.6947 1.6212 0.0028 0.6982 3.2309 0.0056 1.3914 4122 565 0.0127 0.0057 1.6882 0.0030 0.7635 1.6905 0.0030 0.7646 3.3622 0.0060 1.5207 4123 497 0.0083 0.0037 1.6503 0.0033 0.7455 1.6578 0.0033 0.7488 3.2912 0.0066 1.4867 4124 521 0.0123 0.0058 1.8501 0.0036 0.8776 1.8700 0.0036 0.8871 3.7052 0.0071 4125 544 0.0126 0.0059 1.6059 0.0030 0.7530 1.6345 0.0030 0.7664 3.2239 0.0059 1.5117 4126 0.0120 0.0055 1.9091 0.0034 0.8818 1.9667 0.0035 0.9084 3.8622 0.0069 1.7838

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX X

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ORGAN AND FINAL BODY WEIGHTS

OUP I 0	•			ORGAN AN						
				EPI						
WEIGHT	Weight	%FBW	%Brain	Weight	%FBW	%Brain	Weight			
g	g			g			g			
599										
477	0.7354	0.0015	0.3230	0.7215	0.0015	0.3169	1.4489	0.0030	0.6363	
557	0.6849	0.0012	0.3532	0.6699	0.0012	0.3455	1.3380	0.0024	0.6900	
557	0.7628	0.0014	0.3293	0.7635	0.0014	0.3296	1.5183	0.0027	0.6555	
624	0.8623	0.0014	0.3785	1.0017	0.0016	0.4397	1.8579	0.0030	0.8156	
497	0.7157	0.0014	0.3339	0.6899	0.0014	0.3218	1.4034	0.0028	0.6547	
591	0.7264	0.0012	0.3061	0.8019	0.0014	0.3379	1.5191	0.0026	0.6401	
579	0.7157	0.0012	0.3043	0.7437	0.0013	0.3162	1.4468	0.0025	0.6151	
543	0.8584	0.0016	0.3807	0.8142	0.0015	0.3611	1.6657	0.0031	0.7388	
505	0.6933	0.0014	0.3045	0.7235	0.0014	0.3177	1.4078	0.0028	0.6182	
537	0.7655	0.0014	0.3433	0.8035	0.0015	0.3603	1.5693	0.0029	0.7038	
465	0.6155	0.0013	0.2886	0.6375	0.0014	0.2989	1.2436	0.0027	0.5830	
603	0.8270	0.0014	0.3691	0.7764	0.0013	0.3465	1.5952	0.0026	0.7119	
597	0.7250	0.0012	0.3212	0.7218	0.0012	0.3198	1.4267	0.0024	0.6321	
538	0.7593	0.0014	0.3512	0.7944	0.0015	0.3675	1.5476	0.0029	0.7159	
562	0.5846	0.0010	0.2654	0.5989	0.0011	0.2718	1.1733	0.0021	0.5326	
552	0.8234	0.0015	0.3974	0.7710	0.0014	0.3721	1.5895	0.0029	0.7671	
556	0.7127	0.0013	0.3161	0.6817	0.0012	0.3023	1.3914	0.0025	0.6170	
492	0.6076	0.0012	0.2929	0.6080	0.0012	0.2931	1.2049	0.0024	0.5808	
539	0.7311	0.0014	0.3161	0.6838	0.0013	0.2956	1.4067	0.0026	0.6082	
560	0.7071	0.0013	0.3264	0.6652	0.0012	0.3071	1.3619	0.0024	0.6287	
516	0.7908	0.0015	0.3608	0.7979	0.0015	0.3640	1.6780	0.0033	0.7656	
614	0.7809	0.0013	0.3317	0.8010	0.0013	0.3402	1.5756	0.0026	0.6692	
565	0.7315	0.0013	0.3405	0.7394	0.0013	0.3441	1.4603	0.0026	0.6797	
545	0.7693	0.0014	0.3389	0.7396	0.0014	0.3258	1.5010	0.0028	0.6612	
516	0.6981	0.0014	0.3565	0.6841	0.0013	0.3494	1.3734	0.0027	0.7014	
	FINAL BODY WEIGHT 9 599 477 557 557 624 497 591 579 543 505 537 465 603 597 538 562 552 556 492 539 560 516 614 565 545	FINAL BODY WEIGHT Weight g g 599 0.7932 477 0.7354 557 0.6849 557 0.7628 624 0.8623 497 0.7157 591 0.7264 579 0.7157 591 0.7264 579 0.7157 543 0.8584 505 0.6933 537 0.7655 465 0.6155 603 0.8270 597 0.7250 538 0.7593 562 0.5846 552 0.8234 556 0.7127 492 0.6076 539 0.7311 560 0.7071 516 0.7908 614 0.7809 565 0.7315 545 0.7693	FINAL BODY WEIGHT Weight %FBW G G G G G G G G G G G G G G G G G G G	FINAL BODY WEIGHT Weight *FBW *Brain g g 599 0.7932 0.0013 0.3597 477 0.7354 0.0015 0.3230 557 0.6849 0.0012 0.3532 557 0.7628 0.0014 0.3293 624 0.8623 0.0014 0.3785 497 0.7157 0.0014 0.3339 591 0.7264 0.0012 0.3061 579 0.7157 0.0012 0.3061 579 0.7157 0.0012 0.3061 579 0.7157 0.0012 0.3043 543 0.8584 0.0016 0.3807 505 0.6933 0.0014 0.3045 537 0.7655 0.0014 0.3433 465 0.6155 0.0014 0.3433 465 0.6155 0.0014 0.3691 597 0.7250 0.0012 0.3212 538 0.7593 0.0014 0.3691 597 0.7250 0.0012 0.3212 538 0.7593 0.0014 0.3512 562 0.5846 0.0010 0.2654 552 0.8234 0.0015 0.3974 556 0.7127 0.0013 0.3161 492 0.6076 0.0012 0.2929 539 0.7311 0.0014 0.3161 560 0.7071 0.0013 0.3264 516 0.7908 0.0015 0.3608 614 0.7809 0.0013 0.3317 565 0.7315 0.0013 0.3405	FINAL BODY WEIGHT Weight %FBW %Brain Weight Gy Gy Gy Gy Gy Gy Gy Gy Gy Gy Gy Gy Gy	FINAL BODY WEIGHT Weight %FBW %Brain Weight %FBW g g g 599 0.7932 0.0013 0.3597 0.7185 0.0012 477 0.7354 0.0015 0.3230 0.7215 0.0015 557 0.6849 0.0012 0.3532 0.6699 0.0014 624 0.8623 0.0014 0.3785 1.0017 0.0016 497 0.7157 0.0014 0.3339 0.6899 0.0014 591 0.7264 0.0012 0.3061 0.8019 0.0014 579 0.7157 0.0012 0.3061 0.8019 0.0014 579 0.7157 0.0014 0.3339 0.6899 0.0014 579 0.7157 0.0014 0.38807 0.8142 0.0015 505 0.6933 0.0014 0.3045 0.7235 0.0014 537 0.7655 0.0014 0.3045 0.7235 0.0014 537 0.7655 0.0014 0.3045 0.7235 0.0014 537 0.7655 0.0014 0.3045 0.7235 0.0014 537 0.7655 0.0014 0.3045 0.7235 0.0014 537 0.7655 0.0014 0.3045 0.7235 0.0014 537 0.7655 0.0014 0.3045 0.7235 0.0014 537 0.7655 0.0014 0.3045 0.7235 0.0014 537 0.7655 0.0014 0.3691 0.7764 0.0013 597 0.7250 0.0014 0.3691 0.7764 0.0013 597 0.7250 0.0012 0.3212 0.7218 0.0012 538 0.7593 0.0014 0.3512 0.7944 0.0015 562 0.5846 0.0010 0.2654 0.5989 0.0011 552 0.8234 0.0015 0.3974 0.7710 0.0014 556 0.7127 0.0013 0.3161 0.6817 0.0012 492 0.6076 0.0012 0.2929 0.6080 0.0012 539 0.7311 0.0014 0.3161 0.6817 0.0012 492 0.6076 0.0012 0.2929 0.6080 0.0012 539 0.7311 0.0014 0.3161 0.6817 0.0012 516 0.7908 0.0015 0.3608 0.7979 0.0015 614 0.7809 0.0013 0.3264 0.6652 0.0013 565 0.7315 0.0013 0.3365 0.7394 0.0013 565 0.7315 0.0013 0.3367 0.7396 0.0014	FINAL BODY Weight %FBW %Brain Weight %FBW %Brain g g g g g g g g g g g g g g g g g g g	FINAL BODY WEIGHT Weight *FBW *Brain Weight *FBW *Brain Weight 9 599 0.7932 0.0013 0.3597 0.7185 0.0012 0.3258 1.5059 477 0.7354 0.0015 0.3230 0.7215 0.0015 0.3169 1.4489 557 0.6849 0.0012 0.3532 0.6699 0.0012 0.3455 1.3380 557 0.7628 0.0014 0.3293 0.7635 0.0014 0.3293 1.5183 624 0.8623 0.0014 0.3785 1.0017 0.0016 0.4397 1.8579 497 0.7157 0.0014 0.3339 0.6899 0.0014 0.3218 1.4034 591 0.7264 0.0012 0.3043 0.7437 0.0013 0.3162 1.4468 543 0.8584 0.0016 0.3807 0.8142 0.0015 0.3601 1.6657 505 0.6933 0.0014 0.3433 0.8035 0.0014 0.3177 1.4078 537 0.7655 0.0014 0.3433 0.8035 0.0014 0.3177 1.4078 650 0.6155 0.0014 0.3433 0.8035 0.0014 0.3177 1.4078 537 0.7655 0.0014 0.3433 0.8035 0.0015 0.3603 1.5693 603 0.8270 0.0014 0.3691 0.7764 0.0013 0.3465 1.5952 597 0.7250 0.0014 0.3691 0.7764 0.0013 0.3465 1.5952 597 0.7250 0.0014 0.3512 0.77248 0.0015 0.3611 1.6657 538 0.7593 0.0014 0.3512 0.77248 0.0012 0.3198 1.4267 538 0.7593 0.0014 0.3512 0.77248 0.0012 0.3198 1.4267 538 0.7593 0.0014 0.3512 0.77248 0.0012 0.3198 1.4267 538 0.7593 0.0014 0.3512 0.77248 0.0012 0.3198 1.4267 538 0.7593 0.0014 0.3512 0.77248 0.0012 0.3198 1.4267 538 0.7593 0.0014 0.3512 0.77248 0.0012 0.3198 1.4267 539 0.7311 0.0014 0.3264 0.5989 0.0011 0.2718 1.7733 552 0.8234 0.0015 0.3974 0.7710 0.0014 0.3721 1.5895 556 0.7127 0.0013 0.3161 0.6817 0.0012 0.3023 1.3914 492 0.6076 0.0012 0.2929 0.6080 0.0012 0.2931 1.2049 539 0.7311 0.0014 0.3161 0.6817 0.0012 0.3023 1.3914 492 0.6076 0.0012 0.2929 0.6080 0.0012 0.2931 1.2049 539 0.7311 0.0014 0.3161 0.6817 0.0012 0.3071 1.3619 516 0.7908 0.0015 0.3608 0.7979 0.0015 0.3640 1.6780 614 0.7809 0.0015 0.3317 0.8010 0.0013 0.3442 1.5756 565 0.7315 0.0013 0.3465 0.7394 0.0013 0.3442 1.5756 565 0.7315 0.0013 0.3405 0.7394 0.0013 0.3441 1.4603 545 0.7394 0.0013 0.3441 1.4603 545 0.7394 0.0013 0.3441 1.4603 545 0.7394 0.0013 0.3441 1.4603 545 0.7394 0.0013 0.3441 1.4603 545 0.7394 0.0013 0.3441 1.4603 545 0.7394 0.0013 0.3442 1.5756	FINAL BODY WEIGHT Weight *FBW *Brain Weight *FBW *Brain O.7354 0.0015 0.3230 0.7215 0.0015 0.3169 1.4489 0.0030 0.7557 0.6849 0.0012 0.3532 0.6699 0.0012 0.3455 1.3380 0.0024 0.8623 0.0014 0.3393 0.6899 0.0014 0.3296 1.51B3 0.0027 0.7157 0.0014 0.3339 0.6899 0.0014 0.3218 1.4034 0.0028 0.799 0.7157 0.0012 0.3061 0.8019 0.0014 0.3379 1.5191 0.0026 0.543 0.8584 0.0016 0.3807 0.8142 0.0015 0.3611 1.6657 0.0031 0.3858 0.6559 0.7655 0.6693 0.0014 0.3329 0.6699 0.0012 0.3455 1.3080 0.0024 0.0012 0.3616 0.8019 0.0014 0.3379 1.5191 0.0026 0.0014 0.3045 0.7035 0.0014 0.3319 1.4034 0.0028 0.0014 0.3045 0.7035 0.0014 0.3319 1.4034 0.0028 0.0014 0.3045 0.0014 0.3045 0.7335 0.0014 0.3177 1.4078 0.0025 0.6933 0.0014 0.3045 0.7335 0.0014 0.3177 1.4078 0.0028 0.0014 0.3085 0.6933 0.0014 0.3045 0.7235 0.0014 0.3177 1.4078 0.0028 0.0014 0.3045 0.7235 0.0014 0.3177 1.4078 0.0028 0.0014 0.3045 0.7235 0.0014 0.3177 1.4078 0.0028 0.0014 0.3045 0.7235 0.0014 0.3077 1.4078 0.0028 0.0014 0.3045 0.7235 0.0014 0.3077 1.4078 0.0028 0.0014 0.3045 0.7235 0.0014 0.3077 1.4078 0.0028 0.0015 0.3603 1.5693 0.0029 0.0014 0.3045 0.7235 0.0014 0.3077 1.4078 0.0028 0.0015 0.3603 1.5693 0.0029 0.0014 0.3045 0.7235 0.0014 0.3077 1.4078 0.0029 0.0014 0.3045 0.7235 0.0014 0.3077 1.4078 0.0028 0.0015 0.3603 1.5693 0.0029 0.0014 0.3045 0.7235 0.0014 0.3045 0.7235 0.0014 0.3045 0.7235 0.0014 0.3045 0.7235 0.0014 0.3045 0.7235 0.0015 0.3603 1.5693 0.0029 0.0015 0.3603 1.5693 0.0029 0.0015 0.3603 1.5693 0.0029 0.0015 0.3603 0.0015 0.3603 1.5693 0.0029 0.0015 0.3603 0.0015 0.36	PINAL BODY Weight FEW Serain Weight FEW Serain Weight FEW Serain Weight FEW Serain Weight FEW Serain Weight FEW Serain Weight FEW Serain FEW Serain Weight FEW Serain Serain Serain Serain Serain Serain Serain Serain Serain Serain Serain Serain Serain Serain Serain Ser

Sponsor Study No: 211-TAME-1G

Huntingdon Life Sciences 00-4202 PAGE 490

APPENDIX X

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ORGAN AND FINAL BODY WEIGHTS

MALES GROUP II 2000 MG/M3 EPIDIDYMIS LEFT EPIDIDYMIS RIGHT **EPIDIDYMIDES** Animal FINAL BODY -----Number WEIGHT Weight %FBW %Brain Weight %FBW %Brain Weight %FBW g g g g 2101 0.7042 0.0013 0.3162 0.7148 0.0013 0.3209 1.4137 0.0025 0.6347 2102 579 0.9068 0.0016 0.4497 0.7079 0.0012 0.3510 1.6179 0.0028 0.8023 2103 614 0.7801 0.0013 0.3562 0.7916 0.0013 0.3615 1.5579 0.0025 0.7114 2104 526 0.6508 0.0012 0.3157 0.7248 0.0014 0.3516 1.3656 0.0026 0.6624 2105 559 0.7449 0.0013 0.3508 0.6990 0.0013 0.3291 1.4325 0.0026 0.6745 2106 574 0.7052 0.0012 0.3045 0.7708 0.0013 0.3328 1.4707 0.0026 0.6350 2107 510 0.7762 0.0015 0.3320 0.8223 0.0016 0.3517 1.6998 0.0033 0.7270 2108 640 0.7553 0.0012 0.3477 0.7767 0.0012 0.3575 1.5687 0.0025 0.7221 2109 548 0.7871 0.0014 0.3644 0.8526 0.0016 0.3947 1.6414 0.0030 0.7599 2110 571 0.6772 0.0012 0.3149 0.6609 0.0012 0.3073 1.3402 0.0023 0.6231 2111 483 0.7120 0.0015 0.3239 0.7036 0.0015 0.3201 1.4010 0.0029 0.6373 2112 564 0.6815 0.0012 0.3122 0.7134 0.0013 0.3269 1.3851 0.0025 0.6346 2113 499 0.6736 0.0013 0.3212 0.6958 0.0014 0.3318 1.3595 0.0027 0.6482 2114 534 0.8827 0.0017 0.4239 0.7825 0.0015 0.3758 1.6367 0.0031 0.7860 2115 462 0.7145 0.0015 0.3536 0.6785 0.0015 0.3358 1.3812 0.0030 0.6835 2116 521 0.7409 0.0014 0.3665 0.7285 0.0014 0.3604 1.4563 0.0028 0.7204 2117 569 0.8669 0.0015 0.3861 0.8440 0.0015 0.3759 1.6954 0.0030 0.7551 2118 588 0.6592 0.0011 0.2999 0.7010 0.0012 0.3190 1.3467 0.0023 0.6127 2119 589 0.7712 0.0013 0.3431 0.7941 0.0013 0.3533 1.5545 0.0026 0.6916 2120 606 0.7878 0.0013 0.3705 0.7694 0.0013 0.3618 1.5535 0.0026 0.7305 2121 0.7728 0.0014 1.5772 0.0028 554 0.3449 0.8187 0.0015 0.3654 0.7040 2122 0.8123 0.0015 545 0.3202 0.7959 0.0015 0.3137 1.5860 0.0029 0.6251 2123 466 0.6972 0.0015 0.3306 0.6623 0.0014 0.3140 1.2998 0.0028 0.6163 2124 0.3842 464 0.8090 0.0017 0.7776 0.0017 0.3692 1.5645 0.0034 0.7429 2125 565 0.7991 0.0014 0.3375 0.8573 0.0015 0.3621 1.6442 0.0029 0.6944 2126 535 0.9004 0.0017 0.4146 0.8653 0.0016 0.3985 1.7508 0.0033 0.8062

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX X

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ORGAN AND FINAL BODY WEIGHTS

OUP III 10	000 MG/M	3		01101111 1111		DODI WIIO	110			
	EPI	DIDYMIS	LEFT	EPI	DIDYMIS	RIGHT	EPI	DIDYMIDE		
WEIGHT	Weight g	%FBW	%Brain	Weight g	%FBW	%Brain	Weight			
					0.0014	0.3593	1.5372	0.0030	0.7623	
			0.3556			0.4103				
455	0.5418	0.0012	0.2302	0.6970	0.0015	0.2961				
589	0.6877	0.0012	0.3154	0.6849	0.0012	0.3141			0.6276	
590	0.7198	0.0012	0.3144	0.6913	0.0012	0.3019				
576	0.8407	0.0015	0.3678	0.8899	0.0015	0.3894	1.7279	0.0030	0.7560	
570	0.8440	0.0015	0.3388	0.8066	0.0014	0.3238	1.6418	0.0029	0.6590	
551	0.6876	0.0012	0.3037	0.7534	0.0014	0.3327	1.4355	0.0026	0.6340	
653	0.8204	0.0013	0.3383	0.7779	0.0012	0.3208	1.5964	0.0024	0.6583	
654	0.8300	0.0013	0.3493	0.7868	0.0012	0.3311	1.6132	0.0025	0.6789	
551	0.8089	0.0015	0.3589	0.7585	0.0014	0.3366	1.5616	0.0028	0.6929	
444	0.5309	0.0012	0.2702	0.5479	0.0012	0.2788	1.0724	0.0024	0.5458	
488	0.6899	0.0014	0.3394	0.7260	0.0015	0.3572	1.3806	0.0028	0.6793	
564	0.9790	0.0017	0.4051	0.9877	0.0018	0.4087	1.9231	0.0034	0.7958	
548	0.7783	0.0014	0.3761	0.7424	0.0014	0.3587	1.4932	0.0027	0.7215	
477	0.7750	0.0016	0.3392	0.7081	0.0015	0.3099	1.4337	0.0030	0.6274	
511	0.7306	0.0014	0.3266	0.6689	0.0013	0.2990	1.3827	0.0027	0.6182	
534	0.7788	0.0015	0.3269	0.7852	0.0015	0.3296	1.5251	0.0029	0.6402	
552	0.7140	0.0013	0.3235	0.6684	0.0012	0.3029	1.3639	0.0025	0.6180	
577	0.8059	0.0014	0.3541	0.8052	0.0014	0.3537	1.6056	0.0028	0.7054	
413	0.7526	0.0018	0.3296	0.7582	0.0018	0.3320	1.5051	0.0036	0.6591	
590	0.7330	0.0012	0.3287	0.8828	0.0015	0.3959	1.5688	0.0027	0.7036	
455	0.7772	0.0017	0.3420	0.7534	0.0017	0.3316	1.5877	0.0035	0.6988	
574	0.7859	0.0014	0.3391	0.7370	0.0013	0.3180	1.4937	0.0026	0.6446	
581	0.7082	0.0012	0.2985	0.7143	0.0012	0.3010	1.4160	0.0024	0.5967	
590	0.7310	0.0012	0.3091	1.4868	0.0025	0.6286	2.2032	0.0037	0.9315	
	FINAL BODY WEIGHT 9 505 606 455 589 590 576 570 551 653 654 551 444 488 564 548 477 511 534 552 577 413 590 455 574 581	FINAL BODY Weight 9 9 505 0.8293 606 0.7320 455 0.5418 589 0.6877 590 0.7198 576 0.8440 551 0.6876 653 0.8204 654 0.8300 551 0.8089 444 0.5309 488 0.6899 564 0.9790 548 0.7783 477 0.7750 511 0.7306 534 0.7788 552 0.7140 577 0.8059 413 0.7526 590 0.7330 455 0.7772 574 0.7859 581 0.7082	FINAL BODY WEIGHT Weight %FBW g g 505 0.8293 0.0016 606 0.7320 0.0012 455 0.5418 0.0012 589 0.6877 0.0012 590 0.7198 0.0012 576 0.8407 0.0015 570 0.8440 0.0015 551 0.6876 0.0012 653 0.8204 0.0013 654 0.8300 0.0013 551 0.8089 0.0015 444 0.5309 0.0015 444 0.5309 0.0012 488 0.6899 0.0014 564 0.9790 0.0017 548 0.7783 0.0014 477 0.7750 0.0016 511 0.7306 0.0014 534 0.7788 0.0015 552 0.7140 0.0013 577 0.8059 0.0014 413 0.7526 0.0018 590 0.7330 0.0012 455 0.7772 0.0017 574 0.7859 0.0014	FINAL BODY WEIGHT Weight %FBW %Brain 9 505 0.8293 0.0016 0.4112 606 0.7320 0.0012 0.3556 455 0.5418 0.0012 0.3154 590 0.7198 0.0012 0.3144 576 0.8407 0.0015 0.3678 570 0.8440 0.0015 0.3388 551 0.6876 0.0012 0.3388 551 0.6876 0.0012 0.3388 551 0.6876 0.0012 0.3388 551 0.6876 0.0012 0.3388 551 0.6876 0.0012 0.3037 653 0.8204 0.0013 0.3383 654 0.8300 0.0013 0.3493 551 0.8089 0.0015 0.3589 444 0.5309 0.0012 0.2702 488 0.6899 0.0014 0.3394 564 0.9790 0.0017 0.4051 548 0.7783 0.0014 0.3761 477 0.7750 0.0016 0.3392 511 0.7306 0.0014 0.3266 534 0.7788 0.0015 0.3269 552 0.7140 0.0013 0.3235 577 0.8059 0.0014 0.3266 534 0.7788 0.0015 0.3269 552 0.7140 0.0013 0.3235 577 0.8059 0.0014 0.3541 413 0.7526 0.0018 0.3296 590 0.7330 0.0012 0.3287 455 0.7772 0.0017 0.3420 574 0.7859 0.0014 0.3391 581	FINAL BODY WEIGHT Weight %FBW %Brain Weight G006 0.7320 0.0016 0.4112 0.7246 606 0.7320 0.0012 0.3556 0.8447 455 0.5418 0.0012 0.3154 0.6849 590 0.7198 0.0012 0.3154 0.6849 570 0.8440 0.0015 0.3678 0.8899 570 0.8440 0.0015 0.3388 0.8066 551 0.6876 0.0012 0.33037 0.7534 653 0.8204 0.0012 0.3383 0.7779 654 0.8300 0.0013 0.3383 0.7779 654 0.8300 0.0013 0.3493 0.7868 551 0.8089 0.0015 0.3589 0.7585 444 0.5309 0.0015 0.3589 0.7585 444 0.5309 0.0015 0.3589 0.7585 444 0.5309 0.0015 0.3589 0.7585 444 0.5309 0.0015 0.3589 0.7585 444 0.5309 0.0015 0.3589 0.7585 444 0.5309 0.0015 0.3589 0.7585 444 0.5309 0.0015 0.3589 0.7585 444 0.5309 0.0016 0.3394 0.7260 564 0.9790 0.0017 0.4051 0.9877 548 0.7783 0.0014 0.3394 0.7260 564 0.9790 0.0017 0.4051 0.9877 548 0.7783 0.0014 0.3391 0.7308 552 0.7140 0.0013 0.3225 0.6684 577 0.8059 0.0014 0.3266 0.6689 534 0.7788 0.0015 0.3269 0.7852 552 0.7140 0.0013 0.3225 0.6684 577 0.8059 0.0014 0.3226 0.6689 534 0.7788 0.0015 0.3269 0.7852 550 0.7140 0.0013 0.3225 0.6684 577 0.8059 0.0014 0.3226 0.6689 534 0.7788 0.0015 0.3269 0.7852 550 0.7140 0.0013 0.3225 0.6684 577 0.8059 0.0014 0.3226 0.7582 590 0.7330 0.0012 0.3287 0.8828 455 0.7772 0.0017 0.3420 0.7534 574 0.7859 0.0014 0.3391 0.7370 581 0.7082 0.0012 0.2985 0.7143	EPIDIDYMIS LEFT EPIDIDYMIS FINAL BODY WEIGHT Weight %FBW %Brain Weight %FBW 9 9 9 505 0.8293 0.0016 0.4112 0.7246 0.0014 606 0.7320 0.0012 0.3556 0.8447 0.0014 455 0.5418 0.0012 0.2302 0.6970 0.0015 589 0.6877 0.0012 0.3154 0.6849 0.0012 590 0.7198 0.0012 0.3154 0.6849 0.0012 576 0.8440 0.0015 0.3678 0.8899 0.0015 570 0.8440 0.0015 0.3388 0.8066 0.0014 551 0.6876 0.0012 0.3037 0.7534 0.0014 653 0.8204 0.0013 0.3383 0.7779 0.0012 654 0.8300 0.0013 0.3493 0.7868 0.0012 551 0.6869 0.0015 0.3589 0.7789 0.0012 551 0.8089 0.0015 0.3589 0.7786 0.0012 551 0.8089 0.0015 0.3589 0.7786 0.0012 551 0.8089 0.0015 0.3589 0.7786 0.0012 551 0.8089 0.0015 0.3589 0.7786 0.0012 551 0.8089 0.0015 0.3589 0.7786 0.0014 444 0.5309 0.0015 0.3589 0.7786 0.0012 551 0.8089 0.0014 0.3394 0.7260 0.0015 548 0.7783 0.0014 0.3394 0.7260 0.0015 551 0.7776 0.0016 0.3392 0.7081 0.0015 551 0.7778 0.0014 0.3761 0.7424 0.0014 477 0.7750 0.0016 0.3392 0.7081 0.0015 551 0.7788 0.0014 0.3266 0.6689 0.0013 534 0.7788 0.0015 0.3269 0.7852 0.0015 552 0.7140 0.0013 0.3266 0.6684 0.0012 577 0.8059 0.0014 0.3541 0.8052 0.0014 413 0.7526 0.0018 0.3296 0.7582 0.0015 550 0.7330 0.0012 0.3287 0.8828 0.0015 574 0.7859 0.0014 0.3391 0.7370 0.0013 581 0.7082 0.0012 0.2985 0.7143 0.0012	EPIDIDYMIS LEFT EPIDIDYMIS RIGHT FINAL BODY WEIGHT Weight %FBW %Brain Weight %FBW %Brain g g g 505 0.8293 0.0016 0.4112 0.7246 0.0014 0.3593 606 0.7320 0.0012 0.3556 0.8447 0.0014 0.4103 455 0.5418 0.0012 0.2302 0.6970 0.0015 0.2961 589 0.6877 0.0012 0.3154 0.6849 0.0012 0.3141 590 0.7198 0.0012 0.3154 0.6849 0.0012 0.3101 576 0.8407 0.0015 0.3678 0.8899 0.0015 0.3894 570 0.8440 0.0015 0.3678 0.8899 0.0015 0.3894 570 0.8440 0.0015 0.3388 0.8066 0.0014 0.3238 551 0.6876 0.0012 0.3338 0.8066 0.0014 0.3238 551 0.6876 0.0012 0.3338 0.7779 0.0012 0.3208 654 0.8300 0.0013 0.3383 0.7779 0.0012 0.3208 654 0.8300 0.0013 0.3383 0.7779 0.0012 0.3208 654 0.8300 0.0013 0.3389 0.7585 0.0014 0.3366 444 0.5309 0.0015 0.3589 0.7585 0.0014 0.3366 444 0.5309 0.0015 0.3589 0.7585 0.0014 0.3366 444 0.5309 0.0014 0.3761 0.7868 0.0012 0.2788 488 0.6899 0.0014 0.3394 0.7260 0.0015 0.3572 564 0.9790 0.0017 0.4051 0.9877 0.0018 0.4087 548 0.7783 0.0014 0.3761 0.7424 0.0014 0.3587 477 0.7750 0.0016 0.3392 0.7081 0.0015 0.3099 511 0.7306 0.0014 0.3761 0.7424 0.0014 0.3587 477 0.7750 0.0016 0.3392 0.7081 0.0015 0.3099 534 0.7788 0.0015 0.3269 0.7852 0.0015 0.3296 552 0.7140 0.0013 0.3226 0.6684 0.0012 0.3296 552 0.7140 0.0013 0.3226 0.6684 0.0012 0.3296 557 0.8059 0.0014 0.3541 0.8052 0.0014 0.3537 413 0.7526 0.0018 0.3296 0.7582 0.0016 0.3320 590 0.7330 0.0012 0.3287 0.8828 0.0015 0.3959 455 0.7772 0.0017 0.3420 0.7534 0.0017 0.3316 574 0.7859 0.0014 0.3391 0.7370 0.0013 0.3180 581 0.7082 0.0012 0.2985 0.7143 0.0012 0.3010	FINAL BODY WEIGHT Weight *FBW *Brain Weight *FBW *Brain Weight G06 0.7320 0.0012 0.3556 0.8447 0.0014 0.4103 1.5647 455 0.5418 0.0012 0.2302 0.6970 0.0015 0.2961 1.2362 589 0.6877 0.0012 0.3154 0.6849 0.0012 0.3101 1.3684 590 0.7198 0.0012 0.3144 0.6913 0.0012 0.3019 1.4095 576 0.8447 0.0015 0.3968 0.8899 0.0015 0.3894 1.7279 570 0.8440 0.0015 0.3388 0.8066 0.0014 0.3238 1.6418 551 0.66876 0.0012 0.3303 0.7779 0.0015 0.3288 1.5516 653 0.8204 0.0012 0.3037 0.7534 0.0014 0.3228 1.5564 654 0.8300 0.0013 0.3493 0.7868 0.0012 0.3311 1.6132 551 0.8089 0.0015 0.3589 0.7585 0.0014 0.33366 1.5616 444 0.5309 0.0015 0.3589 0.7585 0.0014 0.3366 1.5616 444 0.5309 0.0015 0.3394 0.7260 0.0015 0.2788 1.0724 488 0.6899 0.0014 0.3394 0.7260 0.0015 0.3587 1.4337 511 0.7050 0.0014 0.3761 0.7524 0.0014 0.3587 1.4337 511 0.7306 0.0014 0.3366 0.0329 0.7051 0.307 0.7534 0.0014 0.3366 1.5616 564 0.9790 0.0017 0.4051 0.9877 0.0018 0.4087 1.9231 548 0.7783 0.0014 0.3394 0.7260 0.0015 0.3587 1.4337 511 0.7306 0.0014 0.3366 0.6689 0.0015 0.3589 0.7585 0.0014 0.3587 1.4337 511 0.7306 0.0014 0.3266 0.6689 0.0015 0.3587 1.4337 511 0.7306 0.0014 0.3266 0.6689 0.0015 0.3099 1.4337 511 0.7306 0.0014 0.3266 0.6689 0.0015 0.3099 1.4337 511 0.7306 0.0014 0.3269 0.7682 0.0015 0.3099 1.4337 511 0.7306 0.0014 0.3269 0.7682 0.0015 0.3099 1.4337 511 0.7306 0.0014 0.3269 0.7682 0.0015 0.3099 1.4337 511 0.7306 0.0014 0.3269 0.7682 0.0015 0.3329 1.5251 552 0.7140 0.0013 0.3296 0.7582 0.0016 0.3320 1.5051 590 0.7330 0.0012 0.3287 0.8828 0.0015 0.3359 1.5688 455 0.7772 0.0018 0.3329 0.7582 0.0018 0.3320 1.5051 590 0.7330 0.0012 0.3285 0.6684 0.0015 0.3359 1.5688 455 0.7772 0.0017 0.3420 0.7582 0.0018 0.3320 1.5051 590 0.7330 0.0012 0.3285 0.7682 0.0015 0.3359 1.5688 455 0.7772 0.0017 0.3420 0.7582 0.0018 0.3320 1.5051 590 0.7330 0.0012 0.3285 0.7682 0.0015 0.3320 1.5051 590 0.7330 0.0012 0.3287 0.8828 0.0015 0.3320 1.5051 590 0.7330 0.0012 0.3285 0.7582 0.0018 0.3320 1.5051 590 0.7330 0.0012 0.3285 0.7582 0.0018 0.3320 1.5051 590 0.7785 0.0013 0.3318 0.3380	EPIDIDYMIS LEFT EPIDIDYMIS RIGHT EPIDIDYMIDES FINAL BODY WEIGHT Weight *FBW *Brain Weight *FBW *Brain G G G G G G G G G G G G G G G G G G G	EPIDIDYMIS LEFT EPIDIDYMIS RIGHT EPIDIDYMIDES

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX X

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ORGAN AND FINAL BODY WEIGHTS

MALES GR	OUP IV 20	0000 MG/M3										
		EPI	DIDYMIS	LEFT	F EPIDIDYMIS RIGHT			EPIDIDYMID	 ES			
Number	FINAL BODY WEIGHT G	Weight	%FBW	%Brain	Weight	%FBW	%Brain	Weight %FBW	%Brain			
	448						0.3042					
	499	0.7591		0.3579	0.8147		0.3841	1.5579 0.0031				
	494	0.6722		0.3185	0.7586		0.3594	1.4237 0.0029				
4104	503	0.7017		0.3411	0.7066		0.3435	1.4005 0.0028				
4105	583	0.6897		0.2965	0.7579		0.3258	1.4439 0.0025				
	497	1.1967		0.5979	0.6188		0.3092	1.8101 0.0036	0.9043			
	508	0.7227		0.3149	0.7106	0.0014	0.3097	1.4302 0.0028	0.6232			
	705	0.6814		0.2970	0.7731		0.3370	1.5165 0.0022	0.6610			
4109	519	0.7341		0.3308	0.8152	0.0016	0.3673	1.5462 0.0030	0.6967			
4110	586	0.7580	0.0013	0.3305	0.7807	0.0013	0.3404	1.5336 0.0026	0.6686			
4111	497	0.7225	0.0015	0.3371	0.7365	0.0015	0.3436	1.4540 0.0029	0.6784			
4112	541	0.7171	0.0013	0.3244	0.7479	0.0014	0.3383	1.4612 0.0027	0.6610			
4113	580	0.7229	0.0012	0.3348	0.6938	0.0012	0.3213	1.4126 0.0024	0.6541			
4114	528	0.8211	0.0016	0.3640	0.8334	0.0016	0.3695	1.6287 0.0031	0.7221			
	495	0.6986	0.0014	0.3223	0.6675	0.0013	0.3079	1.3498 0.0027	0.6227			
	615	0.8002	0.0013	0.3412	0.7951	0.0013	0.3390	1.5919 0.0026	0.6787			
4117	576	0.7542	0.0013	0.3249	0.7388	0.0013	0.3183	1.4843 0.0026	0.6395			
4118	481	0.6901	0.0014	0.3193	0.6610	0.0014	0.3059	1.3403 0.0028	0.6202			
4119	521	0.6162	0.0012	0.2704	0.6526	0.0013	0.2864	1.2600 0.0024	0.5529			
4120	489	0.7363	0.0015	0.3579	0.7389	0.0015	0.3592	1.4702 0.0030	0.7147			
4121	579	0.7510	0.0013	0.3234	0.7664	0.0013	0.3301	1.5115 0.0026	0.6509			
4122	565	0.7386	0.0013	0.3341	0.7209	0.0013	0.3261	1.4522 0.0026				
4123	497	0.6835	0.0014	0.3087	0.6681	0.0013	0.3018	1.3388 0.0027				
4124	521	0.6074	0.0012	0.2881	0.6461		0.3065	1.2516 0.0024	0.5937			
	544	0.7127		0.3342	0.6998		0.3281	1.4105 0.0026				
4126	556	0.8231		0.3802	0.8350		0.3857	1.6488 0.0030				

Sponsor Study No: 211-TAME-1G

APPENDIX X

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ORGAN AND FINAL BODY WEIGHTS

FEMALES GROUP I 0 MG/M3

		LIVER			LUNGS			BRAIN			SPLEEN		
Animal	FINAL BODY												
Number	WEIGHT	Weight	%FBW	%Brain	Weight	%FBW	%Brain	Weight	%FBW	%Brain	Weight	%FBW	%Brain
	g 	g 			g 			g 			g		
1601	366	16.9000	0.0462	9.0196	1.5379	0.0042	0.8208	1.8737	0.0051	1.0000	0.7028	0.0019	0.3751
1602	338	17.1594	0.0508	8.5087	1.6602	0.0049	0.8232	2.0167	0.0060	1.0000	0.7058	0.0021	0.3500
1603	325	13.8595	0.0427	6.9076	1.6197	0.0050	0.8073	2.0064	0.0062	1.0000	0.5891	0.0018	0.2936
1604	322	14.3477	0.0446	6.8384	1.4311	0.0044	0.6821	2.0981	0.0065	1.0000	0.6297	0.0020	0.3001
1605	302	13.3896	0.0444	6.6908	1.6725	0.0055	0.8357	2.0012	0.0066	1.0000	0.6038	0.0020	0.3017
1607	317	16.2972	0.0514	8.0803	1.6191	0.0051	0.8028	2.0169	0.0064	1.0000	0.5439	0.0017	0.2697
1608	302	14.2657	0.0472	7.0160	1.4188	0.0047	0.6978	2.0333	0.0067	1.0000	0.5608	0.0019	0.2758
1610	292	13.0825	0.0448	7.1618	1.8050	0.0062	0.9881	1.8267	0.0063	1.0000	0.5888	0.0020	0.3223
1612	331	17.4491	0.0527	9.0791	1.4773	0.0045	0.7687	1.9219	0.0058	1.0000	0.5847	0.0018	0.3042
1613	343	13.2106	0.0386	6.6083	1.5485	0.0045	0.7746	1.9991	0.0058	1.0000	0.6188	0.0018	0.3095
1614	365	16.2827	0.0446	8.2716	1.6177	0.0044	0.8218	1.9685	0.0054	1.0000	0.6193	0.0017	0.3146
1615	333	15.6408	0.0469	7.4569	1.3670	0.0041	0.6517	2.0975	0.0063	1.0000	0.5154	0.0015	0.2457
1616	354	16.1120	0.0455	7.7618	1.4416	0.0041	0.6945	2.0758	0.0059	1.0000	0.6538	0.0018	0.3150
1617	360	17.6693	0.0491	8.6428	1.4693	0.0041	0.7187	2.0444	0.0057	1.0000	0.5560	0.0015	0.2720
1618	350	14.5571	0.0416	7.5735	1.4744	0.0042	0.7671	1.9221	0.0055	1.0000	0.7976	0.0023	0.4150
1619	338	14.8235	0.0438	7.7282	1.3710	0.0041	0.7148	1.9181	0.0057	1.0000	0.6182	0.0018	0.3223
1620	337	12.9883	0.0385	6.5624	1.3887	0.0041	0.7016	1.9792	0.0059	1.0000	0.6213	0.0018	0.3139
1621	340	16.3011	0.0480	8.4751	1.5557	0.0046	0.8088	1.9234	0.0057	1.0000	0.5550	0.0016	0.2886
1622	305	11.1946	0.0367	6.2845	1.3847	0.0045	0.7774	1.7813	0.0058	1.0000	0.4719	0.0015	0.2649
1623	283	12.4410	0.0440	6.0311	1.1830	0.0042	0.5735	2.0628	0.0073	1.0000	0.6029	0.0021	0.2923
1624	345	12.3195	0.0357	6.1413	1.4079	0.0041	0.7018	2.0060	0.0058	1.0000	0.5646	0.0016	0.2815
1626	321	14.9295	0.0465	8.3438	1.5606	0.0049	0.8722	1.7893	0.0056	1.0000	0.5625	0.0018	0.3144

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX X

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ORGAN AND FINAL BODY WEIGHTS

	LIVER				LUNGS			BRAIN			SPL		
Animal Number	FINAL BODY WEIGHT G	Weight g	 %FBW	%Brain	Weight g	 %FBW	 %Brain	Weight g	 %FBW	 %Brain	Weight g	 %FBW	%Brain
2601	297	12.2946	0.0414	6.3169	1.6282	0.0055	0.8366	1.9463	0.0066	1.0000	0.5967	0.0020	0.3066
2602	360	17.1762	0.0477	8.6200	1.6160	0.0045	0.8110	1.9926	0.0055	1.0000	0.6353	0.0018	0.3188
2603	347	15.4312	0.0445	7.7404	1.5497	0.0045	0.7773	1.9936	0.0057	1.0000	0.6945	0.0020	0.3484
2604	370	16.5631	0.0447	8.7469	1.5942	0.0043	0.8419	1.8936	0.0051	1.0000	0.9121	0.0025	0.4817
2605	288	13.2605	0.0461	6.8314	1.4490	0.0050	0.7465	1.9411	0.0067	1.0000	0.8560	0.0030	0.4410
2606	337	16.1854	0.0480	7.8884	1.4562	0.0043	0.7097	2.0518	0.0061	1.0000	0.4727	0.0014	0.2304
2607	344	14.5839	0.0424	6.8948	1.5973	0.0046	0.7552	2.1152	0.0061	1.0000	0.5837	0.0017	0.2760
2608	328	13.9150	0.0424	7.2678	1.6523	0.0050	0.8630	1.9146	0.0058	1.0000	0.5288	0.0016	0.2762
2610	298	12.9005	0.0433	6.6048	1.3091	0.0044	0.6702	1.9532	0.0066	1.0000	0.4894	0.0016	0.2506
2611	331	14.3545	0.0434	7.1751	1.5290	0.0046	0.7643	2.0006	0.0061	1.0000	0.6119	0.0019	0.3059
2612	325	11.8853	0.0365	6.1255	1.3720	0.0042	0.7071	1.9403	0.0060	1.0000	0.5053	0.0016	0.2604
2613	376	13.0996	0.0348	6.5452	1.5287	0.0041	0.7638	2.0014	0.0053	1.0000	0.7262	0.0019	0.3628
2614	333	14.7575	0.0444	7.1524	1.4631	0.0044	0.7091	2.0633	0.0062	1.0000	0.6759	0.0020	0.3276
2615	336	14.6265	0.0435	7.4808	1.4514	0.0043	0.7423	1.9552	0.0058	1.0000	0.5698	0.0017	0.2914
2616	307	14.5832	0.0474	7.1814	1.5159	0.0049	0.7465	2.0307	0.0066	1.0000	0.6026	0.0020	0.2967
2617	314	13.0325	0.0415	6.7512	1.3608	0.0043	0.7049	1.9304	0.0061	1.0000	0.5276	0.0017	0.2733
2618	305	10.8779	0.0357	5.8417	1.2815	0.0042	0.6882	1.8621	0.0061	1.0000	0.5897	0.0019	0.3167
2619	368	17.5583	0.0477	8.5889	1.7574	0.0048	0.8597	2.0443	0.0056	1.0000	0.7025	0.0019	0.3436
2620	339	17.3908	0.0514	9.0347	1.5069	0.0045	0.7828	1.9249	0.0057	1.0000	0.5815	0.0017	0.3021
2621	302	12.1020	0.0401	6.1830	1.4506	0.0048	0.7411	1.9573	0.0065	1.0000	0.7277	0.0024	0.3718
2622	346	13.4707	0.0389	6.9440	1.6386	0.0047	0.8447	1.9399	0.0056	1.0000	0.6321	0.0018	0.3258
2623	360	16.9612	0.0471	7.8684	1.5746	0.0044	0.7305	2.1556	0.0060	1.0000	0.5295	0.0015	0.2456
2624	370	19.4143	0.0525	9.3423	1.6293	0.0044	0.7840	2.0781	0.0056	1.0000	0.5755	0.0016	0.2769
2625	319	15.1611	0.0476	7.1283	1.4443	0.0045	0.6791	2.1269	0.0067	1.0000	0.6836	0.0021	0.3214
2626	326	12.7324	0.0390	6.3790	1.4997	0.0046	0.7514	1.9960	0.0061	1.0000	0.6713	0.0021	0.3363

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX X

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ORGAN AND FINAL BODY WEIGHTS

FEMALES GROUP III 10000 MG/M3 LUNGS LIVER BRAIN SPLEEN Animal FINAL BODY -----Weight %FBW Weight %FBW Weight %FBW Number WEIGHT Weight %FBW %Brain %Brain %Brain %Brain g g g g g 0.5230 0.0017 3601 300 13.7018 0.0456 7.2054 1.3450 0.0045 0.7073 1.9016 0.0063 1.0000 0.2750 3602 315 15.9483 0.0506 7.6436 1.5531 0.0049 0.7444 2.0865 0.0066 1.0000 0.4716 0.0015 0.2260 3603 349 16.1826 0.0464 7.6535 1.3732 0.0039 0.6495 2.1144 0.0061 1.0000 0.5895 0.0017 0.2788 3604 310 15.1407 0.0488 7.7170 1.2840 0.0041 0.6544 1.9620 0.0063 1.0000 0.5376 0.0017 0.2740 3606 13.3225 0.0453 6.3768 1.6150 0.0055 0.7730 2.0892 0.0071 1.0000 0.5310 0.0018 0.2542 294 16.8448 0.0527 8.2423 1.5087 0.0047 0.7382 2.0437 0.0064 1.0000 0.5538 0.0017 0.2710 3607 320 3608 363 18.4690 0.0508 8.8849 1.6324 0.0045 0.7853 2.0787 0.0057 1.0000 0.5550 0.0015 0.2670 381 17.8420 0.0469 8.8083 1.7670 0.0046 0.8723 2.0256 0.0053 1.0000 0.6141 0.0016 0.3032 3609 3610 313 14.4157 0.0460 7.6205 1.4714 0.0047 0.7778 1.8917 0.0060 1.0000 0.6181 0.0020 0.3267 14.0727 0.0477 7.6209 1.3261 0.0045 0.7181 1.8466 0.0063 1.0000 0.4988 0.0017 0.2701 3611 295 13.1577 0.0423 7.1219 1.2816 0.0041 0.6937 1.8475 1.0000 0.5273 0.0017 0.2854 3612 311 0.0059 3613 307 11.8865 0.0387 5.8707 1.4285 0.0047 0.7055 2.0247 0.0066 1.0000 0.5110 0.0017 0.2524 361 16.8787 0.0468 8.2496 1.4689 0.0041 0.7179 2.0460 0.0057 1.0000 0.5507 0.0015 0.2692 3614 3615 321 12.7638 0.0398 6.6271 1.7024 0.0053 0.8839 1.9260 0.0060 1.0000 0.6345 0.0020 0.3294 16.2870 0.0446 7.4636 1.7971 0.0049 0.8235 2.1822 0.0060 1.0000 0.7012 0.0019 0.3213 3616 365 6.3358 1.4370 0.0044 1.9352 0.0059 1.0000 0.5648 0.0017 3617 328 12.2610 0.0374 0.7426 0.2919 3619 330 14.8209 0.0450 7.1609 1.5547 0.0047 0.7512 2.0697 0.0063 1.0000 0.6226 0.0019 0.3008 7.2185 1.6155 0.0046 0.7876 2.0512 0.0058 1.0000 0.5911 0.0017 3620 351 14.8066 0.0422 0.2882 11.6197 0.0355 6.4052 1.3601 0.0042 0.7497 1.8141 0.0055 1.0000 0.7289 0.0022 0.4018 3621 327 3622 12.9189 0.0389 6.3297 1.7158 0.0052 0.8407 2.0410 0.0061 1.0000 0.5684 0.0017 0.2785 333 3623 301 14.0350 0.0467 7.1088 1.3249 0.0044 0.6711 1.9743 0.0066 1.0000 0.6308 0.0021 0.3195 3624 331 12.5842 0.0380 6.3371 1.2659 0.0038 0.6375 1.9858 0.0060 1.0000 0.5036 0.0015 0.2536 1.6652 0.0049 0.7669 0.0023 3625 339 15.6310 0.0462 8.4278 0.8978 1.8547 0.0055 1.0000 0.4135 3626 10.8168 0.0384 5.8749 1.0756 0.0038 0.5842 1.8412 0.0065 1.0000 0.5099 0.0018 0.2769

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX X

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ORGAN AND FINAL BODY WEIGHTS

FEMALES GROUP IV 20000 MG/M3 LIVER LUNGS BRAIN SPLEEN Animal FINAL BODY Number WEIGHT Weight %FBW %Brain Weight %FBW %Brain Weight %FBW %Brain Weight %FBW g g 9 g g 4601 344 14.7231 0.0429 7.1656 1.4189 0.0041 0.6906 2.0547 0.0060 1.0000 0.5134 0.0015 0.2499 4603 384 16.9627 0.0442 8.0979 1.6167 0.0042 0.7718 2.0947 0.0055 0.6521 0.0017 1.0000 0.3113 4604 324 12.9853 0.0401 6.9990 1.3727 0.0042 0.7399 1.8553 0.0057 1.0000 0.5276 0.0016 0.2844 4605 17.8860 0.0537 9.2914 1.5677 0.0047 0.8144 1.9250 0.0058 1.0000 0.4710 0.0014 0.2447 4606 311 16.7687 0.0540 8.7565 1.9287 0.0062 1.0072 1.9150 0.0062 1.0000 0.5634 0.0018 0.2942 4607 352 12.1121 0.0344 6.0960 1.5882 0.0045 0.7993 1.9869 0.0056 1.0000 0.5451 0.0015 0.2743 4608 309 14.3377 0.0464 7.2457 1.4474 0.0047 0.7315 1.9788 0.0064 1.0000 0.5877 0.0019 0.2970 4610 329 17.1074 0.0520 8.9826 1.6672 0.0051 0.8754 1.9045 0.0058 1.0000 0.6648 0.0020 0.3491 4611 313 14.6157 0.0467 7.4703 1.6004 0.0051 0.8180 1.9565 0.0063 1.0000 0.6476 0.0021 0.3310 4612 337 15.3616 0.0456 7.5822 1.7663 0.0052 0.8718 2.0260 0.0060 1.0000 0.5428 0.0016 0.2679 4613 348 19.4182 0.0559 10.4332 1.4658 0.0042 0.7876 1.8612 0.0054 1.0000 0.5551 0.0016 0.2982 4614 356 16.1223 0.0453 8.1525 1.5402 0.0043 0.7788 1.9776 0.0056 1.0000 0.6220 0.0017 0.3145 14.1838 0.0439 4615 323 6.6307 1.6212 0.0050 0.7579 2.1391 0.0066 1.0000 0.5813 0.0018 0.2717 4616 12.0491 0.0404 6.7419 1.2617 0.0042 0.7060 1.7872 0.0060 1.0000 0.5082 0.0017 0.2844 4618 345 15.4029 0.0447 7.9087 1.4661 0.0043 0.7528 1.9476 0.0056 1.0000 0.5757 0.0017 0.2956 4619 301 12.3782 0.0412 5.8947 1.5124 0.0050 0.7202 2.0999 0.0070 1.0000 0.5657 0.0019 0.2694 4620 296 17.7688 0.0599 10.2114 1.3101 0.0044 0.7529 1.7401 0.0059 1.0000 0.6073 0.0020 0.3490 4621 352 15.3541 0.0436 7.7605 1.4311 0.0041 0.7233 1.9785 0.0056 1.0000 0.4879 0.0014 0.2466 16.0324 0.0485 4622 331 8.0776 1.6045 0.0049 0.8084 1.9848 0.0060 1.0000 0.6023 0.0018 0.3035 4623 339 17.9465 0.0529 8.9540 1.5864 0.0047 0.7915 2.0043 0.0059 1.0000 0.5618 0.0017 0.2803 4624 323 14.8182 0.0458 7.7110 1.5610 0.0048 0.8123 1.9217 0.0059 1.0000 0.4437 0.0014 0.2309 4625 329 16.4085 0.0499 8.2779 1.3528 0.0041 1.9822 0.0060 0.6825 1.0000 0.6371 0.0019 0.3214 4626 15.6556 0.0429 7.9165 1.5665 0.0043 0.7921 1.9776 0.0054 1.0000 0.5642 0.0015 0.2853

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX X

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ORGAN AND FINAL BODY WEIGHTS

FEMALES GROUP I 0 MG/M3

		KIDNEYS			UTE	RUS/OVID	JCTS	ADR	ENALS		PITU	ITARY	
nimal	FINAL BODY												
Jumber	WEIGHT	Weight	%FBW	%Brain	Weight	%FBW	%Brain	Weight	%FBW	%Brain	Weight	%FBW	%Brain
	g	g			g			g			g		
1601	366	3.0343	0.0083	1.6194	0.4694	0.0013	0.2505	0.0697	0.0002	0.0372	0.0135		0.007
1602	338	2.9768	0.0088	1.4761	0.6468	0.0019	0.3207	0.0618	0.0002	0.0306	0.0116		0.005
1603	325	2.8895	0.0089	1.4401	0.9024	0.0028	0.4498	0.0812	0.0003	0.0405	0.0134		0.006
1604	322	3.0085	0.0094	1.4339	0.7494	0.0023	0.3572	0.0871	0.0003	0.0415	0.0179		0.008
1605	302	2.9524	0.0098	1.4753	0.9546	0.0032	0.4770	0.0772	0.0003	0.0386	0.0174		0.008
1607	317	2.7007	0.0085	1.3390	0.6787	0.0021	0.3365	0.0658	0.0002	0.0326	0.0179		0.008
1608	302	2.6964	0.0089	1.3261	0.3925	0.0013	0.1930	0.0633	0.0002	0.0311	0.0157		0.007
1610	292	3.0723	0.0105	1.6819	0.6482	0.0022	0.3548	0.0799	0.0003	0.0437	0.0140		0.007
1612	331	2.6154	0.0079	1.3608	0.5582	0.0017	0.2904	0.0948	0.0003	0.0493	0.0192		0.010
1613	343	2.5417	0.0074	1.2714	0.5483	0.0016	0.2743	0.0715	0.0002	0.0358	0.0153		0.007
1614	365	2.7864	0.0076	1.4155	0.4036	0.0011	0.2050	0.0870	0.0002	0.0442	0.0164		0.008
1615	333	2.8558	0.0086	1.3615	0.7238	0.0022	0.3451	0.0854	0.0003	0.0407	0.0135		0.006
1616	354	3.1210	0.0088	1.5035	0.4668	0.0013	0.2249	0.0644	0.0002	0.0310	0.0153		0.007
1617	360	2.6837	0.0075	1.3127	0.4706	0.0013	0.2302	0.0744	0.0002	0.0364	0.0175		0.008
1618	350	2.4415	0.0070	1.2702	0.6037	0.0017	0.3141	0.0788	0.0002	0.0410	0.0151		0.007
1619	338	2.6159	0.0077	1.3638	0.5391	0.0016	0.2811	0.0857	0.0003	0.0447	0.0196		0.010
1620	337	2.6472	0.0079	1.3375	0.5836	0.0017	0.2949	0.0841	0.0002	0.0425	0.0111		0.005
1621	340	2.9104	0.0086	1.5132	0.6346	0.0019	0.3299	0.0683	0.0002	0.0355	0.0181		0.009
1622	305	2.2443	0.0074	1.2599	0.8866	0.0029	0.4977	0.0574	0.0002	0.0322	0.0112		0.006
1623	283	2.3020	0.0081	1.1160	0.4252	0.0015	0.2061	0.0581	0.0002	0.0282	0.0115		0.005
1624	345	2.5295	0.0073	1.2610	0.4963	0.0014	0.2474	0.0761	0.0002	0.0379	0.0137		0.006
1626	321	2.5395	0.0079	1.4193	0.5508	0.0017	0.3078	0.0636	0.0002	0.0355	0.0142		0.007

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX X

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ORGAN AND FINAL BODY WEIGHTS

FEMALES GROUP II 2000 MG/M3 KIDNEYS UTERUS/OVIDUCTS ADRENALS Animal FINAL BODY Number WEIGHT Weight %FBW %Brain Weight %FBW %Brain Weight %FBW %Brain Weight %FBW %Brain g g g g g 2601 297 2.5749 0.0087 1.3230 0.6460 0.0022 0.3319 0.0745 0.0003 0.0383 0.0159 0.0082 2602 360 2.9032 0.0081 1.4570 0.5472 0.0015 0.2746 0.0698 0.0002 0.0350 0.0142 0.0071 0.4789 0.0014 0.2402 2603 347 3.0304 0.0087 1.5201 0.0704 0.0002 0.0353 0.0160 0.0080 2604 370 2.9734 0.0080 1.5702 0.7324 0.0020 0.3868 0.0830 0.0002 0.0438 0.0159 0.0084 2605 288 2.5588 0.0089 1.3182 0.6754 0.0023 0.3479 0.0737 0.0003 0.0380 0.0089 0.0046 2606 337 2.8262 0.0084 1.3774 0.3787 0.0011 0.1846 0.0691 0.0002 0.0337 0.0170 0.0083 2607 344 3.1661 0.0092 1.4968 0.5463 0.0016 0.2583 0.0839 0.0002 0.0397 0.0171 0.0081 2.7648 0.0084 0.4401 0.0013 0.2299 2608 328 1.4441 0.0733 0.0002 0.0383 0.0188 0.0098 2610 298 2.4279 0.0082 1.2430 0.5188 0.0017 0.2656 0.0630 0.0002 0.0323 0.0122 0.0062 2611 331 2.8418 0.0086 1.4205 0.5750 0.0017 0.2874 0.0826 0.0002 0.0413 0.0176 0.0088 2612 325 2.4839 0.0076 1.2802 0.5132 0.0016 0.2645 0.0682 0.0002 0.0351 0.0159 0.0082 2613 376 2.8679 0.0076 1.4329 0.4963 0.0013 0.2480 0.0704 0.0002 0.0352 0.0172 0.0086 2614 333 2.6829 0.0081 1.3003 0.8212 0.0025 0.3980 0.0675 0.0002 0.0327 0.0132 0.0064 2615 336 2.7067 0.0081 1.3844 0.6200 0.0018 0.3171 0.1085 0.0003 0.0555 0.0145 0.0074 2616 307 2.7503 0.0089 1.3544 0.9735 0.0032 0.4794 0.0837 0.0003 0.0412 0.0165 0.0081 2617 314 2.6290 0.0084 1.3619 0.5247 0.0017 0.2718 0.0572 0.0002 0.0296 0.0191 0.0099 2618 305 2.6969 0.0088 1.4483 1.0571 0.0035 0.5677 0.0589 0.0002 0.0316 0.0126 0.0068 2619 368 3.1145 0.0085 1.5235 0.5074 0.0014 0.2482 0.0755 0.0002 0.0369 0.0162 0.0079 2620 339 3.1701 0.0094 1.6469 0.4453 0.0013 0.2313 0.0692 0.0002 0.0359 0.0123 0.0064 2621 302 2.4061 0.0080 1.2293 0.3838 0.0013 0.1961 0.0798 0.0003 0.0408 0.0122 0.0062 2622 346 2.7585 0.0080 1.4220 0.4235 0.0012 0.2183 0.0577 0.0002 0.0297 0.0161 0.0083 2623 360 3.2073 0.0089 0.5148 0.0014 0.2388 1.4879 0.0763 0.0002 0.0354 0.0161 0.0075 2624 370 3.1926 0.0086 1.5363 0.5307 0.0014 0.2554 0.0797 0.0002 0.0384 0.0155 0.0075 2625 0.9071 0.0028 319 2.7531 0.0086 1.2944 0.4265 0.0751 0.0002 0.0353 0.0151 0.0071 2626 326 2.5971 0.0080 1.3012 0.5406 0.0017 0.2708 0.0746 0.0002 0.0374 0.0160 0.0080

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX X

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ORGAN AND FINAL BODY WEIGHTS

FEMALES GROUP III 10000 MG/M3

		KID	NEYS		UTE	RUS/OVID	UCTS	ADRI	ENALS		PITU	ITARY	
Animal	FINAL BODY												
Number	WEIGHT	Weight	%FBW	%Brain	Weight	%FBW	%Brain	Weight	%FBW	%Brain	Weight	%FBW	%Brain
Number	g Whitemi	g	01.011	oblain	g	87 17 11	*DI QIII	g	01 DW	*BI GIII	g	OLDW	*BLAIN
3601	300	2.8122	0.0094	1.4789	1.0373	0.0035	0.5455	0.0701	0.0002	0.0369	0.0135		0.0071
3602	315	2.8444	0.0090	1.3632	0.4265	0.0014	0.2044	0.0712	0.0002	0.0341	0.0178		0.0085
3603	349	2.9393	0.0084	1.3901	0.4636	0.0013	0.2193	0.0679	0.0002	0.0321	0.0125		0.0059
3604	310	2.7320	0.0088	1.3925	0.6660	0.0021	0.3394	0.0641	0.0002	0.0327	0.0129		0.0066
3606	294	2.8206	0.0096	1.3501	0.6090	0.0021	0.2915	0.0696	0.0002	0.0333	0.0222		0.0106
3607	320	2.8169	0.0088	1.3783	0.7212	0.0023	0.3529	0.0744	0.0002	0.0364	0.0127		0.0062
3608	363	2.8951	0.0080	1.3927	0.4983	0.0014	0.2397	0.0584	0.0002	0.0281	0.0163		0.0078
3609	381	2.9798	0.0078	1.4711	0.5298	0.0014	0.2616	0.0772	0.0002	0.0381	0.0173		0.0085
3610	313	2.7349	0.0087	1.4457	0.6832	0.0022	0.3612	0.0679	0.0002	0.0359	0.0185		0.0098
3611	295	2.5032	0.0085	1.3556	0.4720	0.0016	0.2556	0.0583	0.0002	0.0316	0.0123		0.0067
3612	311	2.5426	0.0082	1.3762	0.6085	0.0020	0.3294	0.0528	0.0002	0.0286	0.0134		0.0073
3613	307	2.6113	0.0085	1.2897	0.5597	0.0018	0.2764	0.0688	0.0002	0.0340	0.0163		0.0081
3614	361	2.7579	0.0076	1.3479	0.8037	0.0022	0.3928	0.0677	0.0002	0.0331	0.0200		0.0098
3615	321	2.6648	0.0083	1.3836	0.4486	0.0014	0.2329	0.0615	0.0002	0.0319	0.0154		0.0080
3616	365	2.7781	0.0076	1.2731	0.6587	0.0018	0.3019	0.0645	0.0002	0.0296	0.0108		0.0049
3617	328	2.5919	0.0079	1.3393	0.4535	0.0014	0.2343	0.0690	0.0002	0.0357	0.0139		0.0072
3619	330	3.1009	0.0094	1.4982	1.2570	0.0038	0.6073	0.0817	0.0002	0.0395	0.0173		0.0084
3620	351	2.7300	0.0078	1.3309	0.5253	0.0015	0.2561	0.0752	0.0002	0.0367	0.0157		0.0077
3621	327	2.5693	0.0079	1.4163	0.5969	0.0018	0.3290	0.0771	0.0002	0.0425	0.0153		0.0084
3622	333	3.1429	0.0095	1.5399	0.5947	0.0018	0.2914	0.0723	0.0002	0.0354	0.0130		0.0064
3623	301	2.7295	0.0091	1.3825	0.4948	0.0016	0.2506	0.0702	0.0002	0.0356	0.0147		0.0074
3624	331	2.7116	0.0082	1.3655	0.5139	0.0016	0.2588	0.0767	0.0002	0.0386	0.0149		0.0075
3625	339	2.8553	0.0084	1.5395	1.0337	0.0031	0.5573	0.0655	0.0002	0.0353	0.0198		0.0107
3626	282	2.5095	0.0089	1.3630	0.7027	0.0025	0.3817	0.0589	0.0002	0.0320	0.0130		0.0071

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX X

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ORGAN AND FINAL BODY WEIGHTS

FEMALES GROUP IV 20000 MG/M3

		KID	NEYS		UTE	RUS/OVID	ucts	ADRI	ENALS		PITU	I T ARY	
Animal Number	FINAL BODY WEIGHT G	Weight g	%FBW	%Brain	Weight g	 %FBW	%Brain	Weight g		%Brain	Weight g	 %FBW	%Brain
4601	344	3.0433	0.0089	1.4811	0.4590	0.0013	0.2234	0.0789	0.0002	0.0384	0.0139		0.0068
4603	384	2.9434	0.0077	1.4052	0.4790	0.0012	0.2287	0.0941	0.0002	0.0449	0.0141		0.0067
4604	324	2.9285	0.0090	1.5785	0.5315	0.0016	0.2865	0.0769	0.0002	0.0414	0.0143		0.0077
4605	333	2.7485	0.0082	1.4278	0.4290	0.0013	0.2229	0.0731	0.0002	0.0380	0.0162		0.0084
4606	311	2.8370	0.0091	1.4815	0.5652	0.0018	0.2951	0.0705	0.0002	0.0368	0.0154		0.0080
4607	352	3.1009	0.0088	1.5607	0.7550	0.0021	0.3800	0.0784	0.0002	0.0395	0.0150		0.0075
4608	309	2.5815	0.0084	1.3046	0.4647	0.0015	0.2348	0.0726	0.0002	0.0367	0.0150		0.0076
4610	329	2.9903	0.0091	1.5701	0.5489	0.0017	0.2882	0.0634	0.0002	0.0333	0.0181		0.0095
4611	313	2.8911	0.0092	1.4777	0.5625	0.0018	0.2875	0.0876	0.0003	0.0448	0.0162		0.0083
4612	337	3.1131	0.0092	1.5366	0.5878	0.0017	0.2901	0.0795	0.0002	0.0392	0.0149		0.0074
4613	348	3.5363	0.0102	1.9000	0.5450	0.0016	0.2928	0.0649	0.0002	0.0349	0.0211		0.0113
4614	356	3.3332	0.0094	1.6855	0.5655	0.0016	0.2860	0.0713	0.0002	0.0361	0.0188		0.0095
4615	323	2.6538	0.0082	1.2406	0.6752	0.0021	0.3156	0.0785	0.0002	0.0367	0.0154		0.0072
4616	299	2.6750	0.0090	1.4968	0.9724	0.0033	0.5441	0.0614	0.0002	0.0344	0.0121		0.0068
4618	345	2.9253	0.0085	1.5020	0.4353	0.0013	0.2235	0.0737	0.0002	0.0378	0.0128		0.0066
4619	301	2.7315	0.0091	1.3008	0.6946	0.0023	0.3308	0.0686	0.0002	0.0327	0.0159		0.0076
4620	296	3.8995	0.0132	2.2410	0.3250	0.0011	0.1868	0.0739	0.0002	0.0425	0.0158		0.0091
4621	352	3.0907	0.0088	1.5621	0.5622	0.0016	0.2842	0.0771	0.0002	0.0390	0.0122		0.0062
4622	331	2.7924	0.0084	1.4069	0.5340	0.0016	0.2690	0.0710	0.0002	0.0358	0.0146		0.0074
4623	339	3.1823	0.0094	1.5877	0.6117	0.0018	0.3052	0.0793	0.0002	0.0396	0.0167		0.0083
4624	323	2.7955	0.0086	1.4547	0.5203	0.0016	0.2707	0.0768	0.0002	0.0400	0.0148		0.0077
4625	329	3.1652	0.0096	1.5968	0.6037	0.0018	0.3046	0.0637	0.0002	0.0321	0.0166		0.0084
4626	365	3.3907	0.0093	1.7146	0.6269	0.0017	0.3170	0.0645	0.0002	0.0326	0.0150		0.0076

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX X

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ORGAN AND FINAL BODY WEIGHTS

FEMALES GROUP I 0 MG/M3 OVARY LEFT OVARY RIGHT OVARIES Animal FINAL BODY -----Number WEIGHT Weight %FBW %Brain Weight %FBW %Brain Weight %FBW g g g g ------1601 366 0.0490 0.0001 0.0262 0.0633 0.0002 0.0338 0.0802 0.0002 0.0428 1602 338 0.0574 0.0002 0.0285 0.0453 0.0001 0.0225 0.1052 0.0003 0.0522 325 0.0460 0.0001 0.0229 0.0671 0.0002 0.0334 1603 0.1123 0.0003 0.0560 1604 322 0.0328 0.0001 0.0156 0.0700 0.0002 0.0334 0.1103 0.0003 0.0526 1605 302 0.0639 0.0002 0.0319 0.0495 0.0002 0.0247 0.1131 0.0004 0.0565 1607 317 0.0527 0.0002 0.0261 0.0517 0.0002 0.0256 0.1048 0.0003 0.0520 1608 302 0.0707 0.0002 0.0348 0.0564 0.0002 0.0277 0.1261 0.0004 0.0620 1610 292 0.0630 0.0002 0.0345 0.0458 0.0002 0.0251 0.1064 0.0004 0.0582 1612 331 0.0514 0.0002 0.0267 0.0480 0.0001 0.0250 0.0968 0.0003 0.0504 1613 343 0.0790 0.0002 0.0395 0.0486 0.0001 0.0243 0.1255 0.0004 0.0628 1614 365 0.0569 0.0002 0.0289 0.0771 0.0002 0.0392 0.1333 0.0004 0.0677 1615 333 0.0481 0.0001 0.0229 0.0506 0.0002 0.0241 0.0991 0.0003 0.0472 1616 354 0.0485 0.0001 0.0234 0.0660 0.0002 0.0318 0.1124 0.0003 0.0541 1617 360 0.0626 0.0002 0.0306 0.1097 0.0003 0.0637 0.0002 0.0312 0.0537 1618 350 0.0665 0.0002 0.0346 0.0751 0.0002 0.0391 0.1380 0.0004 0.0718 1619 338 0.0437 0.0001 0.0228 0.0561 0.0002 0.0292 0.0988 0.0003 0.0515 1620 337 0.0450 0.0001 0.0227 0.0437 0.0001 0.0221 0.0865 0.0003 0.0437 0.0617 0.0002 0.0321 1621 340 0.0465 0.0001 0.0242 0.1088 0.0003 0.0566 1622 305 0.0528 0.0002 0.0296 0.0344 0.0001 0.0193 0.0862 0.0003 0.0484 1623 283 0.0505 0.0002 0.0245 0.0446 0.0002 0.0216 0.0959 0.0003 0.0465 1624 345 0.0446 0.0001 0.0222 0.0517 0.0001 0.0258 0.0956 0.0003 0.0477 0.0480 0.0001 0.0268 0.0507 0.0002 0.0283 0.0992 0.0003 0.0554

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX X

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ORGAN AND FINAL BODY WEIGHTS

FEMALES GROUP II 2000 MG/M3 OVARY LEFT OVARY RIGHT OVARIES Animal FINAL BODY ----- ----- ------Number WEIGHT Weight %FBW %Brain Weight %FBW %Brain Weight %FBW g g g g 0.0421 0.0001 0.0216 0.0506 0.0002 0.0260 0.0917 0.0003 2601 297 0.0471 0.0476 0.0001 0.0239 0.0550 0.0002 0.0276 0.1020 0.0003 2602 360 0.0512 2603 347 0.0591 0.0002 0.0296 0.0549 0.0002 0.0275 0.1133 0.0003 0.0568 2604 0.0440 0.0001 0.0232 0.0621 0.0002 0.0328 0.1037 0.0003 370 0.0548 2605 288 0.0571 0.0002 0.0294 0.0689 0.0002 0.0355 0.1248 0.0004 0.0643 2606 337 0.0465 0.0001 0.0227 0.0588 0.0002 0.0287 0.1059 0.0003 0.0516 2607 344 0.0653 0.0002 0.0309 0.0515 0.0001 0.0243 0.1170 0.0003 0.0553 2608 328 0.0504 0.0002 0.0263 0.0457 0.0001 0.0239 0.0948 0.0003 0.0495 2610 298 0.0447 0.0002 0.0229 0.0508 0.0002 0.0260 0.0953 0.0003 0.0488 2611 331 0.0596 0.0002 0.0298 0.0586 0.0002 0.0293 0.1193 0.0004 0.0596 2612 0.0428 0.0001 325 0.0221 0.0503 0.0002 0.0259 0.0914 0.0003 0.0471 2613 376 0.0577 0.0002 0.0288 0.0440 0.0001 0.0220 0.1006 0.0003 0.0503 2614 333 0.0552 0.0002 0.0268 0.0604 0.0002 0.0293 0.1156 0.0003 0.0560 2615 336 0.0466 0.0001 0.0238 0.0497 0.0001 0.0254 0.0936 0.0003 0.0479 2616 307 0.0504 0.0002 0.0248 0.0600 0.0002 0.0295 0.1124 0.0004 0.0554 2617 0.0582 0.0002 0.0301 0.0418 0.0001 0.0217 0.0966 0.0003 314 0.0500 2618 305 0.0565 0.0002 0.0303 0.0598 0.0002 0.0321 0.1106 0.0004 0.0594 2619 368 0.0703 0.0002 0.0344 0.0508 0.0001 0.0248 0.1208 0.0003 0.0591 2620 339 0.0524 0.0002 0.0601 0.0002 0.0312 0.0272 0.1118 0.0003 0.0581 2621 302 0.0434 0.0001 0.0222 0.0580 0.0002 0.0296 0.1018 0.0003 0.0520 0.0509 0.0001 0.0262 0.1053 0.0003 2622 346 0.0553 0.0002 0.0285 0.0543 360 0.0576 0.0002 0.0267 2623 0.0458 0.0001 0.0212 0.1083 0.0003 0.0502 2624 370 0.0748 0.0002 0.0360 0.0586 0.0002 0.0282 0.1304 0.0004 0.0627 0.0593 0.0002 0.0279 2625 319 0.0711 0.0002 0.0334 0.1312 0.0004 0.0617 326 2626 0.0518 0.0002 0.0260 0.0754 0.0002 0.0378 0.1260 0.0004 0.0631

Sponsor Study No: 211-TAME-1G $\label{eq:APPENDIX X} \text{APPENDIX X}$

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ORGAN AND FINAL BODY WEIGHTS

FEMALES GROUP III 10000 MG/M3

		OVA	RY LEFT		OVA	RY RIGHT		OVA	RIES	
Number	FINAL BODY WEIGHT G	Weight g	%FBW		Weight g	%FBW	%Brain	Weight g	%FBW	
	300		0.0001		0.0479		0.0252	0.0873		0.0459
3602	315	0.0573	0.0002	0.0275	0.0516	0.0002	0.0247	0.1095	0.0003	0.0525
3603	349	0.0417	0.0001	0.0197	0.0498	0.0001	0.0236	0.0945	0.0003	0.0447
3604	310	0.0383	0.0001	0.0195	0.0525	0.0002	0.0268	0.0892	0.0003	0.0455
3606	294	0.0437	0.0001	0.0209	0.0433	0.0001	0.0207	0.0843	0.0003	0.0404
3607	320	0.0555	0.0002	0.0272	0.0417	0.0001	0.0204	0.0972	0.0003	0.0476
3608	363	0.0456	0.0001	0.0219	0.0529	0.0001	0.0254	0.0993	0.0003	0.0478
3609	381	0.0519	0.0001	0.0256	0.0665	0.0002	0.0328	0.1195	0.0003	0.0590
3610	313	0.0435	0.0001	0.0230	0.0536	0.0002	0.0283	0.0939	0.0003	0.0496
3611	295	0.0475	0.0002	0.0257	0.0529	0.0002	0.0286	0.1008	0.0003	0.0546
3612	311	0.0338	0.0001	0.0183	0.0478	0.0002	0.0259	0.0812	0.0003	0.0440
3613	307	0.0463	0.0002	0.0229	0.0394	0.0001	0.0195	0.0838	0.0003	0.0414
3614	361	0.0513	0.0001	0.0251	0.0569	0.0002	0.0278	0.1081	0.0003	0.0528
3615	321	0.0508	0.0002	0.0264	0.0446	0.0001	0.0232	0.0974	0.0003	0.0506
3616	365	0.0614	0.0002	0.0281	0.0653	0.0002	0.0299	0.1241	0.0003	0.0569
3617	328	0.0407	0.0001	0.0210	0.0478	0.0001	0.0247	0.0869	0.0003	0.0449
3619	330	0.0436	0.0001	0.0211	0.0626	0.0002	0.0302	0.1055	0.0003	0.0510
3620	351	0.0368	0.0001	0.0179	0.0611	0.0002	0.0298	0.0995	0.0003	0.0485
3621	327	0.0603	0.0002	0.0332	0.0537	0.0002	0.0296	0.1128	0.0003	0.0622
3622	333	0.0750	0.0002	0.0367	0.0745	0.0002	0.0365	0.1488	0.0004	0.0729
3623	301	0.0628	0.0002	0.0318	0.8297	0.0028	0.4203	0.8896	0.0030	0.4506
3624	331	0.0510	0.0002	0.0257	0.0417	0.0001	0.0210	0.0909	0.0003	0.0458
3625	339	0.0481	0.0001	0.0259	0.0630	0.0002	0.0340	0.1106	0.0003	0.0596
3626	282	0.0338	0.0001	0.0184	0.0396	0.0001	0.0215	0.0739	0.0003	0.0401

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX X

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ORGAN AND FINAL BODY WEIGHTS

FEMALES GROUP IV 20000 MG/M3 OVARY LEFT OVARY RIGHT OVARIES Animal FINAL BODY Number WEIGHT Weight %FBW %Brain Weight %FBW %Brain Weight %FBW g g g g 0.0645 0.0002 0.0314 0.1350 0.0004 4601 344 0.0660 0.0002 0.0321 0.0657 4603 384 0.0386 0.0001 0.0184 0.0576 0.0002 0.0275 0.0942 0.0002 0.0450 324 0.0557 0.0002 0.0300 0.0522 0.0002 0.0281 0.1042 0.0003 4604 0.0562 4605 333 0.0538 0.0002 0.0279 0.0428 0.0001 0.0222 0.0964 0.0003 0.0501 4606 0.0574 0.0002 0.0300 0.0486 0.0002 0.0254 0.1044 0.0003 311 0.0545 0.1063 0.0003 4607 352 0.0551 0.0002 0.0277 0.0534 0.0002 0.0269 0.0535 4608 309 0.0556 0.0002 0.0281 0.0601 0.0002 0.0304 0.1164 0.0004 0.0588 329 4610 0.0597 0.0002 0.0313 0.0594 0.0002 0.0312 0.1201 0.0004 0.0631 4611 313 0.0563 0.0002 0.0288 0.0620 0.0002 0.0317 0.1178 0.0004 0.0602 0.0351 0.0001 0.0173 0.0396 0.0001 0.0195 0.0753 0.0002 4612 337 0.0372 0.0574 0.0002 4613 348 0.0308 0.0509 0.0001 0.0273 0.0930 0.0003 0.0500 4614 356 0.0504 0.0001 0.0255 0.0578 0.0002 0.0292 0.1070 0.0003 0.0541 4615 0.0744 0.0002 0.0348 0.0539 0.0002 0.0252 0.1246 0.0004 323 0.0582 4616 299 0.0488 0.0002 0.0273 0.0481 0.0002 0.0269 0.0912 0.0003 0.0510 4618 0.0619 0.0002 0.0518 0.0002 0.0266 345 0.0318 0.1079 0.0003 0.0554 4619 301 0.0601 0.0002 0.0286 0.0515 0.0002 0.0245 0.1101 0.0004 0.0524 4620 296 0.0300 0.0001 0.0172 0.0308 0.0001 0.0177 0.0605 0.0002 0.0348 0.0265 4621 352 0.0525 0.0001 0.0485 0.0001 0.0245 0.1000 0.0003 0.0505 4622 331 0.0567 0.0002 0.0286 0.0512 0.0002 0.0258 0.1060 0.0003 0.0534 0.0554 0.0002 0.0536 0.0002 0.0267 4623 339 0.0276 0.1087 0.0003 0.0542 4624 323 0.0522 0.0002 0.0272 0.0588 0.0002 0.0306 0.1105 0.0003 0.0575 4625 329 0.0623 0.0002 0.0314 0.0484 0.0001 0.0244 0.1091 0.0003 0.0550 4626 0.0455 0.0001 0.0230 0.0558 0.0002 0.0282 0.1007 0.0003 0.0509

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX Y

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

	0 MG/M3									whigh railes (%)
				BRAIN				THY	MUS	
Number	No.	Sex	Weight	Weight	Ratio	Weight	Ratio	Weight	Ratio	
1601	6	М	73.3	1.475	2.012	0.294	0.400	0.229	0.313	
	10		73.4	1.569	2.137	0.278	0.379	0.407		
1602	8	М	95.3	1.649	1.730	0.417	0.438	0.402	0.422	
	13	F	88.3	1.519	1.720	0.325	0.368	0.412	0.467	
1603	9		83.3	1.607	1.929	0.354	0.425	0.315	0.378	
	10	F	73.7	1.561	2.118	0.238	0.323	0.370	0.502	
1604	4	М	81.3	1.709	2.102	0.338	0.416	0.395	0.486	
	13	F	76.9	1.606	2.089	0.263	0.342	0.303	0.395	
1605	9	М	83.7	1.547	1.848	0.342	0.408	0.382	0.457	
	15	F	86.5	1.574	1.820	0.497	0.574	0.431	0.499	
1607	5		75.4	1.590	2.109	0.357	0.474	0.348	0.462	
	9	F	75.2	1.540	2.048	0.229	0.305	0.421	0.559	
1608	6	M	85.0	1.680	1.976	0.316	0.371	0.374	0.440	
	11	F	70.5	1.598	2.267	0.206	0.293	0.353	0.501	
1610	3		77.9	1.542	1.979	0.379	0.486	0.352	0.451	
	6	F	76.2	1.582	2.075	0.280	0.367	0.369	0.484	
1612	4	М	82.9	1.577	1.902	0.221	0.266	0.319	0.385	
	8	F	73.6	1.524	2.071	0.221	0.300	0.299	0.407	
1613	4	М	81.5	1.633	2.004	0.230	0.283	0.309	0.379	
	14	F	74.2	1.561	2.103	0.207	0.279	0.362	0.488	
1614	8	M	82.6	1.605	1.943	0.359	0.435	0.349	0.423	
	16	F	71.3	1.526	2.140	0.274	0.384	0.324	0.455	
1615	1	М	88.3	1.542	1.747	0.350	0.396	0.461	0.523	

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX Y

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

	OUP I 0 MG/M3		11,21,120									
			Final	BRA	IN	SPL	EEN	THY	MUS			
Number	No.	Sex	Weight	Weight	Ratio	Weight	Ratio	Weight	Ratio			
			:d)									
			•	1.531	2.103	0.268	0.368	0.412	0.566			
1616	,	М	90.3	1.592	1.763	0.336	0.372	0.436	0 403			
1010		M F	90.3 84.7	1.592	1.763		0.372	0.436	0.483			
	10	r	04.7	1.379	1.004	0.500	0.433	0.498	0.500			
1617	6	M	69.6	1.503	2.159	0.271	0.389	0.292	0.420			
	10	F	81.5	1.526	1.872	0.281	0.344	0.395	0.485			
1618	1	М	84.8	1.552	1.831	0.347	0.409	0.380	0.448			
1010	10	F	76.1	1.532	2.011	0.355	0.466	0.415	0.545			
								-				
1619			76.3	1.520	1.993	0.314	0.412	0.315	0.412			
	14	F	79.6	1.561	1.961	0.309	0.388	0.388	0.488			
1620	2	М	81.1	1.585	1.954	0.319	0.393	0.401	0.494			
	12		72.7	1.546	2.126	0.298	0.410	0.365	0.502			
1621			89.3	1.524	1.706	0.351	0.393	0.449	0.502			
	17	F	85.4	1.429	1.673	0.372	0.436	0.405	0.474			
1622	4	М	88.5	1.657	1.872	0.356	0.402	0.372	0.420			
	11		71.8	1.483	2.065	0.270	0.377	0.334	0.465			
1623			76.4	1.564	2.047	0.368	0.481	0.325	0.426			
	8	F	69.7	1.346	1.931	0.309	0.444	0.357	0.512			
1624	3	М	89.4	1.661	1.858	0.247	0.276	0.361	0.404			
	9	F	79.0	1.622	2.054	0.236	0.299	0.439	0.555			
	_											
1626	2	M F	74.2 73.3	1.501 1.398	2.023 1.907	0.272 0.242	0.366	0.323 0.380	0.435 0.519			
	13	r	13.3	1.398	1.90/	0.242	0.330	0.380	0.519			

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX Y

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP ORGAN WEIGHTS (GRAMS) AND ORGAN/BODY WEIGHT RATIOS (%)

2613 3 M 69.9 1.480 2.117 0.258 0.369 0.288 0.412

ROUP II			•							WEIGHT RATIO		
			Final	BRA	IN	SPL	EEN	THYMUS			 	
Number	No.	Sex	Weight	Weight	Ratio	Weight	Ratio	Weight	Ratio		 	
2601	2	М	65.0	1.571	2.417	0.205	0.315	0.283	0.436			
	8	F	68.6	1.599	2.331	0.310	0.452	0.361	0.526			
2602	4	М	84.2	1.662	1.974	0.372	0.442	0.478	0.568			
	12	F	74.0	1.552	2.097	0.345	0.466	0.350	0.473			
2603	1	М	92.0	1.603	1.743	0.341	0.371	0.359	0.390			
	9	F	83.9	1.539	1.835	0.358	0.427	0.398	0.474			
2604	4	М	67.3	1.460	2.169	0.359	0.534	0.291	0.433			
	14	F	59.3	1.399	2.360	0.306	0.516	0.259	0.437			
2605	5		72.7	1.475	2.029	0.313	0.430	0.288	0.397			
	9	F	67.1	1.412	2.104	0.242	0.360	0.411	0.613			
2606		M	75.0	1.596	2.128	0.254	0.338	0.270	0.359			
	14	F	74.8	1.597	2.135	0.299	0.400	0.313	0.418			
2607		М	84.4	1.490	1.765	0.354	0.420	0.406	0.481			
	15	F	71.8	1.529	2.130	0.254	0.353	0.349	0.486			
2608	6	М	68.5	1.530	2.233	0.303	0.442	0.359	0.524			
	11	F	74.1	1.513	2.042	0.296	0.400	0.351	0.473			
2610	1		73.9	1.516	2.052	0.369	0.499	0.378	0.511			
	8	F	76.0	1.579	2.078	0.274	0.361	0.250	0.329			
2611	7		57.4	1.475	2.569	0.279	0.486	0.263	0.459			
	12	F	60.5	1.522	2.515	0.346	0.571	0.270	0.447			
2612	3		82.3	1.514	1.839		0.393	0.246	0.299			
	12	F	73.3	1.534	2.092	0.347	0.474	0.392	0.534			

Huntingdon Life Sciences 00-4202

PAGE 508 Sponsor Study No: 211-TAME-1G

APPENDIX Y

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

	2000 MG/M3						(01	41. 15, 12.15	ondraw, box	
			Final Body	BRA	IN	SPL	EEN		MUS	
	No.	Sex	Weight	Weight	Ratio	Weight	Ratio	Weight	Ratio	
			ed)							
	15	F	74.6	1.466	1.966	0.252	0.338	0.341	0.457	
2614	1	М	92.9	1.623	1.747	0.392	0.422	0.326	0.350	
	14	F	72.9	1.478	2.027	0.260	0.357	0.414	0.568	
2615	5	М	70.3	1.495	2.126	0.361	0.513	0.267	0.379	
	12	F	65.1	1.488	2.286	0.256	0.393	0.353	0.542	
2616	4	М	83.3	1.540	1.849	0.421	0.506	0.419	0.503	
	12	F	69.4	1.484	2.139	0.238	0.343	0.318	0.458	
2617	4	М	81.3	1.553	1.910	0.368	0.453	0.363	0.447	
	13	F	76.8	1.465	1.908	0.390	0.508	0.358	0.467	
2618	4	М	89.3	1.593	1.784	0.385	0.431	0.345	0.387	
	10	F	77.8	1.511	1.942	0.364	0.468	0.356	0.458	
2619	2	М	85.8	1.578	1.840	0.340	0.396	0.350	0.408	
	15	F	75.2	1.485	1.975	0.247	0.329	0.363	0.483	
2620	3	М	84.1	1.640	1.951	0.360	0.428	0.360	0.428	
	10	F	79.7	1.495	1.876	0.307	0.385	0.460	0.577	
2621	2	М	77.4	1.512	1.954	0.313	0.404	0.356	0.460	
	13	F	72.4	1.459	2.015	0.257	0.355	0.387	0.535	
2622	1	М	87.1	1.658	1.904	0.382	0.439	0.420	0.483	
	13	F	80.4	1.635	2.033	0.326	0.405	0.395	0.491	
2623	2	М	77.4	1.483	1.916	0.243	0.313	0.287	0.371	
	11	F	72.7	1.481	2.037	0.255	0.351	0.321	0.442	
2624	10	М	73.7	1.538	2.087	0.270	0.366	0.361	0.489	
	11	F	67.2	1.483	2.207	0.266	0.396	0.289	0.431	

Huntingdon Life Sciences 00-4202 PAGE 509

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-IG

APPENDIX Y

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

GROUP II	2	000 M	IG/M3							
Animal	Dun		Final Body	BRA	IN	SPL	EEN	тнүг	MUS	
	-		Weight	Weight	Ratio	Weight	Ratio	Weight	Ratio	
2625	າ	М	64.2	1.551	2 415	0.261	0 406	0.275	0.428	
2025		F	58.0	1.534	2.645			0.319	- · -	
2626	4	М	82.0	1.664	2.029	0.388	0.473	0.384	0.468	
	6	F	85.6	1.590	1.857	0.389	0.454	0.366	0.428	

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX Y

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

GROUP III	10000 MG/M3

	_		Final	BRA		SPL		THY	
	No.	Sex		Weight	Ratio	Weight	Ratio	Weight	Ratio
3601	9	M	79.1	1.554	1.965	0.322	0.407	0.393	0.496
	10	F	88.8	1.585	1.785	0.308	0.347	0.406	0.457
3602	8	М	72.9	1.646	2.257	0.341	0.468	0.421	0.578
	11	F	65.6	1.453	2.215	0.272	0.415	0.324	0.493
3603	4	М	78.8	1.555	1.973	0.293	0.372	0.365	0.463
3603	7		77.5	1.582	2.041	0.293	0.372	0.365	0.549
3604	4	M	78.5	1.597	2.034	0.342	0.436	0.355	0.453
	10	F	66.1	1.564	2.366	0.295	0.446	0.318	0.481
3606	3		52.1	1.437	2.757	0.237	0.455	0.242	0.465
	7	· F	69.1	1.434	2.075	0.272	0.394	0.379	0.549
3607	4	М	83.2	1.720	2.067	0.307	0.369	0.407	0.489
	7		73.5	1.662	2.261	0.224	0.304	0.368	0.501
3608	2	М	85.7	1.612	1.881	0 224	0.389	0 427	0 500
3000	16	F	72.6	1.485	2.046	0.334 0.297	0.389	0.431 0.357	0.502 0.492
									0,122
3609	2		63.0	1.528	2.426	0.234	0.371	0.326	0.517
	9	F	71.2	1.514	2.126	0.290	0.407	0.342	0.480
3610	4	М	85.4	1.606	1.881	0.308	0.361	0.370	0.433
	12	F	78.2	1.441	1.843	0.325	0.415	0.424	0.542
3611	6	М	86.9	1.557	1.791	0.382	0.440	0.352	0.406
3011	7		72.4	1.485	2.052	0.362	0.344	0.332	0.457
3612	8 13	M F	74.2 69.9	1.452 1.301	1.956 1.861	0.373 0.301	0.503 0.431	0.314	0.423
	13	r	07.7	1.501	1.001	0.301	0.431	0.337	0.482
3613	2	M	58.1	1.484	2.554	0.294	0.505	0.208	0.357

APPENDIX Y

PAGE 511

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

4 F 86.9 1.564 1.800 0.354 0.407 0.450 0.518

ROUP III 10000 MG/M3									·	Y WEIGHT RATIOS (%)
				BRA	IN	SPL	EEN	THY	MUS	
Number	No.	Sex	Weight	Weight	Ratio	Weight	Ratio	Weight	Ratio	
			ed)			·				
				1.457	2.361	0.230	0.373	0.257	0.416	
3614	2	M	76.0	1.551	2.040	0.297	0.390	0.365	0.481	
	10	F	81.0	1.450	1.790	0.305	0.377	0.373	0.461	
3615	4		67.9	1.475	2.172	0.326	0.480	0.337	0.497	
	13	F	65.5	1.503	2.294	0.276	0.421	0.320	0.489	
3616	6	М	83.6	1.642	1.965	0.315	0.377	0.373	0.446	
	16	F	74.7	1.726	2.311	0.273	0.365	0.433	0.580	
3617	4	М	60.9	1.383	2.271	0.250	0.411	0.347	0.571	
	5	F	64.3	1.382	2.149	0.264	0.411	0.232	0.361	
3619	3	М	93.4	1.641	1.757	0.373	0.399	0.521	0.557	•
	17	F	79.8	1.564	1.960	0.273	0.342	0.441	0.553	
3620	4	М	82.0	1.517	1.850	0.294	0.358	0.336	0.410	
	13	F	75.4	1.505	1.996	0.256	0.340	0.320	0.425	
3621	9	F	72.0	1.537	2.134	0.290	0.403	0.411	0.571	
	10	M	83.1	1.597	1.921	0.379	0.456	0.486	0.584	
3622	2	М	80.9	1.602	1.980	0.261	0.322	0.431	0.533	
	10	F	76.9	1.606	2.089	0.255	0.331	0.390	0.508	
3623	1		80.2	1.526	1.903	0.399	0.498	0.409	0.510	
	5	F	76.7	1.552	2.023	0.368	0.480	0.371	0.484	
3624	4		74.2	1.595	2.149	0.245	0.330	0.282	0.380	
	8	F	64.8	1.448	2.235	0.230	0.354	0.255	0.393	
3625		М	95.5	1.606			0.397			
		172	0.0	2 5 6 4	7 000	0 254		0 450		

APPENDIX Y

PAGE 512

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP ORGAN WEIGHTS (GRAMS) AND ORGAN/BODY WEIGHT RATIOS (%)

GROUP III 10000 MG/M3

APPENDIX Y

PAGE 513

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

GROUP IV									
			Final	BRA	IN	SPL	EEN	THY	MUS
Number	No.	Sex		Weight	Ratio	Weight	Ratio		Ratio
								· 	-
4601	3	М	91.6	1.664	1.817	0.268	0.292	0.273	0.298
	4	F	89.1	1.622	1.821	0.315	0.353	0.472	0.530
4603	10	M	76.3	1.492	1.956	0.283	0.372	0.309	0.405
	14	F	80.4	1.501	1.867	0.286	0.355	0.375	0.467
4604	4	М	62.9	1.401	2.227	0.247	0.392	0.370	0.587
	15	F	62.5	1.515	2.423	0.257	0.412	0.364	0.582
4605	1	М	81.1	1.617	1.994	0.250	0.309	0.325	0.401
	14	F	75.9	1.472	1.939	0.220	0.290	0.276	0.364
4606	6	М	70.8	1.481	2.092	0.299	0.423	0.342	0.483
	10	F	58.9	1.439	2.442	0.178	0.302	0.297	0.504
4607	2	М	99.1	1.786	1.802	0.363	0.366	0.540	0.545
	3	F	95.5	1.645	1.723	0.396	0.415	0.426	0.446
4608	6	М	79.8	1.541	1.932	0.376	0.472	0.411	0.515
1000	15	F	79.6	1.582	1.988	0.323	0.406	0.413	0.519
4610	2	М	71.4	1.508	2.112	0.372	0.521	0.266	0.372
1010	11		78.7	1.555	1.976	0.371	0.472	0.388	0.493
4611	3	М	83.3	1.630	1.957	0.335	0.402	0.372	0.447
4011	12	F	78.6	1.487	1.892	0.335	0.429	0.372	0.447
4612	5	М	79.9	1.536	1.922	0.316	0.395	0.336	0.400
4012	12	F	74.1	1.450	1.957	0.316	0.395	0.336	0.420 0.411
4613	-	М	72.9	1 504	2 251	2 262			
4613	7 13	F	72.9 76.7	1.504 1.468	2.064 1.914	0.262 0.312	0.360 0.407	0.324 0.362	0.445 0.472
	_								
4614	3	M	78.8	1.498	1.901	0.353	0.448	0.417	0.529

APPENDIX Y

PAGE 514

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ROUP IV				INDIVIDUAL PUP ORGAN WEIGHTS (GRAMS) AND ORGAN/BODY WEIGHT RATIOS (%)									
			Final	BRA	BRAIN		EEN	THY	MUS				
Number	No.	Sex	Weight	Weight	Ratio	Weight	Ratio	Weight	Ratio				
4614	(cor	ntinue	d)										
	17	F	69.4	1.451	2.091	0.350	0.504	0.361	0.520				
4615	2		82.9	1.616	1.950	0.303	0.366	0.388	0.468				
	14	F	59.1	1.459	2.468	0.256	0.433	0.216	0.366				
4616	6	M	84.3	1.518	1.801	0.245	0.291	0.418	0.496				
	12	F	69.9	1.429	2.044	0.227	0.325	0.358	0.513				
4618	5	М	76.0	1.541	2.028	0.277	0.365	0.447	0.588				
	10	F	56.7	1.362	2.402	0.190	0.336	0.257	0.453				
4619	6	М	74.7	1.590	2.129	0.275	0.369	0.345	0.461				
	10	F	58.2	1.459	2.507	0.213	0.365	0.242	0.415				
4620	6	М	48.0	1.339	2.789	0.250	0.520	0.201	0.420				
	13	F	41.0	1.275	3.111	0.187	0.457	0.175	0.427				
4621	6	М	81.6	1.558	1.909	0.341	0.417	0.349	0.428				
	10	F	65.7	1.471	2.240	0.229	0.349	0.392	0.597				
4622	6	M	78.2	1.541	1.971	0.277	0.355	0.327	0.418				
	11	F	69.0	1.594	2.310	0.252	0.364	0.320	0.464				
4623	4	M	80.0	1.476	1.845	0.325	0.406	0.397	0.496				
	5	F	71.0	1.521	2.143	0.278	0.391	0.348	0.490				
4624	9	M	75.0	1.570	2.093	0.326	0.435	0.321	0.428				
	15	F	63.0	1.322	2.098	0.266	0.422	0.262	0.416				
4625	2	М	84.5	1.586	1.877	0.390	0.462	0.361	0.427				
	8	F	78.0	1.531	1.962	0.342	0.438	0.354	0.454				
4626	4		81.5	1.589	1.950	0.299	0.366	0.441	0.541				
	12	F	71.6	1.506	2.103	0.280	0.391	0.419	0.585				

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX Y

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

ROUP I				11101 1 1001	ILL TOT C	MOZIIV WEET	OIIID (CICAND	, AND ORGAN, BRAIN WEIGHT RATIOS (%)
				SPL		THY		
Number	No.	Sex	Brain Weight	Weight	Ratio	Weight	Ratio	
1601	6	М	1.475	0.294	19.90	0.229	15.54	
	10		1.569	0.278	17.74	0.407	25.94	
1602	8	М	1.649	0.417	25.30	0.402	24.37	
	13	F	1.519	0.325	21.39	0.412	27.14	
1603	9	М	1.607	0.354	22.05	0.315	19.59	
	10	F	1.561	0.238	15.28	0.370	23.73	
1604	4	М	1.709	0.338	19.80	0.395	23.13	
	13	F	1.606	0.263	16.37	0.303	18.89	
1605	9	М	1.547	0.342	22.08	0.382	24.72	
	15	F	1.574	0.497	31.56	0.431	27.40	
1607	5	М	1.590	0.357	22.46	0.348	21.91	
	9	F	1.540	0.229	14.87	0.421	27.31	
1608	6	М	1.680	0.316	18.79	0.374	22.25	
	11	F	1.598	0.206	12.91	0.353	22.11	
1610	3	M	1.542	0.379	24.57	0.352	22.80	
	6	F	1.582	0.280	17.70	0.369	23.32	
1612	4	М	1.577	0.221	14.01	0.319	20.25	
	8	F	1.524	0.221	14.49	0.299	19.63	
1613	4		1.633	0.230	14.11	0.309	18.91	
	14	F	1.561	0.207	13.28	0.362	23.21	
1614	8	М	1.605	0.359	22.39	0.349	21.75	
	16	F	1.526	0.274	17.96	0.324	21.24	
1615	1	М	1.542	0.350	22.66	0.461	29.92	

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX Y

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

	_		5	SPLEEN		THY	MUS	
Number	No.	o. Sex	Weight	Weight	Ratio	Weight		
			 d)					
				0.268	17.52	0.412	26.91	
1616	3	М	1.592	0.336	21.08	0.436	27.40	
	10	F	1.579	0.386	24.41	0.498	31.55	
1617	6	М	1.503	0.271	18.01	0.292	19.45	
	10	F	1.526	0.281	18.39	0.395	25.91	
1618	4	М	1.552	0.347	22.33	0.380	24.48	
	10	F	1.530	0.355	23.17	0.415	27.12	
1619	3	М	1.520	0.314	20.68	0.315	20.69	
	14	F	1.561	0.309	19.80	0.388	24.87	
1620	2	М	1.585	0.319	20.14	0.401	25.29	
	12	F	1.546	0.298	19.28	0.365	23.62	
1621	1	М	1.524	0.351	23.02	0.449	29.44	
	17	F	1.429	0.372	26.05	0.405	28.32	
1622	4	М	1.657	0.356	21.46	0.372	22.45	
	11	F	1.483	0.270	18.23	0.334	22.49	
1623	1	М	1.564	0.368	23.52	0.325	20.81	
	8	F	1.346	0.309	22.99	0.357	26.54	
1624	3	М	1.661	0.247	14.86	0.361	21.75	
	9	F	1.622	0.236	14.55	0.439	27.04	
1626	2	М	1.501	0.272	18.09	0.323	21.52	
	13	F	1.398	0.242	17.30	0.380	27.20	

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

2613 3 M 1.480 0.258 17.45 0.288 19.47

APPENDIX Y

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

	2000 MG/M3			INDIVIDUAL PUP ORGAN WEIGHTS (GRAMS				
				SPL	EEN	THY	MUS	
Number	No.	Sex	Weight	Weight	Ratio	Weight	Ratio	
2601			1.571		13.05	0.283	18.04	
	8	F	1.599	0.310	19.37	0.361	22.54	
2602	4	М	1.662	0.372	22.39	0.478	28.76	
			1.552	0.345	22.20	0.350	22.54	
2603			1.603	0.341	21.29		22.39	
	9	F	1.539	0.358	23.28	0.398	25.82	
2604	4	М	1.460	0.359	24.62	0.291	19.96	
	14	F	1.399	0.306	21.86	0.259	18.52	
2605			1.475	0.313	21.21		19.55	
	9	F	1.412	0.242	17.12	0.411	29.14	
2606	6	М	1.596	0.254	15.89	0.270	16.89	
	14	F	1.597	0.299	18.73	0.313	19.60	
2607	5	М	1.490	0.354	23.77	0.406	27,27	
2607			1.529	0.354	16.60	0.406	27.27	
	13	4	1.323	0.254	10.00	0.549	22.00	
2608	6	M	1.530	0.303	19.79	0.359	23.45	
	11	F	1.513	0.296	19.59	0.351	23.18	
2610	1	м	1.516	0.369	24.31	0.378	24.92	
2010			1.579	0.309	17.35	0.250	15.84	
	_	-		0.2.1		0.200		
2611	7		1.475	0.279	18.91	0.263	17.86	
	12	F	1.522	0.346	22.71	0.270	17.76	
2612	2	м	1.514	0.324	21.37	0.246	16.27	
2012	12		1.534	0.347	22.65		25.54	
		-						

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX Y

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP ORGAN WEIGHTS (GRAMS) AND ORGAN/BRAIN WEIGHT RATIOS (%)

	2000 MG/M3			INDIVIDUAL PUP ORGAN WEIGHTS (GRAMS) AND ORGAN/BRAIN WEIGHT RATIOS (*)							
				SPL	EEN	THY	MUS				
Number	No.	Sex	Weight	Weight	Ratio	Weight	Ratio				
		tinue									
	15	F	1.466	0.252	17.19	0.341	23.25				
2614	1	М	1.623	0.392	24.14	0.326	20.06				
	14	F	1.478	0.260	17.59	0.414	28.03				
2615	5	M	1.495	0.361	24.14	0.267	17.84				
	12	F	1.488	0.256	17.21	0.353	23.72				
2616	4	М	1.540	0.421	27.35	0.419	27.21				
	12	F	1.484	0.238	16.04	0.318	21.42				
2617	4	М	1.553	0.368	23.72	0.363	23.39				
	13		1.465	0.390	26.64		24.46				
2618	4	М	1.593	0.385	24.14	0.345	21.68				
	10	F	1.511	0.364	24.07	0.356	23.56				
2619	2	М	1.578	0.340	21.52	0.350	22.16				
	15	F	1.485	0.247	16.66	0.363	24.44				
2620	3	М	1.640	0.360	21.96	0.360	21.96				
	10	F	1.485	0.307	20.68	0.460	30.97				
2621	2	М	1.512	0.313	20.70	0.356	23.53				
	13	F	1.459	0.257	17.63	0.387	26.55				
2622	1	М	1.658	0.382	23.03	0.420	25.35				
	13			0.326	19.94	0.395	24.17				
2623	2	М	1.483	0.243	16.36	0.287	19.35				
	11		1.481	0.255	17.23	0.321	21.70				
2624	10	М	1.538	0.270	17.54	0.361	23.44				
			1 400								

11 F 1.483 0.266 17.93 0.289 19.50

Huntingdon Life Sciences 00-4202

Sponsor Study No: 211-TAME-1G

6 F 1.590 0.389 24.47 0.366 23.04

APPENDIX Y

PAGE 519

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

GROUP II	2	000 M	IG/M3				
Animal	Dun		Brain		SPLEEN		MUS
Number	-	Sex				Weight	Ratio
2625	2	М	1.551	0.261	16.82	0.275	17.74
	15	F	1.534	0.256	16.70	0.319	20.79
2626	4	М	1.664	0.388	23.32	0.384	23.07

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX Y

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

GROUP III	10000 MG/M3			

Anima?	Dus		Dwain			THY	
Number	No.	Sex	Brain Weight	Weight	Ratio	Weight	Ratio
3601	9		1.554	0.322	20.72	0.393	
	10	F	1.585	0.308	19.43	0.406	25.61
3602	8	M	1.646	0.341	20.74	0.421	25.58
	11	F	1.453	0.272	18.73	0.324	22.27
3603	4	М	1.555	0.293	18.86	0.365	23.47
	7	F	1.582	0.319	20.16	0.425	26.87
3604	4	М	1.597	0.342	21.42	0.355	22.26
	10	F	1.564	0.295	18.87	0.318	20.31
3606	•	M	1 427	0 007	16.40	0 040	16.06
3606	3 7	M	1.437	0.237	16.48	0.242	16.86
	1	F	1.434	0.272	18.98	0.379	26.45
3607	4	M	1.720	0.307	17.84	0.407	23.64
	7	F	1.662	0.224	13.46	0.368	22.16
3608	2	М	1.612	0.334	20.70	0.431	26.71
	16	F	1.485	0.297	19.97	0.357	24.06
3609	2	М	1.528	0.234	15.29	0.326	21.33
2000	9	F	1.514	0.290	19.14	0.342	22.60
3610	4	M	1.606	0.308	19.17	0.370	23.03
	12	F	1.441	0.325	22.54	0.424	29.43
3611	6	М	1.557	0.382	24.56	0.352	22.64
	7			0.249	16.78	0.331	22.27
3612	8	М	1.452	0.373	25.71	0.314	21.63
3612	13	F	1.452	0.373	23.15	0.314	25.91
	13	r	1.301	0.301	23.15	0.33/	Z3.71
3613	2	M	1.484	0.294	19.79	0.208	14.00

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX Y

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

OUP III			MG/M3					3) AND ORGAN/E			
						THY	MUS		 	 	· -
Animal Number	No.	Sex	Weight		Ratio	Weight	Ratio				
3613									 	 	
	14	F	1.457	0.230	15.81	0.257	17.60				
3614	2	М	1.551	0.297	19.13	0.365	23.57				
	10	F	1.450	0.305	21.05	0.373	25.73				
3615	4	М	1.475	0.326	22.08	0.337	22.88				
	13	F	1.503	0.276	18.37	0.320	21.31			•	
3616	6	М	1.642	0.315	19.20	0.373	22.70				
	16	F	1.726	0.273	15.81	0.433	25.08				
3617	4	М	1.383	0.250	18.08	0.347	25.13				
	5	F	1.382	0.264	19.13	0.232	16.81				
3619	3	М	1.641	0.373	22.70	0.521	31.71				
	17	F	1.564	0.273	17.47	0.441	28.21				
3620	4	М	1.517	0.294	19.37	0.336	22.17				
	13	F	1.505	0.256	17.03	0.320	21.29				
3621	9	F	1.537	0.290	18.87	0.411	26.75				
	10	M	1.597	0.379	23.73	0.486	30.41				
3622	2	М	1.602	0.261	16.28	0.431	26.94				
	10	F	1.606	0.255	15.84	0.390	24.30				
3623	1	М	1.526	0.399	26.14	0.409	26.82				
	5	F	1.552	0.368	23.70	0.371	23.91				
3624	4	М	1.595	0.245	15.37	0.282	17.69				
	8	F	1.448	0.230	15.86	0.255	17.58				
3625	3	M	1.606	0.379	23.62	0.434	27.00				
	4	F	1.564	0.354	22.62	0.450	28.78				

APPENDIX Y

PAGE 522

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL PUP ORGAN WEIGHTS (GRAMS) AND ORGAN/BRAIN WEIGHT RATIOS (%)

GROUP III 10000 MG/M3

3626 4 M 1.530 0.279 18.23 0.267 17.44 10 F 1.477 0.226 15.28 0.240 16.26

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

4614 3 M 1.498 0.353 23.56 0.417 27.85

APPENDIX Y

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

		MG/M3	INDIVIDUAL PUP ORGAN WEIGHTS (GRAM				
			SPL	EEN	THY	MUS	
No.	No. Sex	Weight	Weight	Ratio	Weight	Ratio	
3	M	1.664	0.268	16.09	0.273	16.38	
4	F	1.622	0.315	19.38	0.472	29.08	
10	м	1.492	0.283	19.00	0.309	20.68	
			0.286	19.03	0.375	24.99	
						26.38	
15	F'	1.515	0.257	16.99	0.364	24.03	
1	М	1.617	0.250	15.49	0.325	20.11	
14	F	1.472	0.220	14.95	0.276	18.75	
_		1 401	0 200	20 21	0 240	22.10	
						23.10 20.63	
10	r	1.437	0.176	12.33	0.237	20.03	
2	M	1.786	0.363	20.32	0.540	30.22	
3	F	1.645	0.396	24.10	0.426	25.90	
6	М	1.541	0.376	24 41	0.411	26.67	
			0.323	20.42	0.413	26.11	
			0.372	24.68	0.266	17.62	
11	F	1.555	0.371	23.88	0.388	24.95	
3	М	1.630	0.335	20.57	0.372	22.84	
12	F		0.337	22.66	0.390	26.24	
_							
						21.85	
12	r	1.450	0.252	17.40	0.304	20.99	
7	М	1.504	0.262	17.42	0.324	21.55	
13	F	1.468	0.312	21.24	0.362	24.65	
	Pup No	Pup No. Sex 3 M 4 F 10 M 14 F 4 M 15 F 1 M 14 F 6 M 10 F 2 M 3 F 6 M 15 F 2 M 15 F 2 M 15 F 3 M 15 F	Pup Brain No. Sex Weight 3 M 1.664 4 F 1.622 10 M 1.492 14 F 1.501 4 M 1.401 15 F 1.515 1 M 1.617 14 F 1.472 6 M 1.481 10 F 1.439 2 M 1.786 3 F 1.645 6 M 1.541 15 F 1.582 2 M 1.508 11 F 1.555 3 M 1.630 12 F 1.487 5 M 1.536 12 F 1.450 7 M 1.504	Pup Brain	SPLEEN Pup No. Brain Sex Weight Weight Ratio 3 M 1.664 0.268 16.09 16.09 19.38 19.38 10 M 1.492 0.283 19.00 19.03 19.03 4 F 1.501 0.286 19.03 4 M 1.401 0.247 17.60 15.49 19.00 15.49 14.95 1 M 1.617 0.250 15.49 14.95 6 M 1.472 0.220 14.95 6 M 1.481 0.299 20.21 10.78 12.35 2 M 1.786 0.363 20.32 20.32 20.42 2 M 1.786 0.363 20.32 20.42 2 M 1.541 0.376 24.41 15 F 1.582 0.323 20.42 2 M 1.508 0.372 24.68 11 F 1.555 0.371 23.88 3 M 1.630 0.335 20.57 12 3.88 3 M 1.630 0.335 20.57 12 5.66 5 M 1.536 0.316 20.57 12 6.66 5 M 1.536 0.316 20.57 12 6.66 7 M 1.504 0.262 17.42	Pup No. Brain Sex Weight Weight Ratio Weight Weight Ratio Weight Weight Ratio Address Date Address Date Page 12 Address Date Page 12 ""></th<>	

Huntingdon Life Sciences 00-4202 PAGE 524

Huntingdon Life Sciences 00-4202 Sponsor Study No: 211-TAME-1G

APPENDIX Y

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

	20000 MG/M3								N/BRAIN WEIGHT
				SPL	EEN	THY	MUS	 	·
Number	No.	Sex	Weight	Weight	Ratio	Weight	Ratio		
4614								 	·
				0.350	24.11	0.361	24.89		
4615	2	м	1.616	0.303	18.78	0.388	24.00		
4013			1.459	0.256	17.54		14.82		
						*			
4616				0.245	16.13	0.418	27.53		
	12	F	1.429	0.227	15.88	0.358	25.08		
4618	5	М	1.541	0.277	17.99	0.447	28.98		
	10	F	1.362	0.190	13.97	0.257	18.85		
4619	6		1.590	0.275	17.32		21.68		
	10	F	1.459	0.213	14.57	0.242	16.55		
4620	6	М	1.339	0.250	18.63	0.201	15.05		
	13	F	1.275	0.187	14.69	0.175	13.74		
4.555	_		7 550	0.245	01 01				
4621	6 10	M F	1.558 1.471	0.341 0.229	21.86 15.57	0.349 0.392	22.41 26.66		
	10	Г	1.4/1	0.229	15.5/	0.392	∠0.00		
4622	6	М	1.541	0.277	18.00	0.327	21.19		
	11	F	1.594	0.252	15.78	0.320	20.10		
4600	,	M	1 476	0.305	22 02	0 205	06.00		
4623			1.476 1.521	0.325 0.278	22.00 18.26	0.397 0.348	26.89 22.87		
	3	Ľ	1.741	0.276	10.20	0.340	44.01		
4624	9	М	1.570	0.326	20.77	0.321	20.44		
	15	F	1.322	0.266	20.13	0.262	19.84		
4605			1 506	0.366	04.50	0 365	00 54		
4625	2		1.586 1.531	0.390 0.342	24.59 22.32	0.361 0.354	22.74 23.14		
	J	F	1.001	0.342	22.32	0.334	23.14		
4626			1.589	0.299	18.78	0.441	27.73		
	12	F	1.506	0.280	18.59	0.419	27.81		

00-4202 211-TAME-1G

Pa	ge 525
Final	Report

Individual Animal Gross	
and Microscopic Observations	
Preface	Appendix Z

Key to Abbreviations

GI = Gland

Notes

- 1. Unless otherwise specified in a histopathology note, the organ/tissue examined was the required (routine) section.
- 2. For Animal number 4106, the right epididymis and testis were noted as missing, however, these organs were shipped to Pathology Associates International (PAI) for sperm assessments.

Page: 526 28-May-04; 16:16

Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Male PHASE DAY OF DEATH: 110 PHASE: Dosing phase GROUP: 1

Gross Observations/Comments Microscopic Observations/Comments ______

Tissues without comment under Gross Observations were within normal limits at necropsy.

The following tissues were unremarkable microscopically:

Adrenal Glands Brain Coagulating Gl Right Epididymis Kidneys Liver Pituitary gland Prostate Spleen Lungs

Seminal vesicles Right Testis

Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Male ANIMAL: 1102 PHASE DAY OF DEATH: 110 PHASE: Dosing phase GROUP: 1

.

Tissue Gross Observations/Comments Microscopic Observations/Comments

Lungs

Discolored, Left lobe(s), Tan, Foci, </= Examined; 1 correlation found:

0.1 cm, Slight ALVEOLAR/INTRAALVEOLAR MACROPHAGES, Minimal.

Discolored, Tan, Foci, </= 0.1 cm, Slight/ Examined; 1 correlation found:
Diaphragmatic ALVEOLAR/INTRAALVEOLAR MACROPHAGES,

Minimal.

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Adrenal Glands Brain Coagulating Gl Right Epididymis Kidneys

Liver Pituitary gland Prostate Spleen Seminal vesicles

Right Testis

Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

> Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Male ANIMAL: 1103
PHASE DAY OF DEATH: 110 PHASE: Dosing phase GROUP: 1

Tissue Gross Observations/Comments Microscopic Observations/Comments

Kidneys No gross observations on tissue.

CORTEX: INTERSTITIAL MONONUCLEAR CELL INFILTRATES, Minimal.

CORTEX/CORTICO-MEDULLARY JUNCTION: MINERAL

DEPOSIT(S), Minimal.

Lungs Tissue is unremarkable.

Discolored, Left lobe(s), Red, Foci, </= Examined; no correlation found

0.1 cm, Slight

Tissues without comment under Gross Observations were within normal limits at necropsy.

The following tissues were unremarkable microscopically:

Adrenal Glands Brain Coagulating Gl Right Epididymis Liver

Pituitary gland Prostate Spleen Seminal vesicles Right Testis

28-May-04; 16:16 Page: 529

Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Male ANIMAL: 1104
PHASE DAY OF DEATH: 110 PHASE: Dosing phase GROUP: 1

Tissue Gross Observations/Comments Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Coagulating Gl Right Epididymis Prostate Seminal vesicles Right Testis

Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Male ANIMAL: 1105
PHASE DAY OF DEATH: 110 PHASE: Dosing phase GROUP: 1

Tissue Gross Observations/Comments Microscopic Observations/Comments

Kidneys No gross observations on tissue.

CORTEX: CONVOLUTED TUBULAR

EPITHELIUM-BASOPHILIC, UNILATERAL, Focal, Slight.

Tissues without comment under Gross Observations were within normal limits at necropsy.

The following tissues were unremarkable microscopically:

Adrenal Glands Brain Coagulating Gl Right Epididymis Liver

Lungs Pituitary gland Prostate Spleen Seminal vesicles

Right Testis

Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Male ANIMAL: 1106
PHASE DAY OF DEATH: 110 PHASE: Dosing phase GROUP: 1

Tissue Gross Observations/Comments Microscopic Observations/Comments

Adrenal Glands No gross observations on tissue. Tissue is unremarkable (with comment).

- One medulla absent.

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Brain Coagulating Gl Right Epididymis Kidneys Liver

Lungs Pituitary gland Prostate Spleen Seminal vesicles

Right Testis

Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

Individual Animal Gross and Microscopic Observations			
-		SEX: Male PHASE: Dosing phase	ANIMAL: 1107 GROUP: 1
Tissue	Gross Observations/Comments	Microscopic Observations/Comments	
Liver	. No gross observations on tissue.	MONONUCLEAR CELL INFILTRATES, Minimal.	
Lungs	. Discolored, All lobes, Foci/ (post-fixation observation)	Examined; 1 correlation found: ALVEOLAR/INTRAALVEOLAR MACROPHAGES, Minimal.	
Skin	. Scab, Red, Moderate/ Right upper lateral, 1.5 x 2.0 cm	Examined; 1 correlation found: EPITHELIUM: ULCER(S), Marked. EPITHELIUM: SQUAMOUS CELL HYPERPLASIA, Moderate.	
		EPITHELIUM: HYPERKERATOSIS, Slight. ABSCESS(ES), Focal, Moderate.	

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Adrenal Glands Brain Coagulating Gl Right Epididymis Kidneys
Pituitary gland Prostate Spleen Seminal vesicles Right Testis

Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Male ANIMAL: 1108
PHASE DAY OF DEATH: 110 PHASE: Dosing phase GROUP: 1

Tissue Gross Observations/Comments Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Coagulating Gl Right Epididymis Prostate Seminal vesicles Right Testis

Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Male ANIMAL: 1109
PHASE DAY OF DEATH: 110 PHASE: Dosing phase GROUP: 1

Tissue Gross Observations/Comments Microscopic Observations/Comments

Coagulating Gl No gross observations on tissue. Tissue is unremarkable; one-of-pair

missing.

Kidneys No gross observations on tissue.

CORTEX: INTERSTITIAL MONONUCLEAR CELL

INFILTRATES, Minimal.

Tissues without comment under Gross Observations were within normal limits at necropsy.

The following tissues were unremarkable microscopically:

Adrenal Glands Brain Right Epididymis Liver Lungs

Pituitary gland Prostate Spleen Seminal vesicles Right Testis

28-May-04; 16:16

Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body
Inhalation Reproduction Toxicity Study in Rats
Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Male ANIMAL: 1110 PHASE DAY OF DEATH: 110 PHASE: Dosing phase GROUP: 1

- -

Pissue Gross Observations/Comments Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Coagulating Gl Right Epididymis Prostate

Seminal vesicles Right Testis

Page: 535

28-May-04; 16:16 Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Male ANIMAL: 1111
PHASE DAY OF DEATH: 110 PHASE: Dosing phase GROUP: 1

issue Gross Observations/Comments Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Coagulating Gl Right Epididymis Prostate Seminal vesicles Right Testis

.

Page: 536

28-May-04; 16:16 Page: 537

Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body
Inhalation Reproduction Toxicity Study in Rats
Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Male ANIMAL: 1112
PHASE DAY OF DEATH: 110 PHASE: Dosing phase GROUP: 1

Tissue Gross Observations/Comments Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Coagulating Gl Right Epididymis Prostate Seminal vesicles Right Testis

28-May-04; 16:16

Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice

PHASE: Dosing phase

ANIMAL: 1113

Page: 538

PHASE DAY OF DEATH: 110

SEX: Male

GROUP: 1

Gross Observations/Comments

Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Coagulating Gl Right Epididymis Prostate

Seminal vesicles Right Testis

28-May-04; 16:16 Page: 539

Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body
Inhalation Reproduction Toxicity Study in Rats
Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Male ANIMAL: 1114
PHASE DAY OF DEATH: 111 PHASE: Dosing phase GROUP: 1

Tissue Gross Observations/Comments Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Coagulating Gl Right Epididymis Prostate Seminal vesicles Right Testis

28-May-04; 16:16 Page: 540

Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body
Inhalation Reproduction Toxicity Study in Rats
Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Male ANIMAL: 1115
PHASE DAY OF DEATH: 111 PHASE: Dosing phase GROUP: 1

Tissue Gross Observations/Comments Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Coagulating Gl Right Epididymis Prostate Seminal vesicles Right Testis

28-May-04; 16:16 Page: 541

Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Male ANIMAL: 1116
PHASE DAY OF DEATH: 111 PHASE: Dosing phase GROUP: 1

Tissue Gross Observations/Comments Microscopic Observations/Comments

Coagulating Gl No gross observations on tissue. Tissue is unremarkable; one-of-pair missing.

Kidneys

Dilated Pelvis, Right, Slight Examined; 1 correlation found:

PELVIS: DILATED, UNILATERAL, Slight.

 $\hbox{Tissues without comment under Gross Observations were within normal limits at necropsy. } \\$

The following tissues were unremarkable microscopically:

Adrenal Glands Brain Right Epididymis Liver Lungs

Pituitary gland Prostate Spleen Seminal vesicles Right Testis

28-May-04; 16:16

Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body
Inhalation Reproduction Toxicity Study in Rats
Individual Animal Cross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Male ANIMAL: 1117
PHASE DAY OF DEATH: 111 PHASE: Dosing phase GROUP: 1

Tissue Gross Observations/Comments Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Coagulating Gl Right Epididymis Prostate

Seminal vesicles Right Testis

Page: 542

28-May-04; 16:16

Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations Page: 543

STATUS: Final phase sacrifice SEX: Male ANIMAL: 1118
PHASE DAY OF DEATH: 111 PHASE: Dosing phase GROUP: 1

Tissue Gross Observations/Comments Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Coagulating Gl Right Epididymis Prostate Seminal vesicles Right Testis

28-May-04; 16:16

What income Life Sciences Inc. 0043

Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body
Inhalation Reproduction Toxicity Study in Rats
Individual Animal Gross and Microscopic Observations

Page: 544

STATUS: Final phase sacrifice SEX: Male ANIMAL: 1119

STATUS: Final phase sacrifice SEX: Male ANIMAL: 1119
PHASE DAY OF DEATH: 111 PHASE: Dosing phase GROUP: 1

Tissue Gross Observations/Comments Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy.

The following tissues were unremarkable microscopically:

Coagulating Gl Right Epididymis Prostate Seminal vesicles Right Testis

28-May-04; 16:16 Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations Page: 545

STATUS: Final phase sacrifice SEX: Male ANIMAL: 1120 PHASE DAY OF DEATH: 111 PHASE: Dosing phase GROUP: 1

Tissue Gross Observations/Comments Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy.

The following tissues were unremarkable microscopically:

Congulating Cl. Right Frididgming Prostate. Comingle register. Right Frididgming Prostate.

Coagulating Gl Right Epididymis Prostate Seminal vesicles Right Testis

28-May-04; 16:16 Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice

ANIMAL: 1121 PHASE: Dosing phase

PHASE DAY OF DEATH: 111

GROUP: 1

Page: 546

Gross Observations/Comments

Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy.

The following tissues were unremarkable microscopically: Coagulating Gl Right Epididymis Prostate

Seminal vesicles Right Testis

28-May-04; 16:16

Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations Page: 547

STATUS: Final phase sacrifice SEX: Male ANIMAL: 1122 PHASE DAY OF DEATH: 111 PHASE: Dosing phase GROUP: 1

- -

Tissue Gross Observations/Comments Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Coagulating Gl Right Epididymis Prostate Seminal vesicles Right Testis

28-May-04; 16:16 Appendix Z Page: 548

28-May-04; 16:16 Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

> Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Male ANIMAL: 112 PHASE DAY OF DEATH: 111 PHASE: Dosing phase GROUP: 1

Tissue Gross Observations/Comments Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Coagulating Gl Right Epididymis Prostate Seminal vesicles Right Testis

28-May-04; 16:16 Page: 549

Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Male ANIMAL: 1124
PHASE DAY OF DEATH: 111 PHASE: Dosing phase GROUP: 1

Tissue Gross Observations/Comments Microscopic Observations/Comments

TIEDBUC CLOSE CARDITACIONE, COMMONDE MICHOLOGIC CARDITACIONE, COMMONDE CARDITACIONE, COMMONDE CARDITACIONE, COMMONDE CARDITACIONE, COMMONDE CARDITACIONE, COMMONDE CARDITACIONE, COMMONDE CARDITACIONE, COMMONDE CARDITACIONE, COMMONDE CARDITACIONE, COMMONDE CARDITACIONE, COMMONDE CARDITACIONE, COMMONDE CARDITACIONE, CARDITACI

Coagulating Gl No gross observations on tissue.

SECRETORY PRODUCT: DECREASED, UNILATERAL,

Minimal.

MINI

Kidneys No gross observations on tissue.

CORTEX: CONVOLUTED TUBULAR

EPITHELIUM-BASOPHILIC, Minimal.

CORTEX: INTERSTITIAL MONONUCLEAR CELL

INFILTRATES, Minimal.

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Adrenal Glands Brain Right Epididymis Liver Lungs

Pituitary gland Prostate Spleen Seminal vesicles Right Testis

28-May-04; 16:16

Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

Individual Animal Gross and Microscopic Observations					
STATUS: PHASE DAY OF DEATH:	Final phase sacrifice	SEX: Male PHASE: Dosing phase	ANIMAL: 1125 GROUP: 1		
Tissue	Gross Observations/Comments	Microscopic Observations/Comments	• • • • • • • • • • • • • • • • • • • •		
S	No gross observations on tissue.	OSSEOUS METAPLASIA, Minimal.			
Skin	Hair Thin/Absent, Extremities/snout	Tissue is missing.			
		- Skin from extremity and snout is missing.			

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Adrenal Glands Brain Coagulating Gl

Liver Pituitary gland Prostate

Right Epididymis Kidneys

Spleen Seminal vesicles

Page: 550

Right Testis

28-May-04; 16:16 Page: 551

Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Male ANIMAL: 1126 GROUP: 1 PHASE DAY OF DEATH: 111 PHASE: Dosing phase

______ Gross Observations/Comments Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Coagulating Gl Right Epididymis Prostate Seminal vesicles Right Testis

28-May-04; 16:16 Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

> Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

Page: 552

STATUS: Final phase sacrifice SEX: Male ANIMAL: 4101 PHASE DAY OF DEATH: 110 PHASE: Dosing phase GROUP: 4

Tissue Gross Observations/Comments Microscopic Observations/Comments

Coagulating Gl Right Epididymis Prostate Seminal vesicles Right Testis

28-May-04; 16:16

Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

Page: 553

STATUS: Final phase sacrifice SEX: Male PHASE: Dosing phase GROUP: 4 PHASE DAY OF DEATH: 110

Gross Observations/Comments Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically: Coagulating Gl Right Epididymis Prostate

Seminal vesicles Right Testis

28-May-04; 16:16

Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body
Inhalation Reproduction Toxicity Study in Rats
Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Male ANIMAL: 4103
PHASE DAY OF DEATH: 110 PHASE: Dosing phase GROUP: 4

Tissue Gross Observations/Comments Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically: $\frac{1}{2} \left(\frac{1}{2} \right) \left$

Coagulating Gl Right Epididymis Prostate

Seminal vesicles Right Testis

Page: 554

28-May-04; 16:16

Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

Page: 555

STATUS: Final phase sacrifice SEX: Male

GROUP: 4 PHASE DAY OF DEATH: 110 PHASE: Dosing phase

Gross Observations/Comments Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically: Coagulating Gl Right Epididymis Prostate

Seminal vesicles Right Testis

28-May-04; 16:16 Page: 556

Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

.....

STATUS: Final phase sacrifice SEX: Male ANIMAL: 4105 GROUP: 4 PHASE DAY OF DEATH: 110 PHASE: Dosing phase

.....

Gross Observations/Comments Microscopic Observations/Comments

Coagulating Gl No gross observations on tissue. One-of-pair missing.

SECRETORY PRODUCT: DECREASED, Slight.

Kidneys

Dilated Pelvis, Right, Moderate Examined; 1 correlation found:

PELVIS: DILATED, Slight.

CORTEX: PROXIMAL CONVOLUTED TUBULAR EPITHELIUM-EOSINOPHILIC/HYALINE GRANULES,

Moderate.

CORTEX: CONVOLUTED TUBULAR EPITHELIUM-BASOPHILIC, Slight.

CORTEX: INTERSTITIAL MONONUCLEAR CELL

INFILTRATES, Slight.

CORTEX/CORTICO-MEDULLARY JUNCTION: TUBULAR

LUMENS - GRANULAR CASTS, Minimal.

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

> Adrenal Glands Brain Right Epididymis Liver Lungs

Pituitary gland Prostate Spleen Seminal vesicles Right Testis 28-May-04; 16:16 Page: 557

Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

------STATUS: Final phase sacrifice SEX: Male ANIMAL: 4106 PHASE: Dosing phase GROUP: 4 PHASE DAY OF DEATH: 110 Tissue Gross Observations/Comments Microscopic Observations/Comments

Left Epididymis

Abscess(es), Cauda, Green, Soft/ Thick Examined: 1 correlation found: material, 1.0 cm dia SPERM GRANULOMA, Present.

Right Epididymis . . . No gross observations on tissue. Tissue is missing.

Kidneys No gross observations on tissue.

CORTEX: PROXIMAL CONVOLUTED TUBULAR

EPITHELIUM-EOSINOPHILIC/HYALINE GRANULES,

Minimal.

CORTEX: CONVOLUTED TUBULAR EPITHELIUM-BASOPHILIC, Minimal.

Liver No gross observations on tissue.

MONONUCLEAR CELL INFILTRATES, Minimal.

Seminal vesicles . . . No gross observations on tissue.

SECRETORY PRODUCT: DECREASED, UNILATERAL,

Minimal.

Right Testis No gross observations on tissue.

Tissue is missing.

Tissues without comment under Gross Observations were within normal limits at necropsy.

The following tissues were unremarkable microscopically:

Adrenal Glands Brain Coagulating Gl Lungs Pituitary gland

28-May-04; 16:16 Page: 558

Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Male ANIMAL: 4106 PHASE: Dosing phase PHASE DAY OF DEATH: 110 GROUP: 4

· ·

Tissue Gross Observations/Comments Microscopic Observations/Comments

Prostate Spleen Left testis

28-May-04; 16:16 Page: 559

Huntingdon Life Sciences, Inc. 004202

Right Testis

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Male ANIMAL: 4107 PHASE: Dosing phase GROUP: 4 PHASE DAY OF DEATH: 110 Gross Observations/Comments Microscopic Observations/Comments Kidneys No gross observations on tissue. CORTEX: PROXIMAL CONVOLUTED TUBULAR EPITHELIUM-EOSINOPHILIC/HYALINE GRANULES, Slight. CORTEX: CONVOLUTED TUBULAR EPITHELIUM-BASOPHILIC, Minimal. Skin Tissue is missing. Hair Thin/Absent, Extremities/snout - Skin from extremity and snout is missing. Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically: Adrenal Glands Brain Coaqulating Gl Right Epididymis Liver Lungs Pituitary gland Prostate Spleen Seminal vesicles

28-May-04; 16:16

Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Male ANIMAL: 4108
PHASE DAY OF DEATH: 110 PHASE: Dosing phase GROUP: 4

Tissue Gross Observations/Comments Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Coagulating Gl Right Epididymis Prostate

Seminal vesicles Right Testis

Page: 560

Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

> Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats

Individual Animal Gross and Microscopic Observations ANIMAL: 4109 STATUS: Final phase sacrifice SEX: Male GROUP: 4 PHASE: Dosing phase PHASE DAY OF DEATH: 110 ______ Gross Observations/Comments Microscopic Observations/Comments Kidneys No gross observations on tissue. CORTEX: PROXIMAL CONVOLUTED TUBULAR EPITHELIUM-EOSINOPHILIC/HYALINE GRANULES, Slight. CORTEX: CONVOLUTED TUBULAR EPITHELIUM-BASOPHILIC, Slight. CORTEX: INTERSTITIAL MONONUCLEAR CELL INFILTRATES, Minimal. MEDULLA: TUBULAR LUMEN(S)-EOSINOPHILIC MATERIAL, Minimal. Liver No gross observations on tissue. MONONUCLEAR CELL INFILTRATES, Minimal. Tissue is missing. Skin Hair Thin/Absent, Extremities/snout - Skin from extremity and snout is missing.

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically: Coagulating Gl Right Epididymis Lungs Adrenal Glands Brain

28-May-04; 16:16 Page: 562

Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Male ANIMAL: 4109
PHASE DAY OF DEATH: 110 PHASE: Dosing phase GROUP: 4

Tissue Gross Observations/Comments Microscopic Observations/Comments

Pituitary gland Prostate Spleen Seminal vesicles Right Testis

28-May-04; 16:16 Page: 563

Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Male ANIMAL: 4110 PHASE DAY OF DEATH: 110 PHASE: Dosing phase GROUP: 4 ------

Gross Observations/Comments Microscopic Observations/Comments

Coagulating Gl No gross observations on tissue.

SECRETORY PRODUCT: DECREASED, Slight.

Kidneys

Dilated Pelvis, Right/ (post-fixation Examined; 1 correlation found: observation)

PELVIS: DILATED, UNILATERAL, Slight.

CORTEX: PROXIMAL CONVOLUTED TUBULAR EPITHELIUM-EOSINOPHILIC/HYALINE GRANULES,

Slight.

CORTEX: CONVOLUTED TUBULAR EPITHELIUM-BASOPHILIC, Slight.

CORTEX: INTERSTITIAL MONONUCLEAR CELL INFILTRATES, Minimal.

CORTEX/CORTICO-MEDULLARY JUNCTION: TUBULAR

LUMENS - GRANULAR CASTS, Minimal.

MEDULLA: TUBULAR LUMEN(S)-EOSINOPHILIC MATERIAL, Minimal.

- Dilated right renal pelvis noted at

trim.

Lungs No gross observations on tissue.

ALVEOLAR/INTRAALVEOLAR MACROPHAGES, Minimal.

28-May-04; 16:16

Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body
Inhalation Reproduction Toxicity Study in Rats
Individual Animal Gross and Microscopic Observations

......

Page: 564

STATUS: Final phase sacrifice SEX: Male ANIMAL: 4110 PHASE DAY OF DEATH: 110 PHASE: Dosing phase GROUP: 4

Tissue Gross Observations/Comments Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy.

The following tissues were unremarkable microscopically:

Adrenal Glands Brain Right Epididymis Liver Pituitary gland
Prostate Spleen Seminal vesicles Right Testis

Page: 565 28-May-04; 16:16

Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Male ANIMAL: 4111 PHASE: Dosing phase PHASE DAY OF DEATH: 110 GROUP: 4 Gross Observations/Comments Microscopic Observations/Comments Coagulating Gl No gross observations on tissue. Tissue is unremarkable; one-of-pair missing. Kidneys No gross observations on tissue. CORTEX: PROXIMAL CONVOLUTED TUBULAR EPITHELIUM-EOSINOPHILIC/HYALINE GRANULES, Slight. CORTEX: CONVOLUTED TUBULAR EPITHELIUM-BASOPHILIC, Minimal. CORTEX: INTERSTITIAL MONONUCLEAR CELL INFILTRATES, Minimal. MEDULLA: TUBULAR LUMEN(S)-EOSINOPHILIC MATERIAL, Minimal. Lungs No gross observations on tissue. ALVEOLAR/INTRAALVEOLAR MACROPHAGES,

Minimal.

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

> Adrenal Glands Brain Right Epididymis Liver Pituitary gland

Prostate Spleen Seminal vesicles Right Testis

28-May-04; 16:16 Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body
Inhalation Reproduction Toxicity Study in Rats
Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Male
PHASE DAY OF DEATH: 110 PHASE: Dosing phase

PHASE DAY OF DEATH: 110 PHASE: Dosing phase GROUP: 4

Tissue Gross Observations/Comments Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Coagulating Gl Right Epididymis Prostate

Seminal vesicles Right Testis

Page: 566

ANIMAL: 4112

Page: 567

28-May-04; 16:16 Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

> Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice

SEX: Male

ANIMAL: 4113

PHASE DAY OF DEATH: 110

PHASE: Dosing phase

GROUP: 4

Gross Observations/Comments

Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Coagulating Gl Right Epididymis Prostate

Seminal vesicles Right Testis

28-May-04; 16:16

Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice

SEX: Male

ANIMAL: 4114

Page: 568

PHASE DAY OF DEATH: 111 ______

PHASE: Dosing phase

GROUP: 4

Gross Observations/Comments

Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Coagulating Gl Right Epididymis Prostate

Seminal vesicles Right Testis

28-May-04; 16:16 Page: 569

Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

> Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Male ANIMAL: 4115
PHASE DAY OF DEATH: 111 PHASE: Dosing phase GROUP: 4

Tissue Gross Observations/Comments Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Coagulating G1 Right Epididymis Prostate Seminal vesicles Right Testis

28-May-04; 16:16

Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body
Inhalation Reproduction Toxicity Study in Rats
Individual Animal Gross and Microscopic Observations

Page: 570

STATUS: Final phase sacrifice SEX: Male ANIMAL: 4116

PHASE DAY OF DEATH: 111 PHASE: Dosing phase GROUP: 4

Tissue Gross Observations/Comments Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Coagulating Gl Right Epididymis Prostate Seminal vesicles Right Testis

28-May-04; 16:16 Page: 571

Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Male ANIMAL: 4117
PHASE DAY OF DEATH: 111 PHASE: Dosing phase GROUP: 4

Tissue Gross Observations/Comments Microscopic Observations/Comments

Kidneys No gross observations on tissue.

CORTEX: PROXIMAL CONVOLUTED TUBULAR
EPITHELIUM-EOSINOPHILIC/HYALINE GRANULES,

Moderate.

CORTEX: CONVOLUTED TUBULAR EPITHELIUM-BASOPHILIC, Slight.

CORTEX: INTERSTITIAL MONONUCLEAR CELL

INFILTRATES, Minimal.

Lungs

Discolored, All lobes, Tan, Foci, </= 0.1

cm, Moderate

Examined; 1 correlation found: ALVEOLAR/INTRAALVEOLAR MACROPHAGES,

Multifocal, Slight.

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

owing cissues were unremarkable microscopically:

Adrenal Glands Brain
Pituitary gland Prostate

Coagulating Gl

Spleen

Right Epididymis Liver

Seminal vesicles Right Testis

28-May-04; 16:16 Page: 572

Huntingdon Life Sciences, Inc. 004202

Pituitary gland Prostate

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

Individual Animal Gross and Microscopic Observations SEX: Male ANIMAL: 4118 STATUS: Final phase sacrifice PHASE: Dosing phase PHASE DAY OF DEATH: 111 GROUP: 4 ______ Gross Observations/Comments Microscopic Observations/Comments Kidneys No gross observations on tissue. CORTEX: PROXIMAL CONVOLUTED TUBULAR EPITHELIUM-EOSINOPHILIC/HYALINE GRANULES, Slight. CORTEX: CONVOLUTED TUBULAR EPITHELIUM-BASOPHILIC, Minimal. CORTEX: INTERSTITIAL MONONUCLEAR CELL INFILTRATES, Minimal. MEDULLA: TUBULAR LUMEN(S)-EOSINOPHILIC MATERIAL, Minimal. Liver No gross observations on tissue. MONONUCLEAR CELL INFILTRATES, Minimal. Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically: Adrenal Glands Brain Coagulating Gl Right Epididymis Lungs

Seminal vesicles Right Testis

Spleen

28-May-04; 16:16 Page: 573

Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Male ANIMAL: 4119 GROUP: 4 PHASE DAY OF DEATH: 111 PHASE: Dosing phase

Gross Observations/Comments Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Coagulating Gl Right Epididymis Prostate Seminal vesicles Right Testis

28-May-04; 16:16 Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

Page: 574

STATUS: Final phase sacrifice SEX: Male ANIMAL: 4120 PHASE DAY OF DEATH: 111 PHASE: Dosing phase GROUP: 4

Fissue Gross Observations/Comments Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Coagulating Gl Right Epididymis Prostate Seminal vesicles Right Testis

Appendix Z 28-May-04; 16:16 Page: 575

Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Male ANIMAL: 4121 PHASE: Dosing phase PHASE DAY OF DEATH: 111 GROUP: 4

Gross Observations/Comments Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Coagulating Gl Right Epididymis Prostate Seminal vesicles Right Testis Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body
Inhalation Reproduction Toxicity Study in Rats
Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice PHASE DAY OF DEATH: 111 Tissue Gross Observations/Comments		SEX: Male PHASE: Dosing phase		ANIMAL: 4122 GROUP: 4	
	No gross observation	- 	CORTEX: PF EPITHELIUM Slight. CORTEX: CO EPITHELIUM	ROXIMAL CONVOLUTED TUBULA M-EOSINOPHILIC/HYALINE GR DOVOLUTED TUBULAR M-BASOPHILIC, Slight.	R ANULES,
Skin Hair Thin/Absent, Extremities/snout		INFILTRATES, Minimal.Tissue is missing.Skin from extremity and snout is missing.			
The following t Adrena Lungs	comment under Gross Observa issues were unremarkable mic l Glands Brain Pituitary gland Testis	roscopically: Coagulating Gl		Liver	

Appendix Z

28-May-04; 16:16

Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body
Inhalation Reproduction Toxicity Study in Rats
Individual Animal Gross and Microscopic Observations

Page: 577

STATUS: Final phase sacrifice SEX: Male ANIMAL: 4123 PHASE DAY OF DEATH: 111 PHASE: Dosing phase GROUP: 4

issue Gross Observations/Comments Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Coagulating Gl Right Epididymis Prostate Seminal vesicles Right Testis

Appendix Z

28-May-04; 16:16

Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

Page: 578

ANIMAL: 4124

STATUS: Final phase sacrifice SEX: Male

PHASE DAY OF DEATH: 111 PHASE: Dosing phase GROUP: 4

Tissue Gross Observations/Comments Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Coagulating Gl Right Epididymis Prostate Seminal vesicles Right Testis

28-May-04; 16:16 Page: 579

Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

> Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Male
PHASE DAY OF DEATH: 111 PHASE: Dosing phase

PHASE DAY OF DEATH: 111 PHASE: Dosing phase GROUP: 4

Tissue Gross Observations/Comments Microscopic Observations/Comments

Right Epididymis . . . No gross observations on tissue.

INTERSTITIAL MONONUCLEAR CELL INFILTRATE,

- Proximal caput of epididymis has

- Proximal caput of epididymis has interstitial mononuclear cell infiltrate.

ANIMAL: 4125

Kidneys No gross observations on tissue.

CORTEX: PROXIMAL CONVOLUTED TUBULAR

EPITHELIUM-EOSINOPHILIC/HYALINE GRANULES,

Moderate.

Focal, Minimal.

CORTEX: CONVOLUTED TUBULAR EPITHELIUM-BASOPHILIC, Slight.

CORTEX: INTERSTITIAL MONONUCLEAR CELL

INFILTRATES, Minimal.

MEDULLA: TUBULAR LUMEN(S)-EOSINOPHILIC

MATERIAL, Minimal.

Tissues without comment under Gross Observations were within normal limits at necropsy.

The following tissues were unremarkable microscopically:

Adrenal Glands Brain Coagulating Gl Liver Lungs

Pituitary gland Prostate Spleen Seminal vesicles Right Testis

28-May-04; 16:16 Appendix Z Page: 580

28-may-04; 16:16 Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body
Inhalation Reproduction Toxicity Study in Rats
Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Male ANIMAL: 4126 PHASE DAY OF DEATH: 111 PHASE: Dosing phase GROUP: 4

Tissue Gross Observations/Comments Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Coagulating Gl Right Epididymis Prostate Seminal vesicles Right Testis

28-May-04; 16:16

Page: 581

Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Female ANIMAL: 1601 PHASE DAY OF DEATH: 121 PHASE: Dosing phase GROUP: 1

Tissue Gross Observations/Comments Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Adrenal Glands Brain Kidneys Liver Lungs
Oviducts/Fallop Ovaries Pituitary gland Spleen Uterus

Vagina

28-May-04; 16:16 Page: 582

Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

Individual Animal Gross and Microscopic Observations			
STA PHASE DAY OF DE	TUS: Final phase sacrifice	SEX: Female PHASE: Dosing phase	ANIMAL: 1605 GROUP: 1
Tissue	Gross Observations/Comments	Microscopic Observations/Comme	ents
Kidneys	No gross observations on tissue.	CORTEX/CORTICO-MEDULLARY JUNC	TION: MINERAL
Skin	 Hair Thin/Absent, General	Tissue is missing.	
		 Skin from extremity and sno missing. 	out is
Uterus	No gross observations on tissue.	MURAL HISTIOCYTIC AGGREGATE W	NITH BROWN
		LUMEN: DILATED, BILATERAL, Mi	inimal.

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Adrenal Glands Brain Liver Lungs Oviducts/Fallop Ovaries Pituitary gland Spleen Vagina Appendix Z

28-May-04; 16:16

Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice

SEX: Female

ANIMAL: 1612

Page: 583

PHASE DAY OF DEATH: 121

PHASE: Dosing phase

GROUP: 1

Gross Observations/Comments

Microscopic Observations/Comments

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Adrenal Glands Brain Oviducts/Fallop Ovaries

Kidneys Pituitary gland

Liver Spleen

Vagina

Uterus

28-May-04; 16:16 Page: 584

Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations ______

STATUS: Final phase sacrifice SEX: Female ANIMAL: 1613 PHASE DAY OF DEATH: 121 PHASE: Dosing phase GROUP: 1

Gross Observations/Comments

Microscopic Observations/Comments ______

Lungs No gross observations on tissue. ATELECTASIS, UNILATERAL, Minimal.

Uterus No gross observations on tissue.

MURAL HISTIOCYTIC AGGREGATE WITH BROWN PIGMENT, Slight.

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Adrenal Glands Brain Kidneys Liver Oviducts/Fallop Ovaries Pituitary gland Spleen Vagina

28-May-04; 16:16 Appendix Z

Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

CHARLIC. Final phage gagnifice

STATUS: Final phase sacrifice SEX: Female ANIMAL: 1614
PHASE DAY OF DEATH: 121 PHASE: Dosing phase GROUP: 1

Tissue Gross Observations/Comments Microscopic Observations/Comments

Kidneys No gross observations on tissue.

CORTEX/CORTICO-MEDULLARY JUNCTION: MINERAL

DEPOSIT(S), Minimal.

Uterus No gross observations on tissue.

MURAL HISTIOCYTIC AGGREGATE WITH BROWN
PIGMENT, UNILATERAL, Slight.

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Adrenal Glands Brain Liver Lungs Oviducts/Fallop Ovaries Pituitary gland Spleen Vagina

Appendix Z 28-May-04; 16:16 Page: 586 Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Female ANIMAL: 1617 PHASE DAY OF DEATH: 121 PHASE: Dosing phase GROUP: 1

.

Gross Observations/Comments Microscopic Observations/Comments

-

Uterus No gross observations on tissue.

MURAL HISTIOCYTIC AGGREGATE WITH BROWN PIGMENT, UNILATERAL, Slight.

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Adrenal Glands Brain Liver Lungs

Oviducts/Fallop Ovaries Pituitary gland Spleen Vagina Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body
Inhalation Reproduction Toxicity Study in Rats

-	and Microscopic Observations	
STATUS: Final phase sacrifice PHASE DAY OF DEATH: 121	SEX: Female PHASE: Dosing phase	ANIMAL: 1618 GROUP: 1
Tissue Gross Observations/Comments	Microscopic Observations/Comments	
Adrenal Glands No gross observations on tissue.	Tissue is unremarkable (with comment).	
Uterus No gross observations on tissue.	MURAL HISTIOCYTIC AGGREGATE WITH BROWN PIGMENT, UNILATERAL, Minimal.	

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Brain

Kidneys

Liver

Lungs

Oviducts/Fallop

Page: 587

Ovaries

Pituitary gland Spleen

Vagina

Appendix Z

28-May-04; 16:16 Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body
Inhalation Reproduction Toxicity Study in Rats
Individual Animal Gross and Microscopic Observations

Page: 588

STATUS: Final phase sacrifice PHASE DAY OF DEATH: 122		SEX: Female PHASE: Dosing phase	ANIMAL: 1619 GROUP: 1
	Gross Observations/Comments	Microscopic Observations/Comments	
Kidneys	No gross observations on tissue.	CORTEX: INTERSTITIAL MONONUCLEAR CE INFILTRATES, Minimal.	
Liver	No gross observations on tissue.	MONONUCLEAR CELL INFILTRATES, Minim	al.
Skin	Hair Thin/Absent, Extremities/snout	Tissue is missing.	
	Hair Thin/Absent, General		
		 Skin from extremity, snout, and g body is missing. 	eneral
Uterus	No gross observations on tissue.	MURAL HISTIOCYTIC AGGREGATE WITH BR	имс

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Adrenal Glands Brain

Lungs

Oviducts/Fallop Ovaries

Pituitary gland Spleen

Vagina

28-May-04; 16:16

Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

______ STATUS: Final phase sacrifice SEX: Female ANIMAL: 1621 GROUP: 1 PHASE DAY OF DEATH: 123 PHASE: Dosing phase ______ Gross Observations/Comments Microscopic Observations/Comments Tissue is missing. Hair Thin/Absent, Extremities/snout - Skin from extremity and snout is missing. Uterus No gross observations on tissue. MURAL HISTIOCYTIC AGGREGATE WITH BROWN PIGMENT, UNILATERAL, Slight. Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically: Adrenal Glands Brain Liver Kidneys Lungs

Adrenal Glands Brain
Oviducts/Fallop Ovaries

Pituitary gland Spleen

Vagina

Page: 589

28-May-04; 16:16 Page: 590

Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Female ANIMAL: 1623
PHASE DAY OF DEATH: 123 PHASE: Dosing phase GROUP: 1

Tissue Gross Observations/Comments Microscopic Observations/Comments

Liver No gross observations on tissue.

MONONUCLEAR CELL INFILTRATES, Minimal.

Tissues without comment under Gross Observations were within normal limits at necropsy.

The following tissues were unremarkable microscopically:

Adrenal Glands Brain Kidneys Lungs Oviducts/Fallop

Ovaries Pituitary gland Spleen Uterus Vagina

Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

______ STATUS: Final phase sacrifice SEX: Female ANIMAL: 4610 PHASE DAY OF DEATH: 120 PHASE: Dosing phase GROUP: 4 Gross Observations/Comments Microscopic Observations/Comments Kidneys No gross observations on tissue. CORTEX: INTERSTITIAL MONONUCLEAR CELL INFILTRATES, Minimal. Liver No gross observations on tissue. MONONUCLEAR CELL INFILTRATES, Minimal. Tissue is unremarkable. Lungs Examined; no correlation found Discolored, All lobes, Tan, Foci, </= 0.1 cm, Slight

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Adrenal Glands Brain

Spleen Uterus Vagina

Oviducts/Fallop Ovaries

Pituitary gland

Page: 591

Appendix Z 28-May-04; 16:16 Page: 592

Huntingdon Life Sciences, Inc. 004202

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

-STATUS: Final phase sacrifice SEX: Female ANIMAL: 4611 PHASE DAY OF DEATH: 122 PHASE: Dosing phase GROUP: 4 - -Gross Observations/Comments Microscopic Observations/Comments Kidneys No gross observations on tissue. CORTEX/CORTICO-MEDULLARY JUNCTION: MINERAL DEPOSIT(S), Minimal. Liver No gross observations on tissue. MONONUCLEAR CELL INFILTRATES, Minimal. Lungs Discolored, All lobes, Tan, Foci, </= 0.1 Examined; 1 correlation found: cm, Slight ALVEOLAR/INTRAALVEOLAR MACROPHAGES. Minimal.

Pituitary gland

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Adrenal Glands Brain Oviducts/Fallop Ovaries

Spleen Uterus Vagina Appendix Z

May-04; 16:16 Page: 593

28-May-04; 16:16 Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

> Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STAT	US: Final phase sacrifice TH: 123	SEX: Female PHASE: Dosing phase	ANIMAL: 4612 GROUP: 4
Tissue	Gross Observations/Comments	Microscopic Observations/Comm	ents
Kidneys No gross observations on tissue. CORTEX/CORTICO-MEDULLARY JUN DEPOSIT(S), Slight.		CTION: MINERAL	
Liver	No gross observations on tissue.	MONONUCLEAR CELL INFILTRATES	, Minimal.
Lungs	No gross observations on tissue.	ALVEOLAR/INTRAALVEOLAR MACRO	PHAGES,

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Adrenal Glands Brain Oviducts/F

Spleen Uterus Vagina

Oviducts/Fallop Ovaries

Pituitary gland

Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

> Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

ST PHASE DAY OF D	PATUS: Final phase sacrifice	SEX: Female PHASE: Dosing phase	ANIMAL: 4612 GROUP: 4	
Tissue	Gross Observations/Comments	Microscopic Observations/Comme:	nts	
		CORTEX/CORTICO-MEDULLARY JUNC DEPOSIT(S), Slight.	CORTEX/CORTICO-MEDULLARY JUNCTION: MINERAL DEPOSIT(S), Slight.	
	No gross observations on tissue. MONONUCLEAR CELL INFILTRATES, Minimal.		Minimal.	
Lungs	No gross observations on tissue.	ALVEOLAR/INTRAALVEOLAR MACROPI	HAGES,	

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Adrenal Glands Spleen

Brain Uterus Oviducts/Fallop Ovaries

Pituitary gland

Vagina

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body
Inhalation Reproduction Toxicity Study in Rats
Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Female ANIMAL: 4613
PHASE DAY OF DEATH: 124 PHASE: Dosing phase GROUP: 4

Tissue Gross Observations/Comments Microscopic Observations/Comments

Lungs No gross observations on tissue.

ATELECTASIS, UNILATERAL, Moderate.

Tissues without comment under Gross Observations were within normal limits at necropsy.

The following tissues were unremarkable microscopically:

Adrenal Glands Brain Kidneys Liver Oviducts/Fallop

Ovaries Pituitary gland Spleen Uterus Vagina

Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body
Inhalation Reproduction Toxicity Study in Rats
Individual Animal Gross and Microscopic Observations

Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations			
STATUS: Final phase sacrifice PHASE DAY OF DEATH: 121		SEX: Female PHASE: Dosing phase	ANIMAL: 4614 GROUP: 4
Tissue	Gross Observations/Comments	Microscopic Observations/Comments	
Adrenal Glands	No gross observations on tissue.	CONGESTION, BILATERAL, Minimal.	
Kidneys	Dilated Pelvis, Right, Slight	Examined; 1 correlation found: PELVIS: DILATED, Minimal.	
Liver No gross observations on tissue.		MONONUCLEAR CELL INFILTRATES, Minima	1.
Uterus	Cyst, Right horn, Clear, Slight/ 0.3 cm d	ia Examined; no correlation found	
		MURAL HISTIOCYTIC AGGREGATE WITH BRO PIGMENT, UNILATERAL, Slight.	WN

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Brain Lungs Oviducts/Fallop Ovaries Pituitary gland Spleen Vagina

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Female ANIMAL: 4615 PHASE DAY OF DEATH: 121 PHASE: Dosing phase GROUP: 4 Gross Observations/Comments Microscopic Observations/Comments Adrenal Glands No gross observations on tissue. CONGESTION, BILATERAL, Slight. Uterus No gross observations on tissue. MURAL HISTIOCYTIC AGGREGATE WITH BROWN PIGMENT, UNILATERAL, Slight.

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

> Brain Kidneys Liver

Ovaries

Lungs Vagina Oviducts/Fallop

Pituitary gland Spleen

Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice PHASE DAY OF DEATH: 121		SEX: Female ANIMAL: PHASE: Dosing phase GROUP:	
Tissue	Gross Observations/Comments	Microscopic Observations/Comments	
Liver	No gross observations on tissue.	MONONUCLEAR CELL INFILTRATES	, Minimal.
Uterus	No gross observations on tissue.	MURAL HISTIOCYTIC AGGREGATE PIGMENT, UNILATERAL, Slight.	

LUMEN: DILATED, BILATERAL, Slight.

Tissues without comment under Gross Observations were within normal limits at necropsy.

The following tissues were unremarkable microscopically:

Adrenal Glands Brain Kidneys Lungs Oviducts/Fallop Ovaries Pituitary gland Spleen Vagina

Page: 599

28-May-04; 16:16 Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

APPENDIX Z

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice

SEX: Female
PHASE DAY OF DEATH: 122
PHASE: Dosing phase

GROUP: 4

Tissue

Gross Observations/Comments

Microscopic Observations/Comments

Uterus No gross observations on tissue.

MURAL HISTIOCYTIC AGGREGATE WITH BROWN

PIGMENT, UNILATERAL, Slight.

LUMEN: DILATED, BILATERAL, Minimal.

Tissues without comment under Gross Observations were within normal limits at necropsy. The following tissues were unremarkable microscopically:

Adrenal Glands Brain Kidneys
Oviducts/Fallop Ovaries Pituitar

Kidneys Liver Pituitary gland Spleen Lungs Vagina 28-May-04; 16:16

APPENDIX Z

Huntingdon Life Sciences, Inc. 004202 211-TAME-1G

> Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice SEX: Female ANIMAL: 4620 GROUP: 4 PHASE DAY OF DEATH: 121 PHASE: Dosing phase

Gross Observations/Comments Microscopic Observations/Comments

····

Kidneys No gross observations on tissue. CORTEX: CONVOLUTED TUBULAR

EPITHELIUM-BASOPHILIC, Minimal.

MEDULLA: TUBULAR LUMEN(S)-EOSINOPHILIC

Page: 600

MATERIAL, Slight.

CORTICAL TUBULAR LUMENS: EOSINOPHILIC

MATERIAL, Slight.

Uterus No gross observations on tissue. MURAL HISTIOCYTIC AGGREGATE WITH BROWN

PIGMENT, UNILATERAL, Slight.

Tissues without comment under Gross Observations were within normal limits at necropsy.

The following tissues were unremarkable microscopically:

Adrenal Glands Brain Liver Lungs Oviducts/Fallop

Ovaries Pituitary gland Spleen Vagina 28-May-04; 16:16 Page: 601

Huntingdon Life Sciences, Inc. 004202

APPENDIX Z

211-TAME-1G

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats Individual Animal Gross and Microscopic Observations

STATUS: Final phase sacrifice

SEX: Female

GROUP: 4

PHASE DAY OF DEATH: 121

PHASE: Dosing phase

Gross Observations/Comments

Microscopic Observations/Comments

Kidneys No gross observations on tissue.

CORTEX: INTERSTITIAL MONONUCLEAR CELL

INFILTRATES, Minimal.

Tissues without comment under Gross Observations were within normal limits at necropsy.

The following tissues were unremarkable microscopically:

Adrenal Glands Brain

Lungs

Oviducts/Fallop

Ovaries

Pituitary gland Spleen

Uterus

Vagina

Appendix AA Page 602

AUDITED FINAL REPORT

Study Phase: Sperm Analysis

Test Site Phase Reference Number: 3075-128

Testing Facility Study Number: 00-4202

Sponsor Reference Number: 211-EtOH-1G

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

TEST SITE:

Charles River Laboratories,
Pathology Associates (PAI) - Maryland
15 Worman's Mill Court, Suite I
Frederick, MD 21701

TESTING FACILITY:

Huntingdon Life Sciences (HLS)

Mettlers Road
P.O. Box 2360

East Millstone, NJ 08875-2360

SPONSOR:

American Petroleum Institute (API) 1220 L Street, Northwest Washington, D.C. 20005-4070

07-MAR-2008

Page 1 of 14

TABLE OF CONTENTS

Section	Page	No.
I. QUALITY ASSURANCE STATEMENT		4
II. MATERIALS AND METHODS		5
A. Sample Collection		5
B. Sperm Motility Evaluation		5
C. Caudal Epididymis Weight and Total Sperm Count Determination		6
D. Sperm Morphology Evaluation		6
E. Statistical Analyses		6
F. GLP Compliance Statement		7
G. Sample and Data Archiving		7
III. RESULTS		7
A. Sperm Motility		7
B. Total Sperm Count		7
C. Sperm Morphology		8
D. Caudal Epididymis Weight		8
IV. DISCUSSION AND CONCLUSIONS		8
V DEFEDENCES		0

INDEX OF TABLES AND APPENDICES

<u>Table</u>		Page No.
1.	Summary of Male Reproductive Parameters	10
Apper	ndix	Page No.
Α.	Individual Caudal Epididymis Weight, Sperm Motility and Count Data	11
В.	Individual Sperm Morphology Data	13

I. QUALITY ASSURANCE STATEMENT

Gasoline TAME Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats

Study Number: 00-4202

QUALITY ASSURANCE STATEMENT

This sperm analysis project has been inspected and audited by the PAI Quality Assurance Unit (QAU) as required by the Good Laboratory Practice (GLP) regulations promulgated by the U.S. Environmental Protection Agency (EPA). The sperm analysis report is an accurate reflection of the recorded data. The following table is a record of the inspections/audits performed and reported by the QAU.

Date of Inspection	Phase Inspected	Date Findings Reported to Study Pathologist/ PAI Management	Date Findings Reported to Study Director Management
12-Dec-2001	Sperm Motility	12-Dec-2001	08-Jan-2002
11-Jan-2002	Individual Animal Data	11-Jan-2002	11-Jan-2002
11-Jan-2002	Draft Sperm Analysis Report	11-Jan-2002	11-Jan-2002
31-Jul-2002	2 nd Draft Sperm Analysis Report	31-Jul-2002	31-Jul-2002
10-Oct-2007	Final Sperm Analysis Report	10-Oct-2007	07-Mar-2008

A. Christine Wright

Quality Assurance Auditor

Date

Gasoline TAME Vapor Condensate:
A One-Generation Whole-Body Inhalation Reproduction Toxicity
Study in Rats

II. MATERIALS AND METHODS

A. Sample Collection

All surviving male rats were euthanized by exsanguination following anesthesia with inhaled carbon dioxide after the last F_1 litters were delivered. For all animals, the abdominal cavity was reproductive opened and the organs exposed. For motility assessment, the left vas deferens was dissected away from the testis and immediately placed in a petri dish containing 10 ml of a solution consisting of 1% Bovine Serum Albumin dissolved in Phosphate Buffered Saline. The solution was prewarmed to a temperature of approximately 38°C. A minimum 3-minute period was allowed for the sperm to swim out.

For total sperm count assessment, the left epididymis and left testis were then removed and placed on dry ice. The frozen epididymides and testes were then transferred to Charles River Laboratories Pathology Associates (PAI) - Maryland, Frederick, MD(formerly known as Pathology Associates International until January 8, 2001) and stored frozen at -70°C until evaluation for caudal epididymal sperm count and homogenization-resistant testicular spermatid count.

Only the control and high exposure animals were examined for percent motility, total epididymal sperm count, testicular spermatid count, and sperm morphology.

B. Sperm Motility Evaluation

Following the swim out period, a sperm sample was obtained using a 100 μm deep cannula. The cannula was immediately loaded into the prewarmed stage of the Hamilton Thorne IVOS (Ver. 10.9i) automated sperm analyzer. The analyzer automatically selected five fields and each motion image was digitally saved and permanently stored on optical media. The images were subsequently analyzed and the percent motility determined for each animal.

C. Caudal Epididymis Weight and Total Sperm Count Determination

Each frozen epididymis was removed from the freezer, thawed and the caudal section was trimmed and weighed. Each frozen testis was removed from the freezer, thawed, the tunica removed and the testicular parenchyma weighed. The cauda epididymis and testicular parenchyma were homogenized in deionized water and the suspensions were transferred to plastic test tubes and vortexed. A 100 μl sample was transferred to a violet reaction vial containing a Hoechst dye (H33342) which uniquely stains the head of the sperm. A sample of the stained sperm was placed into a 20 μm deep Cell-Vu glass slide which was loaded into the Hamilton Thorne IVOS analyzer (Ver. 10.9i). Twenty fields were automatically selected by the analyzer for each animal and the number of homogenization-resistant testicular spermatids and cauda epididymal sperm determined. The counts reported were adjusted for caudal epididymal or testicular weight.

D. Sperm Morphology Evaluation

Two Eosin stained slides were prepared for each animal from the caudal epididymis total count preparation. The slides were evaluated and a minimum of 200 sperm cells/animal was examined for morphological development.

E. Statistical Analyses

The means and standard deviations for the sperm motility, caudal epididymal sperm count, testicular homogenization-resistant spermatid count and sperm morphology data were calculated and compared across groups using the Kruskal-Wallis nonparametric ANOVA test. If a significant effect occurred (p<0.05), the Mann-Whitney U test was used for pair-wise comparisons of each treated group to the control group. Animals with fewer than 25 sperm cells present in the motility analysis were excluded from the group mean calculation and subsequent statistical analysis. Animals with at least 25 sperm cells were included in the group mean calculation and subsequent statistical analysis; however, animals with fewer than 50 cells were identified to have a low count. The mean caudal epididymis weight for each group was calculated and compared using one-way analysis of variance (ANOVA) technique. If ANOVA is significant, Dunnett's test was used for pair-wise comparisons of each treated group to the control group at the 5% and 1% risk levels. Statistical analyses were performed using an IBM^{TM} compatible computer with SAS computer programs (SAS/STAT User's Guide, 1989).

F. GLP Compliance Statement

The portion of this study performed by PAI was conducted in compliance with US EPA 79.60, CFR Vol. 59, No. 122, 27 June 1994.

G. Sample and Data Archiving

Frozen epididymis and testis samples not processed for sperm count determination were transferred to and stored frozen at -70°C in PAI's long-term archive facility. The optical media used for permanent storage of the sperm motility images, raw data printouts from the sperm motility, epididymal and testicular sperm count and sperm morphology analysis, as well as any supporting documentation and the sperm morphology slides will be maintained at PAI until the study has been completed. Upon finalizing the report, all non-frozen study material will be returned to HLS for archiving. Disposition of the frozen tissue samples will be directed by correspondence from HLS.

III. RESULTS

A. Sperm Motility

Table 1 (Summary Data)
Appendix A (Individual Data)

No apparent treatment-related effects were observed in the sperm motility data. Group mean values were comparable between the control and high dose groups and ranged from 88% to 92%.

B. Total Sperm Count

Table 1 (Summary Data)
Appendix A (Individual Data)

The number of sperm per gram of caudal epididymis and number of spermatids per gram of testis were comparable between the control and high dose groups. Group mean values ranged from 855.7 to 905.6 million sperm/gram for the epididymal sperm count and 81.2 to 93.5 million spermatids/gram for the homogenization-resistant testicular count.

C. Sperm Morphology

Table 1 (Summary Data)
Appendix B (Individual Data)

A low incidence of head abnormalities was observed for animals in the control and high dose groups. Group mean values ranged from 1.6 to 1.9 percent abnormal sperm. No treatment related differences were observed.

D. Caudal Epididymis Weight

Table 1 (Summary Data)
Appendix A (Individual Data)

No apparent treatment-related effects were observed in the caudal epididymis weight data. Group mean values were 0.28 grams. No biologically meaningful differences were observed.

IV. DISCUSSION AND CONCLUSIONS

Mean percent motility, caudal epididymal sperm count, homogenization-resistant testicular spermatid count, sperm morphology and caudal epididymis weight were not affected by treatment with Gasoline TAME Vapor Condensate at a dose level of 20,000 $\rm mg/m^3$. No biologically meaningful differences were observed between the study groups.

Michael D. Mercieca, B.S.

Reproductive Toxicologist Charles River Laboratories

Pathology Associates (PAI) - Maryland

07-MAR-2008

Date

V. REFERENCES

- Dunlap, W.P., Marx, M.S. and Agamy, G.G. 1981. Fortran IV functions for calculating probabilities associated with Dunnett's test. Behav. Res. Methods and Instrumentation 13: 363-366.
- Dunnett, C. W. 1955. A multiple comparison procedure for comparing several treatments with a control. Journal of the American Statistical Association 50:1096-1121.
- Dunnett, C. W. 1964. New tables for multiple comparisons with a control. Biometrics 20:482-491.
- Kruskal, W.H. and Wallis, W.A. 1952. Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association 47: 583-621.
- Kruskal, W.H. and Wallis, W.A. 1953. Errata for Kruskal-Wallis (1952). Journal of the American Statistical Association 48: 907-911.
- Kruskal, W.H. 1957. Historical notes on the Wilcoxon unpaired two-sample test. Journal of the American Statistical Association 52: 356-360.
- SAS/STAT User's Guide, 1989a. SAS Institute Inc., Version 6, Fourth Edition, Cary, NC:SAS Institute Inc., 1989. Vol. 1, p. 209-244. Vol. 2 p. 1195-1210.

Audited Final Report HLS STUDY NO.: 00-4202

TABLE 1

GASOLINE TAME VAPOR CONDENSATE:
A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

SUMMARY OF MALE REPRODUCTIVE PARAMETERS

Group: Level:	GTVC ^a (mg/m ³)	I O	IV 20,000	
MOTILITY (%) Mean SD N		92 9 26	88 10 24	
EPIDIDYMAL COUN	IT SPERM/GRAM)			
Mean SD N		905.6 307.1 26	855.7 210.0 26	
TESTICULAR COUN (MILLION	IT SPERMATIDS/GRAM)			
Mean SD N		81.2 24.9 26	93.5 27.3 26	
SPERM MORPHOLOG (% ABNORM				
Mean SD N		1.6 0.6 26	1.9 0.6 26	
CAUDAL EPIDIDYM (GRAM)	IS WEIGHTS			
Mean SD N		0.28 0.03 26	0.28 0.03 26	

^aGASOLINE TAME VAPOR CONDENSATE.

bMEAN AND STANDARD DEVIATIONS WERE CALCULATED USING THE TOTAL NUMBER OF ABNORMAL SPERM AS A PERCENTAGE OF THE NUMBER OF SPERM EXAMINED.

NONE SIGNIFICANTLY DIFFERENT FROM CONTROL.

Audited Final Report HLS STUDY NO.: 00-4202

APPENDIX A

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL CAUDAL EPIDIDYMIS WEIGHT, SPERM MOTILITY AND SPERM COUNT DATA

Group I: 0 mg/m³ (GASOLINE TAME VAPOR CONDENSATE)

			SPEI	
Animal	Caudal	Motility	Caudal	Homogenization Resistant
No.	Epididymis		Epididymal	Testicular
Weight (g)	Weight (g)	(%)	(milli	on sperm/gram)
1101	0.32	96	1182.4	104.4
1102	0.28	98 ª	524.8	151.7
1103	0.25	80	555.4	75.8
1104	0.29	88	722.2	73.8 64.7
1105	0.31	100	1123.5	108.4
1106	0.25	98	314.7	92.6
1107	0.34	95	714.7	46.9
1108	0.28	96	628.1	33.5
1109	0.33	68	718.8	70.0
1110	0.26	96	1312.8	77.9
1111	0.30	91	1110.8	77.9 55.6
1112	0.24	100	810.0	93.1
1113	0.31	98	1000.3	
1114	0.24	94	993.2	97.6 123.8
1115	0.24	90	631.9	
1116	0.24			114.3
1117	0.24	98 98	1393.3	64.5
1117	0.34	98 92	1388.5	64.9
1119	0.26	-	707.6	69.7
1120	0.22	95 70	536.5	72.7
		79	1227.3	86.4
1121	0.27	89	1178.5	78.1
1122	0.29	95	909.7	85.0
1123	0.33	63	1335.9	70.1
1124	0.25	97	1106.2	73.9
1125	0.28	93	710.8	66.3
1126	0.26	95	707.6	70.5

^{*}FEWER THAN 50 SPERM CELLS COUNTED IN 5 FIELDS ANALYZED.

Audited Final Report HLS STUDY NO.: 00-4202

APPENDIX A

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL CAUDAL EPIDIDYMIS WEIGHT, SPERM MOTILITY AND SPERM COUNT DATA

Group IV: 20,000 mg/m³ (GASOLINE TAME VAPOR CONDENSATE)

Animal	Caudal	Motility	SPERI Caudal	M COUNT Homogenization Resistant
No.	Epididymis	(0)	Epididymal	Testicular
	Weight (g)	(왕)	(million	n sperm/gram)
4101	0.24	97	747.3	162.0
4102	0.28	96ª	991.8	144.0
4103	0.28	90	582.7	115.7
4104	0.29	91	642.4	72.0
4105	0.27	95	904.2	85.1
4106	0.23	b	774.7°	105.4 ^c
4107	0.29	65	770.1	96.8
4108	0.27	94	732.8	57.5
4109	0.24	72	959.4	64.1
4110	0.27	86	981.4	109.8
4111	0.29	83	778.0	54.5
4112	0.30	87	432.0	78.7
4113	0.29	92	1113.2	68.2
4114	0.33	84	757.4	62.9
4115	0.25	95	907.2	82.8
4116	0.28	94	1140.6	63.3
4117	0.31	b	1112.3	106.1
4118	0.28	94	698.4	136.5
4119	0.24	97	617.1	93.0
4120	0.32	94	1135.4	70.8
4121	0.29	67	682.3	100.2
4122	0.27	83	865.7	108.9
4123	0.26	94	1161.5	87.2
4124	0.25	98	606.3	96.5
4125	0.27	95	1217.1	92.9
4126	0.31	67	936.9	117.3

 $^{^{\}rm a}{\rm IMAGE}$ FILE 4102.01b WAS CORRUPTED; ONLY 4 IMAGES WERE AVAILABLE FOR ANALYSIS FOR THIS ANIMAL.

^bFEWER THAN 25 SPERM CELLS COUNTED IN 5 FIELDS ANALYZED; EXCLUDED FROM STATISTICAL ANALYSIS.

 $^{^{\}mathrm{c}}$ LEFT EPIDIDYMIS AND LEFT TESTIS PRESERVED FOR POSSIBLE HISTOPATHOLOGICAL EVALUATION; RIGHT EPIDIDYMIS AND RIGHT TESTIS USED FOR SPERM COUNT DETERMINATION.

APPENDIX B

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL SPERM MORPHOLOGY DATA

Group I: 0 mg/m³ (GASOLINE TAME VAPOR CONDENSATE)

Animal			Не	a d			Tail-			
No.	Normal	Amorphous	Small	Enlarged	Double	Coiled	Bent	Double	Other	
1101	197	3	0	0	0	0	0	0	0	
1102	196	4	0	0	0	0	0	0	Ö	
1103	196	4	0	0	0	0	0	0	0	
1104	195	5	0	0	0	0	0	0	0	
1105	196	3	1	0	0	0	0	0	0	
1106	197	3	0	0	0	0	0	0	0	
1107	198	2	0	0	0	0	0	0	0	
1108	197	2	1	0	0	0	0	0	0	
1109	196	4	0	0	0	0	0	0	0	
1110	196	3	1	0	0	0	0	0	0	
1111	198	2	0	0	0	0	0	0	0	
1112	197	2	1	0	0	0	0	0	0	
1113	195	3	2	0	0	0	0	0	0	
1114	198	2	0	0	0	0	0	0	0	
1115	197	3	0	0	0	0	0	0	0	
1116	196	2	2	0	0	0	0	0	0	
1117	198	1	1	0	0	0	0	0	0	
1118	196	4	0	0	0	0	0	0	0	
1119	197	3	0	0	0	0	0	0	0	
1120	198	2	0	0	0	0	0	0	0	
1121	198	2	0	0	0	0	0	0	0	
1122	195	4	1	0	0	0	0	0	0	
1123	199	1	0	0	0	0	0	0	0	
1124	196	4	0	0	0	0	0	0	0	
1125	197	3	0	0	0	0	0	0	0	
1126	199	1	0	0	0	0	0	0	0	

APPENDIX B

GASOLINE TAME VAPOR CONDENSATE: A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

INDIVIDUAL SPERM MORPHOLOGY DATA

Group IV: 20,000 mg/m³ (GASOLINE TAME VAPOR CONDENSATE)

Animal							Tail-			
No.	Normal	Amorphous	Small	Enlarged	Double	Coiled	Bent	Double	Other	
4101	196	2	1	1	0	0	0	0	0	
4102	199	1	0	0	0	0	0	0	0	
4103	196	3	1	0	Ō	Ō	Ō	Ō	0	
4104	195	3	1	1	0	0	0	Ō	0	
4105	196	2	2	0	0	0	0	0	0	
4106	196	4	0	0	0	0	Ō	Ö	0	
4107	195	3	2	0	0	0	0	Ö	0	
4108	197	2	1	0	0	Ō	Ō	Ō	0	
4109	196	4	0	0	0	0	0	0	0	
4110	196	3	1	0	0	0	0	0	0	
4111	195	5	0	0	0	0	Ō	Ō	0	
4112	197	2	1	0	0	Ó	Ö	Ō	0	
4113	195	4	1	0	Ô	0	0	Ō	Ō	
4114	194	4	2	0	0	0	Ö	Ō	Ō	
4115	197	3	0	0	0	0	Ó	0	Ō	
4116	198	2	0	0	0	0	0	0	0	
4117	197	3	0	0	0	0	Ö	0	0	
4118	198	1	1	0	0	0	0	0	0	
4119	196	4	0	0	0	0	0	0	0	
4120	196	3	1	0	0	0	0	0	0	
4121	198	2	0	0	0	0	0	0	0	
4122	196	4	0	0	0	0	O	0	0	
4123	194	3	3	0	0	0	Ō	0	0	
4124	195	3	1	1	0	0	Ö	0	0	
4125	197	3	0	0	0	Ō	0	Ō	0	
4126	198	2	Ō	Ō	Ō	ō	Ö	Ö	Ō	

Huntingdon Life Sciences Historical Control Data Histopathology of Reproductive Organs East Millstone, New Jersey

Appendix BB

		TOTAL	% of total			Individual St	tudy Data - N	/lale Animals	3	
			examined							
	Study Number			00-4202	00-4203	00-4204	00-4205	00-4206	00-4207	00-4208
MICROSCOPIC FINDINGS										
COAGULATING GLAND										
	NUMBER EXAMINED	86		26	10	10	10	10	10	10
SECRETORY PRODUCT: DECREASED		1	1.2	1	0	0	0	0	0	0
PROSTATE										
	NUMBER EXAMINED	86		26	10	10	10	10	10	10
INTRALUMENAL CELLULAR DEBRIS +/- M	IINERALIZATION	15	17.4	0	0	9	0	6	0	0
MONONUCLEAR CELL INFILTRATE		4	4.7	0	0	2	0	2	0	0
ACINAR LUMENS: CORPORA AMYLACIA/I GRANULES	MINERALIZED	1	6.7	0	0	0	0	0	0	1
PURULENT/CHRONIC PURULENT INFLAM ABSCESS(ES)/CHRONIC - ABSCESS (ES)	- '	1	1.2	0	0	0	0	0	0	1
LEFT EPIDIDYMIS										
CDEDM CDANIIII OMA	NUMBER EXAMINED		100.0	0	0	1 ^a 1	0	0	0	0
SPERM GRANULOMA		1	100.0			1				
RIGHT EPIDIDYMIS										
	NUMBER EXAMINED			26	10	9	10	10	10	10
NO ABNORMALITIES DETECTED		85	100.0	26	0	9	10	10	10	10
RIGHT TESTIS										
	NUMBER EXAMINED	86		26	10	10	10	10	10	10
GERMINAL EPITHELIUM: DEGENERATION	N/ATROPHY	1	1.2	0	0	0	0	1	0	0
SEMINAL VESICLES										
	NUMBER EXAMINED	86		26	10	10	10	10	10	10
SECRETORY PRODUCT: DECREASED		2	2.3	0	0	1	0	0	0	1

^aThe right epididymides were examined only unless an abnormal finding was noted on the left epididymis.

Huntingdon Life Sciences Historical Control Data Histopathology of Reproductive Organs East Millstone, New Jersey

Appendix BB

	TOTAL	% of total		Ind	ividual Stu	dy Data - F	emale Anin	nals	
Study Code		examined							
Study Number			00-4202	00-4203	00-4204	00-4205	00-4206	00-4207	00-4208
MICROSCOPIC FINDINGS									
OVARIES									
NUMBER EXAMINED	70		10	10	10	10	10	10	10
CYST	1	1.4	0	0	0	0	0	1	
OVIDUCT/FALLOPIAN TUBES									
NUMBER EXAMINED	60		10	10	10	10	0	10	10
LUMEN: MONONUCLEAR CELLS	3	5.0	0	0	0	3		0	0
LUMEN: CELLULAR DEBRIS	1	33.3	0	1	0	0		0	0
UTERUS									
NUMBER EXAMINED	70		10	10	10	10	10	10	10
LUMEN: DILATED	7	10.0	1	1	0	0	5	0	0
MURAL HISTIOCYTES WITH OR WITHOUT BROWN PIGMENT	25	35.7	7	0	4	3	4	3	4
VAGINA									
NUMBER EXAMINED	70		10	10	10	10	10	10	10
CYST	1	1.4	0	0	0	1	0	0	0

Huntingdon Life S	Sciences	00-4202 211-TAME-1G	Page 618 Final Report
		Certificates of Analysis	Appendix CC
2. Water Certific	ates of Ana	ysisllysisnalysis	647

Product Code: 5002M

Product Desc: CERTIFIED RODENT DIET MEAL

Lab Number: L0118944-3 Lot Code: JUN 11 01 2C Entered: 6/13/2001

Assay	Analysis	Units
PROTEIN	21.2	%
FAT ACID (HYDRO.)	5.69	%
FIBER (CRUDE)	4.35	%
ARSENIC	0.225	PPM
CADMIUM	0.051	PPM
CALCIUM	0.956	%
LEAD	0.171	PPM
MERCURY	LESS THAN 0.025	PPM
PHOSPHORUS	0.613	%
SELENIUM	0.313	PPM

ORGANOPHOSPHATES	PPM	ORGANOPHOSPHATES	PPM
	LESS		LESS
Diazinon	THAN	Disulfoton	THAN
	0.02	_	0.02
	LESS		
Ethion	THAN	Malathion	0.06
	0.02	`	
	LESS		LESS
Methyl Parathion	THAN	Parathion	THAN
	0.02		0.02
	LESS		LESS
Thimet	THAN	Thiodan	THAN
	0.02		0.02
	LESS		
Trithion	THAN		
	0.02		

PESTICIDES AND PCB	PPM	PESTICIDES AND PCB	РРМ
Aldrin	LESS THAN 0.02	Alpha-BHC	LESS THAN 0.02
Beta-BHC	LESS THAN 0.02	Chlordane	LESS THAN 0.02
DDE	LESS THAN 0.02	DDT	LESS THAN 0.02
Delta-BHC	LESS THAN 0.02	Dieldrin	LESS THAN 0.02
Endrin	LESS THAN 0.02	HCB	LESS THAN 0.02
Heptachlor	LESS THAN 0.02	Heptachlor Epoxide	LESS THAN 0.02
Lindane	LESS THAN 0.02		LESS THAN 0.02
Mirex	LESS THAN 0.02	PCB	LESS THAN 0.15

Aflatoxins	LESS THAN 5 PPB

For additional information, please contact:

- 1) Customer Service at (314) 962-1310 -- for assay methodology
- 2) Dr. Dorrance Haught at (314) 768-4362 -- for nutritional interpretation
- 3) Richmond, IN Manufacturing Plant at (765) 962-9561 -- all other questions

The term "Less Than" is used to signify the lower limit of quantitation of the procedure under the conditions employed.

Product Code: 5002M

Product Desc: CERTIFIED RODENT DIET MEAL

Lab Number: L0119450-3 Lot Code: JUN 21 01 1C Entered: 6/22/2001

Assay	Analysis	Units
PROTEIN	21.2	%
FAT ACID (HYDRO.)	5.83	%
FIBER (CRUDE)	4.11	%
ARSENIC	LESS THAN 0.2	PPM
CADMIUM	0.071	PPM
CALCIUM	0.945	%
LEAD	0.186	PPM
MERCURY	LESS THAN 0.025	PPM
PHOSPHORUS	0.706	%
SELENIUM	0.312	PPM

ORGANOPHOSPHATES	PPM	ORGANOPHOSPHATES	PPM
	LESS		LESS
Diazinon	THAN	Disulfoton	THAN
	0.02		0.02
	LESS		
Ethion	THAN	Malathion	0.04
	0.02		
	LESS		LESS
Methyl Parathion	THAN	Parathion	THAN
	0.02		0.02
	LESS		LESS
Thimet	THAN	Thiodan	THAN
	0.02		0.02
	LESS		
Trithion	THAN		
	0.02		

PESTICIDES AND PCB	PPM	PESTICIDES AND PCB	PPM
Aldrin	LESS THAN 0.02	Alpha-BHC	LESS THAN 0.02
Beta-BHC	LESS THAN 0.02	Chlordane	LESS THAN 0.02
DDE	LESS THAN 0.02	DDT	LESS THAN 0.02
Delta-BHC	LESS THAN 0.02	Dieldrin	LESS THAN 0.02
Endrin	LESS THAN 0.02	HCB	LESS THAN 0.02
Heptachlor	LESS THAN 0.02	Heptachlor Epoxide	LESS THAN 0.02
Lindane	LESS THAN 0.02	Methoxychlor	LESS THAN 0.02
Mirex	LESS THAN 0.02	PCB	LESS THAN 0.15

Aflatoxin	Aflatavina	LESS THAN 5 PPB
Aflatoxin	Aflatoxins	LESS THAN SPPB

For additional information, please contact:

- 1) Customer Service at (314) 962-1310 -- for assay methodology
- 2) Dr. Dorrance Haught at (314) 768-4362 -- for nutritional interpretation
- 3) Richmond, IN Manufacturing Plant at (765) 962-9561 -- all other questions

The term "Less Than" is used to signify the lower limit of quantitation of the procedure under the conditions employed.

Product Code: 5002M

Product Desc: CERTIFIED RODENT DIET MEAL

Lab Number: L0121626-4 Lot Code: AUG 01 01 3B Entered: 8/1/2001

Assay	Analysis	Units
PROTEIN	21	%
FAT ACID (HYDRO.)	5.84	%
FIBER (CRUDE)	4.33	%
ARSENIC	LESS THAN 0.2	PPM
CADMIUM	0.066	PPM
CALCIUM	0.996	%
LEAD	0.156	PPM
MERCURY	LESS THAN 0.025	PPM
PHOSPHORUS	0.718	%
SELENIUM	0.321	PPM

ORGANOPHOSPHATES	PPM	ORGANOPHOSPHATES	PPM
	LESS		LESS
Diazinon	THAN	Disulfoton	THAN
	0.02		0.02
	LESS		
Ethion	THAN	Malathion	0.03
	0.02		
	LESS		LESS
Methyl Parathion	THAN	Parathion	THAN
	0.02		0.02
	LESS		LESS
Thimet	THAN	Thiodan	THAN
	0.02		0.02
	LESS		
Trithion	THAN		
	0.02		

PESTICIDES AND PCB	LJ LJ RA	PESTICIDES AND PCB	РРМ
Aldrin	LESS THAN 0.02	Alpha-BHC	LESS THAN 0.02
Beta-BHC	LESS THAN 0.02	Chlordane	LESS THAN 0.02
DDE	LESS THAN 0.02	DDT	LESS THAN 0.02
Delta-BHC	LESS THAN 0.02	Dieldrin	LESS THAN 0.02
Endrin	LESS THAN 0.02	HCB	LESS THAN 0.02
Heptachlor	LESS THAN 0.02	Heptachlor Epoxide	LESS THAN 0.02
Lindane	LESS THAN 0.02	Methoxychlor	LESS THAN 0.02
Mirex	LESS THAN 0.02	PCB	LESS THAN 0.15

Atlatoxin Atlatoxins LESS THAN 5 PPB	Aflatoxin	Aflatoxins	LESS THAN 5 PPB	
--------------------------------------	-----------	------------	-----------------	--

For additional information, please contact:

- 1) Customer Service at (314) 962-1310 -- for assay methodology
- 2) Dr. Dorrance Haught at (314) 768-4362 -- for nutritional interpretation
- 3) Richmond, IN Manufacturing Plant at (765) 962-9561 -- all other questions

The term "Less Than" is used to signify the lower limit of quantitation of the procedure under the conditions employed.

Product Code: 5002M

Product Desc: CERTIFIED RODENT DIET MEAL

Lab Number: L0119990-1 Lot Code: JUL 01 01 3A Entered: 7/3/2001

Assay	Analysis	Units
PROTEIN	21.2	%
FAT ACID (HYDRO.)	5.66	%
FIBER (CRUDE)	4.13	%
ARSENIC	0.364	PPM
CADMIUM	0.07	PPM
CALCIUM	1.01	%
LEAD	0.185	PPM
MERCURY	LESS THAN 0.025	PPM
PHOSPHORUS	0.756	%
SELENIUM	0.310	PPM

ORGANOPHOSPHATES	РРМ	ORGANOPHOSPHATES	PPM
	LESS		LESS
Diazinon	THAN	Disulfoton	THAN
	0.02		0.02
	LESS		
Ethion	THAN	Malathion	0.04
	0.02		
	LESS		LESS
Methyl Parathion	THAN	Parathion	THAN
	0.02		0.02
	LESS		LESS
Thimet	THAN	Thiodan	THAN
	0.02		0.02
	LESS		
Trithion	THAN		
	0.02		

PESTICIDES AND PCB	РРМ	PESTICIDES AND PCB	PPM
Aldrin	LESS THAN 0.02	Alpha-BHC	LESS THAN 0.02
Beta-BHC	LESS THAN 0.02	Chlordane	LESS THAN 0.02
DDE	LESS THAN 0.02	DDT	LESS THAN 0.02
Delta-BHC	LESS THAN 0.02	Dieldrin	LESS THAN 0.02
Endrin	LESS THAN 0.02	НСВ	LESS THAN 0.02
Heptachlor	LESS THAN 0.02	Heptachlor Epoxide	LESS THAN 0.02
Lindane	LESS THAN 0.02	Methoxychlor	LESS THAN 0.02
Mirex	LESS THAN 0.02	PCB	LESS THAN 0.15

Aflatoxin	Aflatoxins	LESS THAN 5 PF	'B

For additional information, please contact:

- 1) Customer Service at (314) 962-1310 -- for assay methodology
- 2) Dr. Dorrance Haught at (314) 768-4362 -- for nutritional interpretation
- 3) Richmond, IN Manufacturing Plant at (765) 962-9561 -- all other questions

The term "Less Than" is used to signify the lower limit of quantitation of the procedure under the conditions employed.

Product Code: 5002M

Product Desc: CERTIFIED RODENT DIET MEAL

Lab Number: L0119990-2 Lot Code: JUL 01 01 3B Entered: 7/3/2001

Assay	Analysis	Units
PROTEIN	21	%
FAT ACID (HYDRO.)	5.31	%
FIBER (CRUDE)	4.44	%
ARSENIC	LESS THAN 0.2	PPM
CADMIUM	0.067	PPM
CALCIUM	0.913	%
LEAD	0.183	PPM
MERCURY	LESS THAN 0.025	PPM
PHOSPHORUS	0.744	%
SELENIUM	0.286	PPM

ORGANOPHOSPHATES	PPM	ORGANOPHOSPHATES	PPM
	LESS		LESS
Diazinon	THAN	Disulfoton	THAN
	0.02		0.02
	LESS		
Ethion	THAN	Malathion	0.03
	0.02		
	LESS		LESS
Methyl Parathion	THAN	Parathion	THAN
	0.02		0.02
	LESS		LESS
Thimet	THAN	Thiodan	THAN
	0.02		0.02
	LESS		
Trithion	THAN		
	0.02		

PESTICIDES AND PCB		PESTICIDES AND PCB	РРМ
Aldrin	LESS THAN 0.02	Alpha-BHC	LESS THAN 0.02
Beta-BHC	LESS THAN 0.02	Chlordane	LESS THAN 0.02
DDE	LESS THAN 0.02	DDT	LESS THAN 0.02
Delta-BHC	LESS THAN 0.02	Dieldrin	LESS THAN 0.02
Endrin	LESS THAN 0.02	НСВ	LESS THAN 0.02
Heptachlor	LESS THAN 0.02	Heptachlor Epoxide	LESS THAN 0.02
Lindane	LESS THAN 0.02	Methoxychlor	LESS THAN 0.02
Mirex	LESS THAN 0.02	PCB	LESS THAN 0.15

.		LEGO TUAN E COD
Aflatoxin	Atlatoxins	LESS THAN 5 PPB
II MIGIOAIII	/ \liato\line	
L		

For additional information, please contact:

- 1) Customer Service at (314) 962-1310 -- for assay methodology
- 2) Dr. Dorrance Haught at (314) 768-4362 -- for nutritional interpretation
- 3) Richmond, IN Manufacturing Plant at (765) 962-9561 -- all other questions

The term "Less Than" is used to signify the lower limit of quantitation of the procedure under the conditions employed.

Product Code: 5002M

Product Desc: CERTIFIED RODENT DIET MEAL

Lab Number: L0119450-1 Lot Code: JUN 21 01 1A Entered: 6/22/2001

Assay	Analysis	Units
PROTEIN	21.2	%
FAT ACID (HYDRO.)	5.51	%
FIBER (CRUDE)	4.5	%
ARSENIC	LESS THAN 0.2	PPM
CADMIUM	0.07	PPM
CALCIUM	0.881	%
LEAD	0.184	PPM
MERCURY	LESS THAN 0.025	PPM
PHOSPHORUS	0.689	%
SELENIUM	0.291	PPM

ORGANOPHOSPHATES	PPM	ORGANOPHOSPHATES	PPM
	LESS		LESS
Diazinon	THAN	Disulfoton	THAN
	0.02		0.02
	LESS		LESS
Ethion	THAN	Malathion	THAN
	0.02		0.02
	LESS		LESS
Methyl Parathion	THAN	Parathion	THAN
	0.02		0.02
	LESS		LESS
Thimet	THAN	Thiodan	THAN
	0.02		0.02
	LESS		
Trithion	THAN		
	0.02		

PESTICIDES AND PCB	PPM	PESTICIDES AND PCB	PPM
Aldrin	LESS THAN 0.02	Alpha-BHC	LESS THAN 0.02
Beta-BHC	LESS THAN 0.02	Chlordane	LESS THAN 0.02
DDE	LESS THAN 0.02	DDT	LESS THAN 0.02
Delta-BHC	LESS THAN 0.02	Dieldrin	LESS THAN 0.02
Endrin	LESS THAN 0.02	HCB	LESS THAN 0.02
Heptachlor	LESS THAN 0.02	Heptachlor Epoxide	LESS THAN 0.02
Lindane	LESS THAN 0.02	Methoxychlor	LESS THAN 0.02
Mirex	LESS THAN 0.02	PCB	LESS THAN 0.15

Aflatoxin Aflatoxins LESS THAN 5 PPB				7
	∥∆flatovin	Δflatovine	ILEGG THAN 5 PPR	
	Anatoxiii	Allatoxilis	LLOO HIMIOTTD	1 3

For additional information, please contact:

- 1) Customer Service at (314) 962-1310 -- for assay methodology
- 2) Dr. Dorrance Haught at (314) 768-4362 -- for nutritional interpretation
- 3) Richmond, IN Manufacturing Plant at (765) 962-9561 -- all other questions

The term "Less Than" is used to signify the lower limit of quantitation of the procedure under the conditions employed.

Product Code: 5002M

Product Desc: CERTIFIED RODENT DIET MEAL

Lab Number: L0122383-3 Lot Code: AUG 13 01 3C Entered: 8/15/2001

Assay	Analysis	Units
PROTEIN	20.9	%
FAT ACID (HYDRO.)	5.67	%
FIBER (CRUDE)	4.62	%
ARSENIC	0.223	PPM
CADMIUM	0.052	PPM
CALCIUM	0.918	%
LEAD	0.147	PPM
MERCURY	LESS THAN 0.025	PPM
PHOSPHORUS	0.629	%
SELENIUM	0.263	PPM

ORGANOPHOSPHATES	PPM	ORGANOPHOSPHATES	PPM
	LESS		LESS
Diazinon	THAN	Disulfoton	THAN
	0.02		0.02
	LESS		LESS
Ethion	THAN	Malathion	THAN
	0.02		0.02
	LESS		LESS
Methyl Parathion	THAN	Parathion	THAN
	0.02		0.02
	LESS		LESS
Thimet	THAN	Thiodan	THAN
	0.02		0.02
	LESS		
Trithion	THAN		
	0.02		

PESTICIDES AND PCB	PPM	PESTICIDES AND PCB	PPM
Aldrin	LESS THAN 0.02	Alpha-BHC	LESS THAN 0.02
Beta-BHC	LESS THAN 0.02	Chlordane	LESS THAN 0.02
DDE	LESS THAN 0.02	DDT	LESS THAN 0.02
Delta-BHC	LESS THAN 0.02	Dieldrin	LESS THAN 0.02
Endrin	LESS THAN 0.02	HCB	LESS THAN 0.02
Heptachlor	LESS THAN 0.02	Heptachlor Epoxide	LESS THAN 0.02
Lindane	LESS THAN 0.02	Methoxychlor	LESS THAN 0.02
Mirex	LESS THAN 0.02	PCB	LESS THAN 0.15

Aflatoxin LESS THAN 5 PPB

For additional information, please contact:

- 1) Customer Service at (314) 962-1310 -- for assay methodology
- 2) Dr. Dorrance Haught at (314) 768-4362 -- for nutritional interpretation
- 3) Richmond, IN Manufacturing Plant at (765) 962-9561 -- all other questions

The term "Less Than" is used to signify the lower limit of quantitation of the procedure under the conditions employed.

Product Code: 5002M

Product Desc: CERTIFIED RODENT DIET MEAL

Lab Number: L0122383-2 Lot Code: AUG 13 01 3B Entered: 8/15/2001

Assay	Analysis	Units
PROTEIN	21.2	%
FAT ACID (HYDRO.)	5.33	%
FIBER (CRUDE)	4.68	%
ARSENIC	0.229	PPM
CADMIUM	0.055	PPM
CALCIUM	0.901	%
LEAD	0.163	PPM
MERCURY	LESS THAN 0.025	PPM
PHOSPHORUS	0.666	%
SELENIUM	0.250	PPM

ORGANOPHOSPHATES	PPM	ORGANOPHOSPHATES	PPM
	LESS		LESS
Diazinon	THAN	Disulfoton	THAN
	0.02		0.02
	LESS		
Ethion	THAN	Malathion	0.03
	0.02		
	LESS		LESS
Methyl Parathion	THAN	Parathion	THAN
	0.02		0.02
	LESS		LESS
Thimet	THAN	Thiodan	THAN
	0.02		0.02
	LESS		
Trithion	THAN		
	0.02		

PESTICIDES AND PCB	PPM	PESTICIDES AND PCB	РРМ
Aldrin	LESS THAN 0.02	Alpha-BHC	LESS THAN 0.02
Beta-BHC	LESS THAN 0.02	Chlordane	LESS THAN 0.02
DDE	LESS THAN 0.02	DDT	LESS THAN 0.02
Delta-BHC	LESS THAN 0.02	Dieldrin	LESS THAN 0.02
Endrin	LESS THAN 0.02	НСВ	LESS THAN 0.02
Heptachlor	LESS THAN 0.02	Heptachlor Epoxide	LESS THAN 0.02
Lindane	LESS THAN 0.02	Methoxychlor	LESS THAN 0.02
Mirex	LESS THAN 0.02	PCB	LESS THAN 0.15

A 41 - 4	A.G 4	LEGO THAN E DDD	ı
Aflatoxin	Aflatoxins	LESS THAN 5 PPB	
p matoxiii	/ matoxino		
		· · · · · · · · · · · · · · · · · · ·	

For additional information, please contact:

- 1) Customer Service at (314) 962-1310 -- for assay methodology
- 2) Dr. Dorrance Haught at (314) 768-4362 -- for nutritional interpretation
- 3) Richmond, IN Manufacturing Plant at (765) 962-9561 -- all other questions

The term "Less Than" is used to signify the lower limit of quantitation of the procedure under the conditions employed.

Product Code: 5002M

Product Desc: CERTIFIED RODENT DIET MEAL

Lab Number: L0123118-2 Lot Code: AUG 28 01 2B Entered: 8/30/2001

Assay_	Analysis	Units
PROTEIN	22.6	%
FAT ACID (HYDRO.)	5.59	%
FIBER (CRUDE)	4.8	%
ARSENIC	LESS THAN 0.2	PPM
CADMIUM	0.055	PPM
CALCIUM	0.869	%
LEAD	0.14	PPM
MERCURY	LESS THAN 0.025	PPM
PHOSPHORUS	0.780	%
SELENIUM	0.129	PPM

ORGANOPHOSPHATES	PPM	ORGANOPHOSPHATES	PPM
	LESS		LESS
Diazinon	THAN	Disulfoton	THAN
	0.02		0.02
	LESS		
Ethion	THAN	Malathion	0.07
	0.02		
	LESS		LESS
Methyl Parathion	THAN	Parathion	THAN
	0.02		0.02
	LESS		LESS
Thimet	THAN	Thiodan	THAN
	0.02		0.02
	LESS		
Trithion	THAN		
	0.02		

PESTICIDES AND PCB		PESTICIDES AND PCB	PPM
Aldrin	LESS THAN 0.02	Alpha-BHC	LESS THAN 0.02
Beta-BHC	LESS THAN 0.02	Chlordane	LESS THAN 0.02
DDE	LESS THAN 0.02	DDT	LESS THAN 0.02
Delta-BHC	LESS THAN 0.02	Dieldrin	LESS THAN 0.02
Endrin	LESS THAN 0.02	НСВ	LESS THAN 0.02
Heptachlor	LESS THAN 0.02	Heptachlor Epoxide	LESS THAN 0.02
Lindane	LESS THAN 0.02	Methoxychlor	LESS THAN 0.02
Mirex	LESS THAN 0.02	PCB	LESS THAN 0.15

A 61 - 4	A (1	LEGO TUAN E DDD	11
Aflatoxin	Aflatoxins	ILESS THAN 5 PPB	1.1
			1

For additional information, please contact:

- 1) Customer Service at (314) 962-1310 -- for assay methodology
- 2) Dr. Dorrance Haught at (314) 768-4362 -- for nutritional interpretation
- 3) Richmond, IN Manufacturing Plant at (765) 962-9561 -- all other questions

The term "Less Than" is used to signify the lower limit of quantitation of the procedure under the conditions employed.

Product Code: 5002M

Product Desc: CERTIFIED RODENT DIET MEAL

Lab Number: L0123118-3 Lot Code: AUG 28 01 2C Entered: 8/30/2001

Assay	Analysis	Units
PROTEIN	22.6	%
FAT ACID (HYDRO.)	5.46	%
FIBER (CRUDE)	4.97	%
ARSENIC	LESS THAN 0.2	PPM
CADMIUM	0.057	PPM
CALCIUM	0.784	%
LEAD	0.144	PPM
MERCURY	LESS THAN 0.025	PPM
PHOSPHORUS	0.763	%
SELENIUM	0.242	PPM

ORGANOPHOSPHATES	PPM	ORGANOPHOSPHATES	PPM
	LESS		LESS
Diazinon	THAN	Disulfoton	THAN
	0.02		0.02
	LESS		
Ethion	THAN	Malathion	0.05
	0.02		
	LESS		LESS
Methyl Parathion	THAN	Parathion	THAN
	0.02		0.02
	LESS		LESS
Thimet	THAN	Thiodan	THAN
	0.02		0.02
	LESS		
Trithion	THAN		
	0.02		

PESTICIDES AND PCB	PPM	PESTICIDES AND PCB	PPM
Aldrin	LESS THAN 0.02	Alpha-BHC	LESS THAN 0.02
Beta-BHC	LESS THAN 0.02	Chlordane	LESS THAN 0.02
DDE	LESS THAN 0.02	DDT	LESS THAN 0.02
Delta-BHC	LESS THAN 0.02	Dieldrin	LESS THAN 0.02
Endrin	LESS THAN 0.02	HCB	LESS THAN 0.02
Heptachlor	LESS THAN 0.02	Heptachlor Epoxide	LESS THAN 0.02
Lindane	LESS THAN 0.02	Methoxychlor	LESS THAN 0.02
Mirex	LESS THAN 0.02	PCB	LESS THAN 0.15

Aflatoxin	Aflatoxins	LESS THAN 5 PPB

For additional information, please contact:

- 1) Customer Service at (314) 962-1310 -- for assay methodology
- 2) Dr. Dorrance Haught at (314) 768-4362 -- for nutritional interpretation
- 3) Richmond, IN Manufacturing Plant at (765) 962-9561 -- all other questions

The term "Less Than" is used to signify the lower limit of quantitation of the procedure under the conditions employed.

Product Code: 5002M

Product Desc: CERTIFIED RODENT DIET MEAL

Lab Number: L0123905-1 Lot Code: SEP 12 01 1A Entered: 9/14/2001

Assay	Analysis	Units
PROTEIN	21.6	%
FAT ACID (HYDRO.)	5.55	%
FIBER (CRUDE)	5.25	%
ARSENIC	LESS THAN 0.2	PPM
CADMIUM	0.051	PPM
CALCIUM	0.921	%
LEAD	0.145	PPM
MERCURY	LESS THAN 0.025	PPM
PHOSPHORUS	0.875	%
SELENIUM	0.293	PPM

ORGANOPHOSPHATES	PPM	ORGANOPHOSPHATES	PPM
	LESS		LESS
Diazinon	THAN	Disulfoton	THAN
	0.02		0.02
	LESS		LESS
Ethion	THAN	Malathion	THAN
	0.02		0.02
	LESS		LESS
Methyl Parathion	THAN	Parathion	THAN
	0.02		0.02
	LESS		LESS
Thimet	THAN	Thiodan	THAN
	0.02		0.02
	LESS		
Trithion	THAN		
	0.02		

PESTICIDES AND PCB		PESTICIDES AND PCB	РРМ
Aldrin	LESS THAN 0.02	Alpha-BHC	LESS THAN 0.02
Beta-BHC	LESS THAN 0.02	Chlordane	LESS THAN 0.02
DDE	LESS THAN 0.02	DDT	LESS THAN 0.02
Delta-BHC	LESS THAN 0.02	Dieldrin	LESS THAN 0.02
Endrin	LESS THAN 0.02	HCB	LESS THAN 0.02
Heptachlor	LESS THAN 0.02	Heptachlor Epoxide	LESS THAN 0.02
Lindane	LESS THAN 0.02	Methoxychlor	LESS THAN 0.02
Mirex	LESS THAN 0.02	PCB	LESS THAN 0.15

		
LACL	A (1 '	
Aflatoxin	Atlatoxins	LESS THAN 5 PPB
/\tilat\variation	Malualis	
1		

For additional information, please contact:

- 1) Customer Service at (314) 962-1310 -- for assay methodology
- 2) Dr. Dorrance Haught at (314) 768-4362 -- for nutritional interpretation
- 3) Richmond, IN Manufacturing Plant at (765) 962-9561 -- all other questions

The term "Less Than" is used to signify the lower limit of quantitation of the procedure under the conditions employed.

Product Code: 5002M

Product Desc: CERTIFIED RODENT DIET MEAL

Lab Number: L0124569-2 Lot Code: OCT 01 01 1B Entered: 9/28/2001

Assay	Analysis	Units
PROTEIN	21.7	%
FAT ACID (HYDRO.)	5.79	%
FIBER (CRUDE)	4.31	%
ARSENIC	LESS THAN 0.2	PPM
CADMIUM	0.053	PPM
CALCIUM	0.953	%
LEAD	0.176	PPM
MERCURY	LESS THAN 0.025	PPM
PHOSPHORUS	0.681	%
SELENIUM	0.263	PPM

ORGANOPHOSPHATES	PPM	ORGANOPHOSPHATES	PPM
	LESS		LESS
Diazinon	THAN	Disulfoton	THAN
	0.02		0.02
	LESS		LESS
Ethion	THAN	Malathion	THAN
	0.02		0.02
	LESS		LESS
Methyl Parathion	THAN	Parathion	THAN
	0.02		0.02
	LESS		LESS
Thimet	THAN	Thiodan	THAN
	0.02		0.02
	LESS		
Trithion	THAN		
	0.02		<u> </u>

PESTICIDES AND PCB	РРМ	PESTICIDES AND PCB	PPM
Aldrin	LESS THAN 0.02	Alpha-BHC	LESS THAN 0.02
Beta-BHC	LESS THAN 0.02	Chlordane	LESS THAN 0.02
DDE	LESS THAN 0.02	DDT	LESS THAN 0.02
Delta-BHC	LESS THAN 0.02	Dieldrin	LESS THAN 0.02
Endrin	LESS THAN 0.02	НСВ	LESS THAN 0.02
Heptachlor	LESS THAN 0.02	Heptachlor Epoxide	LESS THAN 0.02
Lindane	LESS THAN 0.02	Methoxychlor	LESS THAN 0.02
Mirex	LESS THAN 0.02	PCB	LESS THAN 0.15

Aflatoxin Aflatoxins LESS THAN 5 PPB			
Atlatoxin Atlatoxins LESS HAN 5 PPB	A 41 - 4 - 1 - 1 - 1	A 41 - 4	
	HATIATOXID	HATIATOXIDS	III ESS THAN S PPR
	, matorini		

For additional information, please contact:

- 1) Customer Service at (314) 962-1310 -- for assay methodology
- 2) Dr. Dorrance Haught at (314) 768-4362 -- for nutritional interpretation
- 3) Richmond, IN Manufacturing Plant at (765) 962-9561 -- all other questions

The term "Less Than" is used to signify the lower limit of quantitation of the procedure under the conditions employed.

Product Code: 5002M

Product Desc: CERTIFIED RODENT DIET MEAL

Lab Number: L0125416-2 Lot Code: OCT 10 01 1B Entered: 10/12/2001

Assay	Analysis	Units
PROTEIN	21	%
FAT ACID (HYDRO.)	5.58	%
FIBER (CRUDE)	4.45	%
ARSENIC	<0.200	PPM
CADMIUM	0.059	PPM
CALCIUM	0.913	%
LEAD	0.174	PPM
MERCURY	LESS THAN 0.025	PPM
PHOSPHORUS	0.602	%
SELENIUM	0.295	PPM

ORGANOPHOSPHATES	PPM	ORGANOPHOSPHATES	PPM
	LESS		LESS
Diazinon	THAN	Disulfoton	THAN
	0.02		0.02
	LESS		LESS
Ethion	THAN	Malathion	THAN
	0.02		0.02
	LESS		LESS
Methyl Parathion	THAN	Parathion	THAN
	0.02		0.02
	LESS		LESS
Thimet	THAN	Thiodan	THAN
	0.02		0.02
	LESS		
Trithion	THAN		
	0.02		

PESTICIDES AND PCB	ומוטכו:	PESTICIDES AND PCB	PPM
Aldrin	LESS THAN 0.02	Alpha-BHC	LESS THAN 0.02
Beta-BHC	LESS THAN 0.02	Chlordane	LESS THAN 0.02
DDE	LESS THAN 0.02	DDT	LESS THAN 0.02
Delta-BHC	LESS THAN 0.02	Dieldrin	LESS THAN 0.02
Endrin	LESS THAN 0.02	HCB	LESS THAN 0.02
Heptachlor	LESS THAN 0.02	Heptachlor Epoxide	LESS THAN 0.02
Lindane	LESS THAN 0.02	Methoxychlor	LESS THAN 0.02
Mirex	LESS THAN 0.02	PCB	LESS THAN 0.15

	Aflatoxin	Aflatoxins	LESS THAN 5 PPB
--	-----------	------------	-----------------

For additional information, please contact:

- 1) Customer Service at (314) 962-1310 -- for assay methodology
- 2) Dr. Dorrance Haught at (314) 768-4362 -- for nutritional interpretation
- 3) Richmond, IN Manufacturing Plant at (765) 962-9561 -- all other questions

The term "Less Than" is used to signify the lower limit of quantitation of the procedure under the conditions employed.

Product Code: 5002M

Product Desc: CERTIFIED RODENT DIET MEAL

Lab Number: L0125416-3 Lot Code: OCT 10 01 1C Entered: 10/12/2001

Assay	Analysis	Units
PROTEIN	21.3	%
FAT ACID (HYDRO.)	5.75	%
FIBER (CRUDE)	4.2	%
ARSENIC	<0.200	PPM
CADMIUM	0.057	PPM
CALCIUM	1.01	%
LEAD	0.174	PPM
MERCURY	LESS THAN 0.025	PPM
PHOSPHORUS	0.643	%
SELENIUM	0.309	PPM

ORGANOPHOSPHATES	PPM	ORGANOPHOSPHATES	PPM
	LESS		LESS
Diazinon	THAN	Disulfoton	THAN
	0.02		0.02
	LESS		LESS
Ethion	THAN	Malathion	THAN
	0.02		0.02
	LESS		LESS
Methyl Parathion	THAN	Parathion	THAN
	0.02		0.02
	LESS		LESS
Thimet	THAN	Thiodan	THAN
	0.02		0.02
	LESS		
Trithion	THAN		
	0.02		

PESTICIDES AND PCB	PPM	PESTICIDES AND PCB	РРМ
Aldrin	LESS THAN 0.02	Alpha-BHC	LESS THAN 0.02
Beta-BHC	LESS THAN 0.02	Chlordane	LESS THAN 0.02
DDE	LESS THAN 0.02	DDT	LESS THAN 0.02
Delta-BHC	LESS THAN 0.02	Dieldrin	LESS THAN 0.02
Endrin	LESS THAN 0.02	HCB	LESS THAN 0.02
Heptachlor	LESS THAN 0.02	Heptachlor Epoxide	LESS THAN 0.02
Lindane	LESS THAN 0.02	Methoxychlor	LESS THAN 0.02
Mirex	LESS THAN 0.02	PCB	LESS THAN 0.15

Aflatoxin	Aflatoxins	LESS THAN 5 PPB

For additional information, please contact:

- 1) Customer Service at (314) 962-1310 -- for assay methodology
- 2) Dr. Dorrance Haught at (314) 768-4362 -- for nutritional interpretation
- 3) Richmond, IN Manufacturing Plant at (765) 962-9561 -- all other questions

The term "Less Than" is used to signify the lower limit of quantitation of the procedure under the conditions employed.

Analysis Report

Page 1 of 1

Lancaster Laboratories Sample No. PW 3725257

by GA Collected:11/12/2001 10:05 Account Number: 02698

Submitted: 11/12/2001 17:30 Huntingdon Life Sciences Reported: 11/29/2001 at 21:33 PO Box 2360

Discard: 12/14/2001

#2 INH 803 Grab Water Sample

Animal Drinking Water

Mettlers Road East Millstone NJ 08875-2360

				As Received		
CAT			As Received	Limit of		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation	Units	Factor
00307	Heterotrophic Plate Count	n.a.	< 1.	1.	cfu/ml	n.a.
	This result is an estimated corresult are outside the establiforming units (cfu) per dilution	shed counting r				
00564		n.a.	Absent	1.	/gram	n.a.
	A 100 gram sample was analyzed negative.	for Pseudomona	s aeruginosa. T	he result was		
06477	Total Coliform	n.a.	See Below	1.	/100ml	n.a.
	Total Coliform	Negative	/100ml			
	E. coli	Negative	/100ml			
	The water this test result rep. SAFE for drinking according to Protection Agency (EPA). If the recommend that you retest your that it continues to be bacter.	standards estaine ne source of you well water eve	olished by the E ur water supply ry 6 to 12 month	nvironmental is a well, we		

State of New Jersey Lab Certification No. 77011

		Laborato	ry Chro	nicle		
CAT		Analysis				
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
00307	Heterotrophic Plate Count	Standard Methods, ed 1995	19th 1	11/12/2001 20:15	Connie D. Rhodes	n.a.
00564	Pseudomonas aeruginosa	Reference: USP, 23 Ed 1995	rd 1	11/13/2001 08:20	Earl R. Custer	n.a.
06477	Total Coliform	Standard Methods 1	9th 1	11/12/2001 20:50	Connie D Phodes	n a

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

ed, 1995

Analysis Report

Page 1 of 1

Lancaster Laboratories Sample No. PW 3681567

Collected:09/06/2001 10:45

by SA

Account Number: 02698

Submitted: 09/06/2001 18:50

Reported: 09/21/2001 at 15:54

Discard: 10/06/2001

#1 Rm. 803 INH Grab Water Sample

Huntingdon Life Sciences

PO Box 2360

Mettlers Road

East Millstone NJ 08875-2360

Animal Drinking Water.

803IN SDG#: ANI27-03

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01055	Lead (furnace method)	7439-92-1	0.0062	0.00077	mg/l	1
	The action level for lead in th Because health effects are poss guidance recommends that correc is met or exceeded.	ible, especial	ly in young chil	dren, EPA		
01753	Copper	7440-50-8	0.0580	0.0024	mg/l	1
	The action level for copper in	the lead and c	opper rule is 1.	3 mg/l.		
	Copper at these levels is not c					
	affect the taste of the water.	Excessive cop	per levels may i	ndicate a		
	corrosive water if the system h	as copper plum	bing.			

State of New Jersey Lab Certification No. 77011

Laboratory Chronicle

		<u> </u>	O114 O			
CAT			Analysis			Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01055	Lead (furnace method)	EPA 200.9	1	09/14/2001 23:35	Jessica L. Boyd	1
01753	Copper	EPA 200.7	1	09/14/2001 19:57	Brian L. Boyd	ı
05281	Undigested Sample Prep	EPA 200.9	1	09/13/2001 08:45	Deborah A. Krady	1

Date

August 7, 2001

Elizabethtown Water Company Physical & Chemical Analyses

neral Source Ra	ritan-Millstone Pl	lant	39							
	nt Delivered Wate		n.8-7-01,	MT						
Sample No. 2										
Sample No. 3									~~~	
Sample No. 4										
Sample No. 5							·			
Sample No. 6										
Sample No. 7					-					
Sample No. 8										
Parameter		MCL (mg/l)	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0
Temperature ° F			82			: 		:		
Turbidity (NTU)		0.5 NTU	0.25	<u> </u>	1					
Color		10 *	1	<u>. i </u>		1	1	<u> </u>		
Threshold Odor 40 ° C		3 TON *	3.5/2Cc			<u> </u>	; 			
Threshold Taste		3 TTN *	3.2	(f) %		1	: _i			
Conductivity (micromhos / c	cm)	-	310	. :	······································		i	<u> </u>	·	-
Hardness, Total (as mg / I C	aCO3) 2	250 mg / 1 *	106	·		<u>.</u>		· · · · · · · · · · · · · · · · · · ·		
Alkalinity		-	53				· 	1		
рН		6.5-8.5 *	7.1			<u> </u>	· _ 	<u> </u>		· · · · · · · · · · · · · · · · · · ·
Chlorine, Free / Total (mg / I	CI)	-	<0.05/1.	30			_ <u></u>	<u>:</u>		
ium (as mg / I CaCO3)			70			· 		:		
Magnesium (as mg / I CaCO	3)	<u>-</u>	36_				·	<u> </u>		
Iron, Total (mg / I Fe)		0.3 mg/ l *	<0.05					; <u>i </u>		
Sulfates (mg / I SO4)		250 mg/ l *	47.7		·			i		
Chlorides (mg / I Cl)		250 mg/ l *	33.1	·		: ~~!				··· · · · · · · · · · · · · · · · · ·
Fluoride (mg / I F)		1.2 mg/l	<0.1	···						
Total Dissolved Solids (mg	/1)	500 mg / l *	252							
Total Suspended Solids (mg	g / l)	.	0.5					 		
Ammonia Nitrogen (mg / I N	1)	-	0.06			· · · · · · · · · · · · · · · · · · ·	·	<u>.</u>		
Nitrate Nitrogen (mg / I N)		10 mg / I	1.20			·		: 		
Dissolved Oxygen (mg / 1 O	2)	_	6.9	·				·		
BOD 5 (mg / I O2)								·		
Langelier Index		+/- 1.0	<u> </u>		·					- — — — — — — — — — — — — — — — — — — —
Surfactants (mg / I LAS)		0.5 mg / I *						1		
Hydrogen Sulfide (mg / I H2	S as S)		0	··				· -i	·	
Nitrite Nitrogen (mg / I N)			<0.010	0	AT.	10 DI	; 7	: 		
Phosphate (mg / 1 PO3)			0.83	_EX/	101	JUPY				
Manganese (mg / I MN)		ý·	<0.05		poyMari)2	IRI	EVIE	WED	*:
.C. (mg / I)			1.8					m	150,00	
			[codba	1

*Secondary or Recommended MCL

1) Toote one not regulated favorates

1 Sep 0 1

Laboratory Analyst: KK

Elizabethtown Water Company Physical & Chemical Analyses

Date September 11, 2001 General Source Raritan-Millstone Plant No. 1 Plant Delivered Water - 8:00 a.m.9-11-01, ED Sample No. 2 Sample No. 3 Sample No. 4 Sample No. 5 Sample No. 6 Sample No. 7 Sample No. 8 MCL (mg/l) 76 Temperature ° F 0.11 Turbidity (NTU) 0.5 NTU 10 * 1 Color (1) Threshold Odor 40 ° C 3 TON * 3.1/1Cc 3 TTN * 3.0 Threshold Taste 356 Conductivity (micromhos / cm) 110 Hardness, Total (as mg / I CaCO3) 250 mg / I * Alkalinity 49 рН 6.5-8.5 * 7.0 Chlorine, Free / Total (mg / I Cl) <0.05/1.00 h (as mg / I CaCO3) Magnesium (as mg / I CaCO3) 26 0.05 Iron, Total (mg / I Fe) 0.3 mg/ l* Sulfates (mg / I SO4) 250 mg/ i * 55.0 36.0 Chlorides (mg / 1 Cl) 250 mg/ l * Fluoride (mg / 1 F) 1.2 mg/1 0.12 Total Dissolved Solids (mg / I) 500 mg / 1* 278 Total Suspended Solids (mg / I) 0.2 < 0.05 Ammonia Nitrogen (mg / I N) 0.94 Nitrate Nitrogen (mg / I N) 10 mg / I 8.0 Dissolved Oxygen (mg / I O2) BOD 5 (mg / 1 O2) Langelier Index +/- 1.0 Surfactants (mg / I LAS) 0.5 mg / 1* Hydrogen Sulfide (mg / I H2S as S) 0 Nitrite Nitrogen (mg / I N) <0.010 Phosphate (mg / I PO3) 0.22 < 0.05 Manganese (mg / I MN) (mg / l) 1.9

"Secondary or Recommended MCL

(1) Tout & odor are non-regulated formatics for Laboratory Analyst: MT

wood 0805598 which marritorize is not required by Elizabethton prior 2001

Elizabethtown Water Company Physical & Chemical Analyses

Date October 2, 2001

No. 1 Plant Delivered	Water - 8:00 a.r	n. 10-2-01	, ED						
Sample No. 2									
Sample No. 3									
Sample No. 4							· ————		
Sample No. 5									
Sample No. 6									
Sample No. 7									
Sample No. 8	MCL (mg/l)	1.0	2.0	3.0	4.0	: 5.0	6.0	7.0	8.0
·					<u> </u>		, ,		1
Temperature ° F		64	 						
Turbidity (NTU)	0.5 NTU	0.13	1		<u> </u>	· :	i :		:
Color	10 *	1	<u> </u>	:	· 		·		:
Threshold Odor 40 ° C	3 TON *	3.0/1Cc	_	:		<u> </u>	<u> </u>		
Threshold Taste	3 TTN *	3.0	<u>.</u>		1	:	i ;		·
Conductivity (micromhos / cm)		362	<u> </u>		<u> </u>		<u> </u>		· .
Hardness, Total (as mg / I CaCO3)	250 mg / l *	114			·		· · ·		
Alkalinity		50		:	<u> </u>	<u> </u>	· • • · ·		·
pH	6.5-8.5 *	6.8	·		:		<u> </u>		
Chlorine, Free / Total (mg / I Cl)		<0.05/0.9	951						
(as mg / I CaCO3)		82			:	:			
Magnesium (as mg / I CaCO3)		32							
lron, Total (mg / i Fe)	0.3 mg/1*	<0.05				:			
Sulfates (mg / 1 SO4)	250 mg/ l *	55.5	:		1		:		
Chlorides (mg / I Cl)	250 mg/1*	35.2				~			
Fluoride (mg / 1 F)	1.2 mg/l	<0.1					:		
Total Dissolved Solids (mg / I)	500 mg / l *	282	:	 -		:			
Total Suspended Solids (mg / I)		0.3							
Ammonia Nitrogen (mg / I N)		<0.05	:						
Nitrate Nitrogen (mg / I N)	10 mg / l	1.24	· ·						
Dissolved Oxygen (mg / I O2)		10.4							
BOD 5 (mg / I O2)		- 10.4				· · · ·			
Langelier Index	+/- 1.0				·		<u></u>		
Surfactants (mg / I LAS)									
	0.5 mg /1*							A	En
Hydrogen Sulfide (mg / I H2S as S)		0 010					RF1	HEA	行し
Nitrite Nitrogen (mg / I N)		<0.010			·		115	-39U	<u> </u>
Phosphate (mg / I PO3)		0.12							
Manganese (mg / 1 MN)		<0.05	E	Y1 0	TOO	DV			
mg / l)	<u> </u>	1.9			エレリ				

* Secondary or Recommended MCL

Laboratory Analyst: MT

Revised 08/05/90

Elizabethtown Water Company Physical & Chemical Analyses

								Date	November	5, 2001
	aritan-Millstone I									
	lant Delivered Wa	ter - 7:30 a.r	n. 11-6-01, K	KK						
Sample No. 2										
Sample No. 3								 -		
Sample No. 4 Sample No. 5										
Sample No. 6										
Sample No. 7										
Sample No. 8										
Paramete	r	MCL (mg/l)	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0
Temperature ° F			55			····	İ	:	:	
Turbidity (NTU)		0.5 NTU	0.12			<u>:</u>		<u> </u>	· 	
Color		10 *	11			:	<u> </u>	<u> </u>	: - 	
Threshold Odor 40 ° C		3 TON *	2.9/2Cc				1	1	·	
Threshold Taste		3 TTN *	3.1	~	· ——————		:	! 	<u> </u>	
Conductivity (micromhos	/ cm)	<u> </u>	328		: 			!		
Hardness, Total (as mg / I	CaCO3)	250 mg / 1 *	106		—	·		· · · · · · ·		
Alkalinity		·	50			<u>:</u>	; 	!	:	
рН		6.5-8.5 *	6.8							
Chlorine, Free / Total (mg	/ I CI)		<0.05/0.85	 -	:	·			·	· · · · · · · · · · · · · · · · · · ·
um (as mg / I CaCO3)	<u>.</u>	74			<u> </u>	:	i		
Magnesium (as mg / I CaC	:03)		32				:	!	·	
Iron, Total (mg / I Fe)		0.3 mg/ i *	<0.05			i	<u> </u>	<u> </u>	<u></u>	
Sulfates (mg / I SO4)		250 mg/1*	55.5			·	: 	+	.	·
Chlorides (mg / I Cl)		250 mg/ l *	38.1				<u>.</u>			
Fluoride (mg / 1 F)		1.2 mg/l	<0.1				<u>:</u>	:		
Total Dissolved Solids (m	g / I)	500 mg / l *	280			·				
Total Suspended Solids (mg / I)		0.88					·		
Ammonia Nitrogen (mg /	I N)		<0.05						· ·	
Nitrate Nitrogen (mg / I N)		10 mg / l	0.91			·	<u>-i</u>			
Dissolved Oxygen (mg / 1	O2)		10.9							
BOD 5 (mg / I O2)		<u>-</u>								
Langelier Index		+/- 1.0		~~~~~		* * *****				
Surfactants (mg / I LAS)		0.5 mg / 1*								
Hydrogen Sulfide (mg / I l	H2S as S)	<u>.</u>	0							
Nitrite Nitrogen (mg / I N)			<0.010						15 # 25	
Phosphate (mg / I PO3)			<0.05		7 T	YO DV	_ RI	=VIE	WED)
Manganese (mg / I MN)			<0.05		<u> </u>	JUPY		D~_	3 Deco	
.C. (mg / I)			1.36	(DO)	Haror					
				· · · · · · · · · · · · · · · · · · ·				~~~~~		

or Recommended MCL

Draste is a nonregulated formation to monitor Laboratory Analyst: Ed

for which Shigheth tom is not regularly to monitor

To 3 Devot * Secondary or Recommended MCL

December 12, 2001

Date

Elizabethtown Water Company Physical & Chemical Analyses

ral Source Raritan-Millstone	Plant	4							
Sample No. 1 Plant Delivered Wa	ter - 7:30 a.r	n. 12-12-01, I	Ed						
Sample No. 2								· · · · · · · · · · · · · · · · · · ·	
Sample No. 3									
Sample No. 4 Sample No. 5									
Sample No. 6									
Sample No. 7									
Sample No. 8	.verson	<u></u>	erenius menesarius istila						
Parameter	MCL (mg/l)	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0
Temperature ° F	<u>-</u>	49			: r 				:
Turbidity (NTU)	0.5 NTU	0.09			· -	<u>:</u>			:
Color	10 *	1	····	· · · · · · · · · · · · · · · · · · ·	····		: 	: : :	
Threshold Odor 40 ° C	3 TON *	3.3/1Cc				<u>:</u>	<u> </u>		
Threshold Taste	3 TTN *	3.3) ·			:			
Conductivity (micromhos / cm)		365				·			
Hardness, Total (as mg / I CaCO3)	250 mg / 1 *	116			4 14- 22-13 2002		: <u> </u>	!	
Alkalinity		53							
pH	6.5-8.5 *	6.9			,			: : :	
Garrine, Free / Total (mg / 1 Cl)		<0.05/1.16				1]	
Carcium (as mg / I CaCO3)		86			·	<u> </u>			
Magnesium (as mg / I CaCO3)		30							
Iron, Total (mg / I Fe)	0.3 mg/ i =	<0.05					:	· :	
Sulfates (mg / I SO4)	250 mg/1*	59.4						:	
Chlorides (mg / I Cl)	250 mg/ l *	34.5							
Fluoride (mg / I F)	1.2 mg/l	<0.05							
Total Dissolved Solids (mg / I)	500 mg / I *	258							
Total Suspended Solids (mg / I)		0.40							
Ammonia Nitrogen (mg / I N)		<0.05				:		,	
Nitrate Nitrogen (mg / I N)	10 mg / i	1.30							
Dissolved Oxygen (mg / I O2)		11.5	_			/			
BOD 5 (mg / I O2)	-	-				- 11 1 P - 11 1 2 No From 1 to 1			
Langelier Index	+/- 1.0	-		***					
Surfactants (mg / I LAS)	0.5 mg / l *	-							
Hydrogen Sulfide (mg / I H2S as S)	-	0							
Nitrite Nitrogen (mg / I N)	•	<0.010							
Phosphate (mg / I PO3)	_	0.81			the control of the co		RE//II	=WFI)
anese (mg / I MN)	-	<0.05	FΥΛ	CT C	יטטי	/	 		
T.O.C. (mg / l)	-	2.10		b t	UP		-\Y - 2+ -		
·		<u> </u>	Ant.	WV62-			:	!	- -

*Secondary or Recommended MCL

Laboratory Analyst: Ed

Perison 0805598

Date and of or one not regulated formates

Laboratory Analyst: Ed

Revised 0805598

Laboratory Analyst: Ed

Assuring Quality Worldwide

SILLIKER LABORATORIES OF OHIO 1224 KINNEAR ROAD, SUITE 114 • COLUMBUS, OH 43212 TEL: 614/ 486 0150 • FAX: 614/ 486 0151

OH 43537

MR. TED A. WEAVER SALES MANAGER THE ANDERSON'S, INC. 480 W. DUSSEL DR. P.O. BOX 119

LABORATORY REPORT

REPORT NOTE AND A STATE OF THE PAGE OF THE 196389

12/01/99

APUNCHASE GEROERAL DE LA COMPANION DE LA COMPA

LOT# DK139 & DK219

SAMPLES RECEIVED: 11/10/99 RECEIVED FROM: MAUMEE OH

REVISED DATE:

12/06/99.

REISSUED DATE:

1/05/00

SAMPLE DESCRIPTION

MAUMEE

BED O' COBBS 1/8" & 1/4" COMPOSITE SAMPLE DK 139 AND DK219 ORGANOPHOSPHATE/ORGANONITROGEN SCREEN

PESTICIDE	AMOUNT	MDL	TOLERANCI
	(PPM)	(PPM)	(PPM)
ACEPHATE	ND	0.05	
AMETRYN	ND	0.05	
ATRAZINE	ND	0.05	
AZINPHOS-METHYL (GUTHION)	ND	0.05	
BENTHIOCARB	ND	0.1	
BOLSTAR (SULPROFOS)	ND	0.05	
CARBOPHENOTHION (TRITHION)	ND	0.05	
CHLORFENVINPHOS (SUPONA)	ND	0.05	
CHLOROPROPHAM	ND	0.05	
CHLORPYRIFOS (DURSBAN)	ND	0.03	
EHLORPYRI FOS-METHYL	ND	0.05	
CIODRIN (CROTOPHOS)	ND	0.05	
COUMAPHOS (CO-RAL)	ND	0.04	
CYANAZINE (BLADEX)	NĐ	0.05	
DEF	ND	0.05	
DEMETON (SYSTOX) O/S ANALOGUES	ND	0.05	
DIAZINON	ND	0.03	
DIBROM (NALED)	ND	0.05	
DICROTOPHOS (DIDRIN)	ИÐ	0.05	
DINETHOATE (CYGON)	ND	0.03	
DIOXATHION (DELNAV)	ND	0.05	
DIPHENYL AMINE	ND	0.1	
DISULFOTON (DISYSTON)	ND	0.05	
EPN	ND	0.05	
ETHION	ND	0.05	
ETHOPROP (MOCAP)	ND	0.05	
FEMANIPHOS (NEMACUR)	ND	0.05	
FENITROTHION (SUMITHION)	ND	0.05	
FENITHION (BAYTEX)	ND	0.05	
FONOFOS (DYFONATE)	ND	0.05	
HEXAZINONE (VELPAR)	ND	0.05	

The results of this report relate only to the samples tested. This report shall not be reproduced unless written approval has been obtained from the laboratory.

SILLIKER LABORATORIES OF OHIO 1224 KINNEAR ROAD, SUITE 114 • COLUMBUS, OH 43212 TEL: 614/ 486 0150 • FAX: 614/ 486 0151

	BORATORY I		
REPORTING	DATE:	PAGE COL	Kar T. V
196389	12/01/99	2	
PURCHASEORDE			
LOT# DK139 &	DK219		

CONTINUED:

THE REPORT OF THE PARTY OF THE

SAMPLE DESCRIPTION

RED O, CORBS
1/811 & 1/411
COMPOSITE SAMPLE
DK 139 AND DK219

HOSTATHION (TRIAZOPHOS)	ND	0.05
IMAZALIL	ND	0.05
IMIDAN (PHOSMET)	ND	0,05
ISOFENPHOS (OFTANOL)	ND	0.05
MALATHION	ND	0.05
METALAXYL	ND	0.05
METAHAMIDOPHOS	ND	0.05
METHIDATHION (SUPRACIDE)	ND	0.05
METHYL PARATHION	ND	0.05
METOLACHLOR (DUAL)	ND	0.05
METRIBUZIN (SENCOR)	D	0.05
MEVINPHOS (PHOSDRIN)	ND	0_05
MOLINATE (ORDRAM)	ND	0.05
MYCLOBUTANIL	מא	0.05
PARATHION	ND	0.04
PHORATE (THIMET)	ND	0.05
PHOSALONE (ZOLONE)	ND	0.05
PHOSPHAMIDON (DIMECRON)	ND	0.05
PRIMIPHOS-METHYL	ND	0.05
PROFENOPHOS (CRUACRON)	ND	0.05
PROMETRYNE	ND	0.05
PROPETAMPHOS (SAFROTIN)	ND	0.05
RONNEL (FENCHLORFOS)	ND	0.05
SIMAZINE	ND	0.05
TERBACIL	ND	0.5
TETRACHLORVINPHOS (GARDONA)	ND	0.05
THIABENDAZOLE	ND	0.05
THIONAZIN (ZINOPHOS)	ND	0.05
		0.03

ND=NONE DETECTED

Assuring Quality Worldwide

SILUKER LABORATORIES OF OHIO 1224 KINNEAR ROAD, SUITE 114 • COLUMBUS, OH 43212 TEL: 614/ 486 0150 • FAX: 614/ 486 0151

LABORATORY REPORT AREPORTMONAL OF THE PROPERTY O 196389 12/01/99 1 PURCHASE ORDER WYST TAMES TO A MIN THE TAMES LOT# DK139 & DK219

> SAMPLES RECEIVED: 11/10/99 RECEIVED FROM: MAUMEE OH

REVISED DATE:

TOLERANCE

(PPM)

12/06/99

REISSUED DATE:

1/05/.

SALES MANAGER THE ANDERSON'S, INC. 480 W. DUSSEL DR. P.O. BOX 119 MAUMEE OH 43537

MR. TED A. WEAVER

AMOUNT

MDL

SAMPLE DESCRIPTION

BED O' COBBS 1/8" & 1/4" COMPOSITE SAMPLE DK 139 AND DK219

ORGANOCHLORINE PESTICIDE SCREEN

PESTICIDE

	(PPM)	(PPM)
A,B,D-BHC	ND	0.05
ACETOCLOR	ND	0.02
ALACHLOR (LASSO)	ND	0.02
ALERT (PIRATE)	ND	0.04
ALDRIN	NĐ	0.01
BANFLURALIN (BALAN, BENEFIN)	ND	0_03
BHC (BENZAHEX)	ND	0.02
BIFENOX (MODOWN)	ND	0.05
BIFENTHRIN	ND	0,04
BROMACIL	NZO	0.1
CAPTAFOL	מא	0.04
CAPTAN	MD	0.05
CHLORDANE	ND	0.25
CHLOROBENZILATE (ACRABEN)	ND	0.4
CHLORTHALONIL (BRAVO)	ND	0.01
CYANAZINE	ND	0.1
CYFLUTHRIN	ND	0.15
CYPERMETHRIN	ND	0.05
DACTHAL (CHLORTHAL)	ND	0.03
DDD	ND	0.03
DDE	ND	0.05
DDT	ND	0.05
DICHLOBENIL (CASORON)	ND	0.03
DICHLONE	ND	0.05
DICLORAN (BOTRAN)	NO	0.02
DICOFOL (KELTHANE)	ND	0.0\$
DIELDRIN	ND	0.01
DYRENE (ANILAZINE)	NO	0.1
ENDOSULFAN ALPHA	ND	0.01
ENDOSUL FAN BETA	ND	0.01
ENDOSULFAN SULFATE	ND	0.01
ENDRIN	ND	0.01

The results of this report relate only to the samples tested. This report shall not be reproduced unless writton approval has been obtained from the laboratory.

SILLIKER LABORATORIES OF OHIO1224 KINNEAR ROAD, SUITE 114 • COLUMBUS, OH 43212
TEL: 614/486 0150 • FAX: 614/486 0151

LABORATORY REPORT REEDING OF THE VIEW PAGE 18 2 196389 12/01/99 PPURCHASE ORDER LOT# DK139 & DKZ19

CONTINUED:

SAMPLE DESCRIPTION

BED O' COBBS 1/8" & 1/4" COMPOSITE SAMPLE DK 139 AND DK219

ESFENVALERATE (ASANA)	ND	0.02
ETHALFLURALIN (SONALAN)	ND	0.03
FLUVALINATE	ND OH	0.4
FOLPET	ND	0.05
HEPTACHLOR	MO	0.01
HEPTACHLOR EPOXIDE	NO	0.02
IPRODIONE (ROVRAL)	ND	0.05
LINDANE (GAMMA-BHC)	ND	0.02
LINURON	ND	0.05
METHOXYCHLOR	ND	0.05
METRIBUZIN	ND	0.02
MIREX	ND	0.02
MYCLOBUTANIL (RALLY)	ND	0.05
NITROFEN (TOK)	ND	0.05
DXADIAZON (RONSTAR)	ND	0.05
OXYFLUORFEN (GOAL)	NO	0.04
PENDAMETHAL IN	ND	0.02
PENTACHLORONITROBENZENE (PCNB)	NO	0.02
PERMETHRIN	ND	0.05
PERTHANE (ETHYLAN)	ND	0.05
POLYCHLORINATED BIPHENYLS	ND	0.25
PROCYMIDONE	ND	0.05
PROFLURALIN (TOLBAN)	ИD	0.03
PRONAMIDE (KERB, PROPYZAMIDE)	ND	0.2
PYRETHRINS (TOTAL)	ND	0.1
TETRADIFON (TEDION)	ND	0.05
TOXAPHENE (ATTAC) STROBANE	ND	0.25
TRIDIMEFON (BAYLETON)	ND	0.05
TRIFLURALIN (TREFLAN)	ND	0.02
VEGADEX (DIETHYLDITHIOCARE. ACID)	מא	0.05
VINCLOZOLIN (RONILAN)	ND	0.02

The results of this report relate only to the samples tested. This report shall not be reproduced unless written approval has been obtained from the laboratory. LABORATORY DIRECTOR

Assuring Quality Worldwide

SILLIKER LABORATORIES OF OHIO

1224 KINNEAR ROAD, SUITE 114 • COLUMBUS, OH 43212 TEL: 614/ 486 0150 • FAX: 614/ 486 0151

LABORATORY REPORT REPORTNOW WE SHE'S PATE SET FACE OF 196389 12/01/99 PUREACTORDER TO A STATE OF THE LOT# DK139 & DK219

> SAMPLES RECEIVED: 11/10/99 RECEIVED FROM: MAUMEE OH

REVISED DATE:

12/06/99

REISSUED DATE:

1/05/00

MR. TED A. WEAVER SALES MANAGER THE ANDERSON'S, INC. 480 W. DUSSEL DR. P.O. BOX 119

MAUMEE

SAMPLE

DESCRIPTION

OH 43537

ETA METHOD

SAMPLE

WEIGHT

RESULT

COLIFORMS MPH/G

YEASTS/G MOLDS/G

SHIGELLA

SAMPLE

WEIGHT RESULT

BED O' COBBS 1/8" & 1/4" COMPOSITE SAMPLE

DK 139 AND DK219

25G

NEGATIVE

<10 <10

NEGATIVE

SAMPLE

DESCRIPTION

PREP METHOD

CADMIUM

LEAD

ARSENIC

BED O' COBBS 1/89 & 1/49

COMPOSITE SAMPLE DK 139 AND DK219

MICROWAVE WET ASH

<0.05 MG/100G

<0.1 MG/100G

<0.1MG/100G

SAMPLE DESCRIPTION

FUMONISIN

(PPB)

VONITOXIN

MERCURY

(HYDRIDE GENERATOR)

BED O' COBBS 1/8" & 1/4"

LIMITS 0.1PPM 81 0.1 B2,83 NO*

LIMITS 0.1 PPM 0.2 DETECTED

<0.01 PPH

COMPOSITE SAMPLE DK 139 AND DK219

The results of this report relate only to the samples tested. This report shall not be reproduced unless written approval has been obtained from the laboratory.

SILLIKER LABORATORIES OF OHIO 1224 KINNEAR ROAD, SUITE 114 • COLUMBUS, OH 43212 TEL: 614/ 486 0150 • FAX: 614/ 486 0151

LABORATORY REPORT BEFORM NO. WELL STORES AND STORES AND STORES 12/10/99 197827 PURGBASE TO ROPRY LOT#

SAMPLES RECEIVED: 12/08/99 RECEIVED FROM: NAUMEE OH

REISSUED DATE:

1/05/00

MR. TED A. WEAVER SALES MANAGER THE ANDERSON'S, INC. 480 W. DUSSEL DR. P.O. BOX 119 MAUNEE он 43537

AEROBI C PLATE COUNT/G

<10

BED O COBS DK 139

DESCRIPTION

SAMPLE

BED O COBS DK 219

<10

The results of this report relate only to the samples tested. This report shall not be reproduced unless written approval has been obtained from the laboratory. LABORATORY DIRECTOR

SILLIKER LABORATORIES OF OHIO

1224 KINNEAR ROAD, SUITE 114 • COLUMBUS, OH 43212 TEL: 614/ 486 0150 • FAX: 614/ 486 0151

LABORATORY REPORT

SHEEGHT NOSHES ALSO BANGES AND STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD 196389

12/01/99

DEGRETASE ORDER 18

LOT# DK139 & DK219

SAMPLES RECEIVED: 11/10/99 RECEIVED FROM: MAUMEE OH

12/06/99

REVISED DATE: REISSUED DATE:

1/05/00

HR. TED A. WEAVER SALES MANAGER THE ANDERSON'S, INC. 480 W. DUSSEL DR. P.O. BOX 119 MAUMEE OH 43537

SAMPLE DESCRIPTION

RED O' COBBS 1/8" & 1/4"

COMPOSITE SAMPLE DK 139 AND DK219

AFLATOXIN (PPB)

TEST LIMIT RESULT в1 1 PPB ND 82 1 PPB ND 1 PPB G1 ND 1 PPB G2 ND NOSNONE DETECTED

LABORATORY DIRECTOR

The results of this report relate only to the samples tested. This report shall not be reproduced unless written approval has been obtained from the laboratory.

Huntingdon Life Sciences	00-4202 211-TAME-1G	Page 661 <u>Final Report</u>		
Proto	col and Protocol Amendments	Appendix DD		

Note: The following protocol indicates the test article name is "Gasoline Ethanol Vapor Condensate," however this was corrected in Protocol Amendment No. 1 to "Gasoline TAME Vapor Condensate." In addition, the Sponsor Study No. was corrected from 211-EtOH-1G to 211-TAME-1G.

APPENDIX DD

PROTOCOL

GASOLINE ETHANOL VAPOR CONDENSATE

A ONE-GENERATION WHOLE-BODY INHALATION REPRODUCTION TOXICITY STUDY IN RATS

CONFIDENTIAL

HLS Study No.: 00-4202

Sponsor Study No.: 211-EtOH-1G

Final Protocol

1 1010001

Date: 6 August 2001

Huntingdon Life Sciences Study No. 00-4202 Sponsor Study No. 211-EtOH-1G

Page 2 Final Protocol

07 August, 2001

PROTOCOL SIGNATURES / PREFACE

(Confidential Information – to be distributed on a need-to-know basis)

Study Title: Gasoline Ethanol Vapor Condensate: A One-Generation Whole-Body

Inhalation Reproduction Toxicity Study in Rats

HLS Study No .: 00-4202 211-EtOH-1G Sponsor Study No.:

This is the Final Protocol. It has been reviewed and approved by:

Study Director

Huntingdon Life Sciences (HLS)

homas M. Gray M.S. D.A.B.T.

Sponsor Representative

American Petroleum Institute (API) Sponsor: U

Address: 1220 L Street, Northwest

Washington, D.C. 20005-4070

Phone No.: 202-682-8480 Fax No.: 202-682-8270 Email: grayt@api.com

CONFIDENTIAL STUDY SPECIFIC INFORMATION

Ship Unused Test Substance

and Empty Test Substance

Containers to:

Name:

Michael C. Henley

Sponsor

Chevron Research and Technology Company

Address:

100 Chevron Way

Richmond, CA 94802-0627

Phone No.: 510-242-3062 Fax No.: 510-242-5542

Email Mche@chevron.com

TABLE OF CONTENTS

1. INTRODUCTION	5
2. STUDY PERSONNEL	5
3. REGULATORY REFERENCES	6
3.1. TEST GUIDELINE	6 6 6
3.5. INSTITUTIONAL ANIMAL CARE AND USE COMMITTE4. QUALITY ASSURANCE MONITORING	
5. ALTERATION OF DESIGN	
6. PROPOSED STUDY DATES	8
7. EXPERIMENTAL DESIGN	9
8. TEST SUBSTANCE	10
8.1. TEST SUBSTANCE:	
9. TEST ANIMALS (P ₀)	
9.1. SPECIES	
10. MATING, GESTATION AND LACTATION PROCEDURI	ES14
10.1. ESTROUS CYCLING: 10.2. MATING PROCEDURE 10.3. PARTURITION AND LACTATION	14
11. TEST SUBSTANCE ADMINISTRATION	
11.1. ROUTE OF ADMINISTRATION	

11.3.	JUSTIFICATION FOR EXPOSURE LEVEL SELECTION	15
11.4.	FREQUENCY AND DURATION OF INHALATION ADMINISTRATION	
11.5.	TEST SUBSTANCE ADMINISTRATION	
11.6.	EXPOSURE CONCENTRATION DETERMINATION	
11.7.	PARTICLE SIZE DISTRIBUTION ANALYSIS	
11.8.	CHAMBER ENVIRONMENT	17
11.9.	SUMMARY OF CHAMBER ACTIVITY	17
12. EX	PERIMENTAL EVALUATIONS	17
12.1.	OBSERVATIONS	17
12.2.		
12.3.		
12.4.	LITTER EVALUATIONS (F ₁)	19
13. PO	STMORTEM	20
13.1.	MACROSCOPIC POSTMORTEM EXAMINATION	20
14. PR	ESERVATION OF RECORDS AND SPECIMENS	26
15. ST.	ATISTICAL EVALUATIONS	26
15.1.	CONTINUOUS DATA	26
15.2.	INCIDENCE DATA	27
16. RE	PORT	28
16.1.	STATUS REPORT	28
16.2.	FINAL REPORT	28
17 RF	FFRENCES	3(

1. INTRODUCTION

HLS Study No.

00-4202

Sponsor Study No.

211-EtOH-1G

Study Title

Gasoline Ethanol Vapor Condensate: A One-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats

Testing Facility

Huntingdon Life Sciences

Mettlers Road PO Box 2360

East Millstone, NJ 08875

Purpose

The objective of this reproduction study is to provide general information concerning the effects of a test substance on the integrity and performance of the male and female reproductive systems, including gonadal function, the estrous cycle, mating behavior, conception, gestation, parturition and lactation. The study will also provide information about the effects of the test substance on neonatal morbidity and mortality, and data on prenatal and postnatal

developmental toxicity.

2. STUDY PERSONNEL

Study Director:

Gary M. Hoffman, B.A., D.A.B.T.

Tel.: 732-873-2550 x2920 Fax: 732-873-3992

Email: hoffmang@Princeton.Huntingdon.com

Alternate:

Carol S. Auletta, B.A., D.A.B.T. x2960

Senior Director of Toxicology

Additional personnel will be documented in the project file and presented in the final report.

3. REGULATORY REFERENCES

3.1. TEST GUIDELINE

This study is designed to meet or exceed the pertinent requirements of:

US EPA Vehicle Emissions Inhalation Exposure Guideline 79.61, CFR Vol. 59, No. 122, 27 June 1994.

US EPA (Environmental Protection Agency) Health Effects Test Guidelines, OPPTS 870.3800, Reproduction and Fertility Effects (August 1998) except this study will only continue through the 1st generation of offspring.

3.2. GOOD LABORATORY PRACTICES

This study will be conducted in accordance with US EPA 79.60, CFR Vol. 59, No. 122, 27 June 1994. This study will be performed according to protocol and Huntingdon Life Sciences' Standard Operating Procedures.

3.3. FACILITIES MANAGEMENT/ANIMAL HUSBANDRY

Currently acceptable practices of good animal husbandry will be followed, e.g., *Guide for the Care and Use of Laboratory Animals*; National Academy Press, 1996. Huntingdon Life Sciences Inc., is fully accredited by the Association for the Assessment and Accreditation of Laboratory Animal Care International (AAALAC).

3.4. ANIMAL WELFARE ACT COMPLIANCE

This study will comply with all appropriate parts of the Animal Welfare Act regulations: 9 CFR Parts 1 and 2 Final Rules, Federal Register, Volume 54, No. 168, August 31, 1989, pp. 36112-36163 effective October 30, 1989 and 9 CFR Part 3 Animal Welfare Standards; Final Rule, Federal Register, Volume 56, No. 32, February 15, 1991, pp. 6426-6505 effective March 18, 1991. The Sponsor should make particular note of the following:

1. The Sponsor's signature on all protocol documents for the study described herein signifies that there are no generally accepted non-animal alternatives and the study does not unnecessarily duplicate previous experiments.

- 2. All procedures used in this study have been designed to avoid discomfort, distress and pain to the animals. All methods are described in this study protocol or in written laboratory standard operating procedures.
- 3. Any procedures outlined in this study protocol which are expected to cause more than momentary or slight pain or distress to the animals will be performed with appropriate sedatives, analgesics or anesthetics unless the withholding of these agents is justified for scientific reasons, in writing, by the Sponsor and the Study Director and approved by the IACUC; in which case the procedure will continue for the minimum time necessary. Documentation of the justification for withholding treatment for pain or distress and IACUC approval of the procedures will be made prior to study initiation on the IACUC Protocol Review form.
- 4. Animals experiencing more than momentary or slight pain or distress due to emergency situations such as injury or illness will be treated by the Testing Facility's veterinarian staff with approved analgesics or agents to relieve pain. If possible, the Study Director will be consulted prior to treatment; however, the veterinary staff is authorized to administer emergency treatment as necessary. Any subsequent treatment or euthanasia will be administered after consultation with the Study Director. The Sponsor will be advised by the Study Director of all emergency situations in as timely a manner as possible.
- 5. Methods of euthanasia used during this study are in conformance with the above referenced regulations.
- 6. The numbers of animals used in this study was selected to ensure that an adequate number of pregnant females are available for valid statistical interpretation of the data as required by the referenced guidelines. OPPTS 870.3800 Guidelines, Section 2, number (B), item (v) states: Each control group should contain a sufficient number of mating pairs to yield at least 20 pregnant females. Each test group should contain a similar number of mating pairs. The 26 females/group will assure us of having at least 20 pregnant females/group based on 80% 100% pregnancy rate at HLS.

3.5. INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE:

The IACUC Protocol Review Subcommittee has reviewed this protocol and found it to be in compliance with all appropriate regulations.

4. QUALITY ASSURANCE MONITORING

The Huntingdon Life Sciences Quality Assurance Unit, East Millstone, NJ will monitor the facilities, equipment, personnel, methods, practices, records and controls used in this study to assure that they are in conformance with this protocol, company standard operating procedures, and the appropriate Good Laboratory Practice regulations.

5. ALTERATION OF DESIGN

Alterations of this protocol may be made as the study progresses. No changes in the protocol will be made without the consent of the Sponsor. In the event that the Sponsor authorizes a protocol change verbally, such changes will be honored by the Testing Facility and will be followed by a written verification. All protocol modifications will be signed by the Study Director and a Sponsor representative. Any modifications potentially affecting animal welfare will also be signed by two members of the Institutional Animal Care and Use Committee prior to the modification's implementation.

6. PROPOSED STUDY DATES

Study initiation date:

Date Study Director signs protocol

Receipt of test animals:

1 August 2001

Initiation of exposures (P):

15 August 2001

(Experimental start date)

Experimental termination:

25 December 2001

(Date of last data collection)

Submission of audited draft report:

3 May 2002

Study completion date:

Date final report is signed by Study Director

7. EXPERIMENTAL DESIGN

			Number of Animals				
			Mated Adults		Patholo	oscopic ogy Adult rations ^b	Macroscopic Postmortem Examinations-Pups
			P	0		P_0	
Group	Group Designation	Exposure Levels (mg/m³) a	М	F	М	F	F_1
I	Control	0 (air only)	26	26	10	10	3/sex/litter
П	Low	2,000	26	26	TBD	TBD	3/sex/litter
m	Middle	10,000	26	26	TBD	TBD	3/sex/litter
IV	High	20,000	26	26	10	10	3/sex/litter

^a Exposures daily (7 days/week) for 6 hours per day.

M = Male; F = Female; TBD = to be determined based on Group IV evaluations; The first day of exposure will be Day 0.

^b Histologic examinations will be performed on reproductive tissues for the control and high-exposure animals.

8. TEST SUBSTANCE

8.1. TEST SUBSTANCE: Gasoline Ethanol Vapor Condensate

Description, lot number, storage, expiration date (if available) and handling procedures, as well as other pertinent information will be documented in the study data.

8.2. IDENTIFICATION OF TEST SUBSTANCE

Unless otherwise noted, the identity, strength, composition, stability and method of synthesis, fabrication and/or derivation of each batch of the test substance will be documented by the Sponsor before its use in the study. This documentation will be maintained by the Sponsor at the address indicated on page 2 of this protocol. The Sponsor will conduct a purity analysis of the test substance by GC prior to the start of this study.

8.3. ARCHIVAL SAMPLES

An archival sample from each lot of test substance will be taken and stored in the Archives of the Testing Facility. If multiple studies are conducted with the same substance, a common archival sample may be taken and appropriately labeled.

8.4. UNUSED TEST SUBSTANCE

The unused portion of the test substance as well as any empty test substance containers will be returned to the Sponsor's designee (see page 2) following completion of the study. Empty test substance containers will be returned to the Sponsor's designee on an as needed basis. The Sponsor will be responsible for tracking their disposition.

In the event the Sponsor wishes the Testing Facility to arrange for disposal, a cost for this service will be provided.

9. TEST ANIMALS (P_0)

Albino Rats (Outbred) VAF/Plus®

9.1. SPECIES

Sprague Dawley-derived CD[®] [Crl: CD[®] IGS BR]

9.2. SUPPLIER

Charles River Laboratories Kingston, New York

9.3. JUSTIFICATION FOR TEST SYSTEM SELECTION

The rat is used as a surrogate to humans in the detection of reproductive effects and is a species in which known reproductive toxicants have been detected. The rat is a rodent animal model commonly utilized in reproduction studies and is recommended in the referenced guidelines. In addition, a historical control database with this strain of animal and supplier facility is available for comparative evaluation.

9.4. ANIMAL REQUIREMENTS/SPECIFICATIONS

9.4.1. NUMBER

<u>Total</u>	Males	<u>Females</u>
208	104	104

9.4.2. AGE AND WEIGHT

Placed on test

Males and Females: Approximately four weeks at receipt; and five to six weeks at initiation of treatment. Males will weigh approximately 150-200 grams and females 125-175 grams at initiation of exposures. Animals outside this weight range will be used at the discretion of the Study Director.

Females: Nulliparous and non-pregnant

9.5. ACCLIMATION PERIOD

Approximately two weeks; all animals will be checked for viability twice daily. Prior to assignment to study all animals will be examined to ascertain suitability for study.

9.6. ANIMAL HUSBANDRY

9.6.1. HOUSING

Animals will be housed in suspended, stainless steel cages with wire mesh fronts and floors. Animals at receipt will be housed 2/cage during the initial week of acclimation. Thereafter, animals will be housed individually except as follows:

Mating: One male and one female co-housed continuously (except during treatment) until mated or 14 days have elapsed, whichever occurs first. Mating pairs will be assigned randomly.

Lactation: Dam with litter (solid plastic "shoebox" cage)

9.6.2. FEED & FEED ANALYSIS

Certified Rodent Diet, No. 5002; (Meal) (PMI Nutrition International, St. Louis, MO) ad libitum except during exposures.

Analytical certifications of batches of feed used during the study are provided by the manufacturer and will be maintained on file at the Testing Facility. There are no known contaminants in the feed that are expected to interfere with the results of this study.

9.6.3. WATER & WATER ANALYSIS

Facility water supply (Elizabethtown Water Company, Westfield, NJ); without restriction except during exposures, via an automated water delivery system to individual animal cages.

Water analyses are conducted by Elizabethtown Water company to ensure that water meets standards specified under the EPA Federal Safe Drinking Water Act Regulations (40 CFR part 141). Water analyses, provided by the supplier, will be maintained on file at the Testing Facility. In addition, water samples are collected biannually from representative rooms in the Testing Facility; chemical and microbiological water analyses are conducted on these samples by a subcontract laboratory. Results are maintained on file at the Testing Facility. There are no known contaminants in the water that are expected to interfere with the results of this study.

9.6.4. BEDDING SUBSTANCE

Ground corncob bedding (Bed-O'-Cobs® 1/4 inch irradiated, The Andersons, Maunee, OH) will be provided for each mated female on Day 18 of gestation. Fresh bedding will be provided at least weekly and as needed during the lactation period (litters will be weaned on Day 28 of lactation).

9.6.5. BEDDING ANALYSIS

Analyses for each batch of bedding used on study provided by the supplier, will be maintained on file at the Testing Facility. There are no known contaminants in the bedding that are expected to interfere with the results of this study.

9.6.6. VETERINARY CARE

Animals are monitored by the technical staff for any conditions requiring possible veterinary care. If any such conditions are identified, a staff veterinarian will be notified for an examination and evaluation. Animals will be treated as outlined in the Animal Welfare Act Compliance section of this protocol.

9.6.7. ENVIRONMENTAL CONDITIONS

Light/Dark Cycle

Twelve-hour light/dark cycle daily via automatic timer.

Temperature

Temperature will be monitored in accordance with Testing Facility SOPs to ensure that the desired range of 19-25°C is maintained to the maximum extent possible.

Humidity

Humidity will be monitored in accordance with Testing Facility SOPs to ensure that the desired range of 30-70% is maintained to the maximum extent possible.

Air Changes

Air changes will be maintained at a rate of 10-15 per hour and will be recorded once prior to exposures.

9.7. ANIMAL HUSBANDRY DURING EXPOSURE

9.7.1. **HOUSING** Individual in cages.

9.7.2. FEED None.

9.7.3. WATER None.

9.8. SELECTION FOR STUDY

More animals than required for the study will be purchased and acclimated. Animals considered suitable for study on the basis of pretest physical examinations, body weight data and any other pretest evaluations will be randomly assigned, by sex, to control or treated groups in an attempt to equalize mean group body weights. Individual weights of animals placed on test shall not exceed 20% of the mean weight for each sex. Disposition of all animals not used in the study will be maintained in the study file.

9.9. ANIMAL IDENTIFICATION

Each animal will be assigned a temporary identification number upon receipt. After selection for study (P generation), each animal will be ear-tagged with a number assigned by the Testing Facility. This number plus the study number will comprise the unique identification for each study animal. If the tag is lost, it will be replaced or the animal will be tail tattooed for identification. Each animal's cage will be provided with a card that will be color-coded for exposure level identification and will contain the study number and animal number.

10. MATING, GESTATION AND LACTATION PROCEDURES

10.1. ESTROUS CYCLING:

Daily vaginal smears will be taken at approximately the same time each day, and the stage of estrous will be determined for each female for three weeks prior to cohabitation for the P_0 females. These evaluations will continue until there is evidence of mating or until the 14-day mating period ends. Care will be taken to ensure that pseudo-pregnancy is not induced.

10.2. MATING PROCEDURE

After both sexes have been exposed to the test substance for ten weeks (premating treatment period), one male and one female from the same exposure group will be caged together until a sign of mating (microscopic observation of sperm in the vaginal smear and/or a copulation plug in the vagina) is observed or for 14 consecutive days. Males and females will not be paired during the mating period while being exposed. The day evidence of mating is observed will be defined as Day 0 of gestation. If mating has not occurred after this interval, the animals will be separated without further opportunity for mating.

10.3. PARTURITION AND LACTATION

On Day 18 of gestation, several days prior to expected parturition, each female will be transferred to a solid plastic "shoebox" cage. Bedding substance will be provided and changed at least weekly and as needed. Examination for signs of parturition will be made twice daily (morning and afternoon). Evidence of difficult or prolonged parturition (dystocia), if observed, will be recorded. The day on which parturition is first observed will be defined as Day 0 of lactation. Females which were caged with males but exhibited no evidence of mating, will be transferred to plastic shoe-box cages when the first animals mated reach their day 18 of gestation.

11. TEST SUBSTANCE ADMINISTRATION

11.1. ROUTE OF ADMINISTRATION

Inhalation via whole-body exposures.

11.2. JUSTIFICATION FOR ROUTE OF ADMINISTRATION

The inhalation route is one of the potential routes of human exposure to this test substance and is the route specified in the referenced US EPA 79.61 guidelines.

11.3. JUSTIFICATION FOR EXPOSURE LEVEL SELECTION

Exposure levels were selected by the Sponsor, based on results from a 13-week inhalation study conducted at the Testing Facility, that utilized this test article in rats (00-6127). The exposure levels were also selected based on the lower flammable limits of the test substance.

11.4. FREQUENCY AND DURATION OF INHALATION ADMINISTRATION

Frequency: P₀ males and females will receive 70 consecutive days (ten weeks) of exposure prior to mating for six hours/day. P₀ males and females will continue to be exposed daily throughout a 14 day cohabitation period. The mated females will continue to be exposed daily from day 0 through 19 of gestation. Beginning on day 5 of lactation, nursing P₀ females will be exposed daily until weaning of the F₁ offspring on Day 28. P₀ females with no confirmed day of mating would continue to be exposed for 25 days following completion of the mating period. P₀ females with a confirmed day of mating that do not deliver will be euthanized on presumed day 25 of gestation.

 P_0 males will be exposed daily until euthanasia. P_0 males will be euthanized proximate to the date that the last F_1 litters have been weaned.

Duration: The test substance will be administered for 6 hours/day during all segments of the study.

11.5. TEST SUBSTANCE ADMINISTRATION

The test substance will be administered as a vapor in the breathing air of the animals. The test atmosphere will be generated by an appropriate procedure determined during pre-study trials. The trials will be performed to evaluate the optimal set of conditions and equipment to generate a stable atmosphere at the target exposure levels and maintain uniform conditions throughout the exposure chambers. The method will be described in the raw data of the study and in the report.

The whole-body exposure chambers will each have a volume of approximately 1500 liters. The chambers will be operated at a minimum flow rate of 300 liters per minute. The final airflow will be set to provide at least one air change in 5.0 minutes (12 air changes/hour) and a T₉₉ equilibrium time of at most 23 minutes. This chamber size and air flowrate is considered adequate to maintain the oxygen level at least 19% and the animal loading factor below 5%. At the end of the 6-hour exposure, all animals will remain in the chamber for a minimum of 30 minutes. During this time the chamber will be operated at approximately the same flow rate using clean air only.

11.6. EXPOSURE CONCENTRATION DETERMINATION

A nominal exposure concentration will be calculated. The flow of air through the chamber will be monitored using appropriate calibrated equipment. The test substance consumed during the exposure will be divided by the total volume of air passing through the chamber (volumetric flow rate times total exposure time) to give the nominal concentration.

During each exposure, measurements of airborne concentrations will be performed in the animals' breathing zone at least 4 times using an appropriate sampling procedure and IR analytical procedure. Also, one sample per chamber per week will be analyzed by gas chromatography (GC) to characterize at least 10 major components (comprising at least 80% by weight of the test substance) to show test substance stability and comparison between the neat liquid test substance and the vaporized test atmospheres.

If more than the normal amount of trials is required because of test substance generation or monitoring problems (80 technician hours), the Sponsor will be consulted prior to additional trials (additional cost).

11.7. PARTICLE SIZE DISTRIBUTION ANALYSIS

During each week of exposure, particle size determinations will be performed using a TSI Aerodynamic Particle Sizer to characterize the aerodynamic particle size distribution of any aerosol present.

11.8. CHAMBER ENVIRONMENT

Chamber temperature, humidity, airflow rate and static pressure will be monitored continuously and recorded every 30 minutes during exposure. Chamber temperature and relative humidity will be maintained, to the maximum extent possible, between 20 to 24°C and 40 to 60%, respectively. Chamber oxygen levels (maintained at least 19%) will be measured pretest and at the beginning, middle and end of the study.

Air samples will be taken in the vapor generation area pretest and at the beginning, middle and end of the study. Light (maintained approximately 30 footcandles at 1.0 meter above the floor) and noise levels (maintained below 85 decibels) in the exposure room will be measured pretest and at the beginning, middle and end of the study.

11.9. SUMMARY OF CHAMBER ACTIVITY

The minimum frequency of chamber activity is summarized below.

Activity	Frequency/chamber	
Measured Test Substance Concentration	4X/day	
Measured Test Substance Characterization	1X/week	
Particle Size	1X/week	
Temperature	13X/day	
Relative Humidity	13X/day	
Airflow Rate	13X/day	
Static Pressure	13X/day	
Nominal Test Substance Concentration	1X/day	
(excluding the air control chamber)		
Rotation Pattern of Exposure Cages	1X/week	
Loading/Unloading Verification	1X/day	

12. EXPERIMENTAL EVALUATIONS

12.1. OBSERVATIONS

12.1.1. VIABILITY EXAMINATIONS (CAGESIDE)

Observations for mortality, and signs of severe toxic or pharmacological effects will be made at least twice daily (morning and afternoon). Animals in extremely poor health or in a possible moribund condition will be identified for further monitoring and possible euthanasia. All animals found dead will be submitted for a macroscopic examination. Parental animals found dead after normal working hours will be refrigerated until a necropsy can be performed.

12.1.2. DETAILED PHYSICAL EXAMINATIONS

The animals will be observed as a group at least once during each exposure.

Each parental generation animal will be removed from its cage and examined at least once pretest (P_0) , at the study start (first day of treatment for the P_0) and weekly thereafter during the study period. Females will continue to be observed weekly until there is evidence of mating. Once mated, females will be observed on gestation days 0, 7, 14 and 20 and on lactation days 1, 4, 7, 14, 21 and 28. Females without evidence of mating will continue to be observed weekly until euthanized. Examinations will include, but not be limited to, observations of general condition, skin and fur, eyes, nose, oral cavity, abdomen and external genitalia as well as evaluations of respiration, and palpation for tissue masses. During the exposure period, physical examinations will be performed post-exposure.

12.2. BODY WEIGHTS

Males:

P₀: At least once during pretest, at the time of randomizing into study groups, on the day treatment initiates, weekly throughout the study (including the mating period) and prior to termination.

Females:

P₀: At least once during pretest and at the time of randomizing into study groups.

On the day treatment initiates and weekly during the premating growth and mating periods; gestation - Days 0, 4, 7, 14 and 20; lactation - Days 1, 4, 7, 14, 21 and 28. Females without evidence of mating and that do not deliver pups will be weighed weekly until euthanasia.

12.3. FEED CONSUMPTION

Males:

 P_0 : One week pretest and during the exposure period of the P_0 group weekly during the premating treatment period (feed consumption will not be measured during the mating period when males will be cohoused) and through the postmating period until euthanasia.

Females:

 P_0 : One week pretest and during the exposure period of the P_0 . Weekly during the premating growth periods (feed consumption will not be measured during the mating period when animals are co-housed) and on day 0, 4, 7, 14 and 20 of gestation and on day 1, 4, 7, 14, 21 and 28 of lactation. Females without evidence of mating and that do not deliver pups will have feed consumption measured weekly until euthanasia.

12.4. LITTER EVALUATIONS (F_1)

12.4.1. OBSERVATIONS

 F_1 litters will be observed as soon as possible after delivery for the number of live and dead pups, sex of the pups and pup abnormalities. The anogenital distance will be qualitatively determined on the day of delivery completion for all pups of the F_1 generation (to determine the sex). All F_1 pups in the litter will be uniquely identified by toe tattoo on the day of delivery completion. Thereafter, litters will be observed twice daily (morning, afternoon) for the presence of dead pups. These dead pups and pups euthanized in a moribund condition will be examined to the extent possible for defects and/or cause of death and preserved in neutral, phosphate-buffered 10% formalin. Litter size will be recorded daily from Lactation Day 1 to 28.

12.4.2. CULLING PUPS

On Day 4 of lactation, each F_1 litter with more than 10 pups will be culled to that number with sex distribution equalized (five/sex) when possible. F_1 pups will be culled randomly. Preferential culling of runts will not be performed.

12.4.3. PHYSICAL EXAMINATIONS

Each F₁ pup will be given a macroscopic physical examination on the day of delivery completion and on day 4, 7, 14, 21 and 28 of lactation.

12.4.4. PUP BODY WEIGHT DATA

Individual F_1 pup weights will be recorded on day 1, 4 (precull intervals), 7, 14, 21 and 28 of lactation (postcull intervals).

12.4.5. PUP SEXING DATA

Individual sexing data will be recorded on the day of delivery completion and reconfirmed, and recorded on day 4, 7, 14, 21 and 28 of lactation.

13. POSTMORTEM

13.1. MACROSCOPIC POSTMORTEM EXAMINATION

13.1.1. PARENTAL ANIMALS (P₀)

13.1.1.1. Method of Euthanasia

Exsanguination following anesthesia with inhaled carbon dioxide.

13.1.1.2. Moribund Animals

Animals showing signs of severe debility, particularly if death appears imminent will be euthanized to prevent loss of tissues through autolysis.

13.1.1.3. Terminal Necropsy Males (P₀)

 P_0 males will be euthanized proximate to the date that the last F_1 litters have been weaned. This will permit some evaluation of fertility (i.e., number of litters delivered) prior to euthanasia.

13.1.1.4. Terminal Necropsy Females (P₀)

All P_0 females with litters will be euthanized on day 28 of lactation.

13.1.1.5. Macroscopic Examination

Complete macroscopic postmortem examinations will be performed on all adult animals, including animals euthanized in a moribund condition or found dead and all abnormal observations will be recorded. The necropsy of the parental animals will include examination of the external surface and all orifices; the external surfaces of the brain and spinal cord; the organs and tissues of the cranial, thoracic, abdominal and pelvic cavities and neck; and the remainder of the carcass. Examination of all parental P_0 females, which were co-housed with P_0 males, will include a vaginal smear examined to determine the stage of the estrous cycle and a count of uterine implantation scars, if present.

13.1.1.6. Organ Weights

The following organs will be weighed at terminal euthanasia of all the P_0 males and females in each group:

P ₀ Males	P ₀ Females	
Epididymides	Ovaries	
(total and caudal)		
	Uterus	
Prostate	(with oviducts and cervix)	
Seminal Vesicles		
With coagulating glands		
and their fluids		
Testes		
Adrenal Glands		
Brain		
Kidneys		
Liver		
Lungs		
Pituitary		
Spleen		

Prior to weighing, all organs will be carefully dissected and properly trimmed to remove fat and other contiguous tissue in a uniform manner. Organs will be weighed as soon as possible after dissection to avoid drying. Paired organs will be weighed together. Organ weight data will be presented as absolute values and relative to terminal body weight and brain weight. Organ weights will not be

recorded for an animal dying spontaneously or euthanized moribund.

13.1.1.7. Tissues Preserved

Tissues listed following will be obtained at necropsy and preserved for all parental animals:

Males	Females		
Epididymis (right)	Ovaries		
	Uterus		
Prostate	(with oviducts and cervix)		
Seminal Vesicles	Vagina		
(with coagulating glands			
and their fluids)			
Testis (right)			
Adrenal Glands			
Lungs			
Pituitary			
Macroscopic Lesions			
Target Organs			
(as determined from this study and previous studies,			
e.g.13-week inhalation study 00-6127)			

All tissues listed above and brain, kidneys, liver and spleen will be fixed in 10% Neutral Buffered Formalin (NBF) except the testes and epididymides will be fixed in modified Davidson's solution for at least 48 hrs prior to permanent storage in NBF.

13.1.2. F_1 PUPS AND WEANLINGS

13.1.2.1. Method of Euthanasia

 F_1 pups and weanlings will be euthanized by carbon dioxide asphyxiation.

13.1.2.2. Moribund Animals

 F_1 pups and weanlings showing signs of severe debility, particularly if death appears imminent, will be euthanized to prevent loss of tissues through autolysis.

13.1.2.3. Dead and Culled Pups (F1)

 F_1 pups found dead at birth will be identified as stillborn or alive but found dead (lung floatation test). F_1 pups found dead during the lactation period will be examined to the extent possible for defects and/or the cause of death, and for the presence or absence of milk in the stomach. Dead pups will not be eviscerated. Viscera will remain intact and the pup will be preserved in 10% NBF. Cannibalized pups will be examined to the extent possible and discarded. Culled F_1 pups will be examined for external abnormalities. If unremarkable, these pups will then be euthanized via IP injection of sodium pentobarbital and discarded. Culled F_1 pups with external abnormalities will be preserved intact in 10% NBF at the discretion of the Study Director.

13.1.2.4. Terminal Necropsy Pups (F₁)

Macroscopic Examination and Tissues Preserved

F₁ pups (randomly selected 3 pups/sex/litter, if possible) will be given a macroscopic examination at weaning on day 28 of lactation for any structural abnormalities or pathological changes. Special attention will be given to the organs of the reproductive system; brain, liver, kidneys, pituitary, adrenal gland, spleen, heart and thymus gland. Abnormal tissues and/or target organs, if identified, will be preserved in 10% neutral buffered formalin (NBF).

Organ Weights

 F_1 pups (1 pup/sex/litter, if possible) for which organ weight data will be collected will be randomly selected. The following organs will be weighed from one pup/sex/litter that was selected for complete macroscopic examination at weaning on day 28 of lactation:

brain spleen thymus gland

Organ weight data will be presented as absolute values and relative to terminal body weight and brain weight.

Remaining F_1 pups, if any, will be examined for external abnormalities. If unremarkable, these pups will then be

euthanized via carbon dioxide asphyxiation and discarded. Remaining F_1 pups with external abnormalities will be preserved intact in 10% NBF at the discretion of the Study Director.

13.1.3. SPERM COUNT, MOTILITY AND MORPHOLOGY ASSESSMENTS

All P_0 parental males euthanized at termination in each group will have the following sperm evaluations available for analysis: 1) motility; 2) a count of homogenization-resistant testicular sperm; 3) a count of caudal epididymal sperm; and 4) sperm morphology (cauda epididymis). Only samples for the high-exposure and control group will be analyzed if there is no effect in the high-exposure group. Evaluations will be performed by Pathology Associates International, Frederick, MD as follows:

- The right testis and right epididymis from each animal will be removed intact, weighed (testes weighed together) and preserved in modified Davidson's solution for at least 48 hrs prior to permanent storage in NBF for histopathological evaluation.
- The left epididymis will be removed intact, weighed, and frozen on dry ice for transport to Pathology Associates International, Frederick, MD. The epididymides will be stored frozen at -70° C until evaluation for caudal sperm count. Each epididymis will be thawed and the caudal portion removed and weighed. A homogenized sample of the caudal epididymis will be stained and examined using the Hamilton Thorne IVOS sperm analyzer. For each stained preparation, 20 fields will be counted. The total number of sperm in the caudal epididymis will be calculated and adjusted for the caudal epididymal weight. Additionally, for each male two sperm morphology slides will be prepared, stained with Eosin and evaluated for morphological development.
- The left vas deferens will be excised and placed in a prewarmed solution of phosphate buffered saline and 1% Bovine Serum Albumin. After a minimum three minute "swimout" period, a sample will be placed in a Hamilton Thorne IVOS sperm analyzer and five fields will be stored on an optical disk. These fields will subsequently be analyzed for percent motility.
- The left testis will be removed and frozen on dry ice for transport to PAI (Frederick, MD). The testis will be stored frozen at -20°C until processed for counting of homogenization-resistant sperm.

Tissues retained from these evaluations will be discarded following issuance of the final report following consultation with the Sponsor. The Testing Facility will be responsible for the GLP compliance of this subcontractor. All raw data, the protocol and all reports generated at PAI will be maintained. After submission of the final report, all of the above will be shipped to Huntingdon Life Sciences to be archived.

13.1.4. MICROSCOPIC PATHOLOGY EVALUATIONS

Slides of tissues listed in the table in Section 13.1.1.7, will be prepared and stained with hematoxylin and eosin (H&E) and examined microscopically for randomly selected 10 animals/sex/group from P₀ parental animals in the control and high-exposure groups. microscopic findings indicative of an effect of test substance administration are seen in the initial 10 animals/sex of high-exposure animals, then examinations should be made of those tissues/organs for the remaining control and high-exposure animals and/or all low- and middle-exposure animals (Sponsor consulted, additional cost). [Note: any abnormalities not noted during macroscopic postmortem examinations that are seen during histological processing will be recorded]. Additionally reproductive organs of the low- and middleexposure animals suspected of reduced fertility (e.g. those that failed to mate, conceive, sire or deliver healthy offspring, or for which estrous cyclicity or sperm number motility or morphology were affected) will also be subjected to microscopic examination for additional cost at the discretion of the Sponsor.

Histopathological examinations of the testes will be conducted to identify potential treatment-related effects such as retained spermatids, missing germ cell layers or types, multinucleated giant cells, or sloughing of spermatogenic cells into the lumen. The examination of the intact epididymis will be of a longitudinal section that will permit examination of the caput, corpus and cauda regions. These examinations will identify such lesions as sperm granulomas, leukocytic infiltration (inflammation), aberrant cell types within the lumen, or the absence of clear cells in the cauda epididymal epithelium.

Histopathological examination of the ovary will include evaluation of five sections taken at least 100 μ m apart from the inner third of each ovary. These examinations can detect depletion of the primordial follicle population and enumerate the total number of primordial follicles for comparison with the ovaries from control animals. These examinations can also confirm the presence or absence of growing follicles and corpora lutea in comparison to control ovaries. Qualitative evaluations of

the P_0 animals will be performed by HLS. Quantitative evaluations of the P_0 animals (Sponsor consulted, additional cost) may be performed by Pathology Associates International, Frederick, MD.

14. PRESERVATION OF RECORDS AND SPECIMENS

All data documenting experimental details and study procedures and observations will be recorded and maintained as raw data.

At the completion of the study, all reports, raw data, preserved specimens and retained samples will be maintained in the Testing Facility's Archives for a period of one year after submission of the signed final report.

The Sponsor will be contacted in order to determine the final disposition of these materials. The Sponsor is responsible for all costs associated with the storage of these materials beyond one year from the issuance of the final report and for any costs associated with the shipment of these materials to the Sponsor or to any other facility designated by the Sponsor.

15. STATISTICAL EVALUATIONS

The following items will be analyzed statistically in the final report:

15.1. CONTINUOUS DATA

- Body weights (all recorded intervals premating, mating, gestation, lactation and postmating)^a
- Body weight change^a
 - -entire premating period (males and females)
 - -over each weighing interval during the gestation and lactation periods to include Days 0-20 of gestation and Days 1-28 of lactation
 - -males during the postmating period (weekly and over the entire period)
- Feed consumption values (all recorded intervals)^a
 - -premating growth period (weekly)
 - -postmating period (weekly for males)
 - -gestation (Days 0-4, 4-7, 7-14, 14-20)
 - -lactation (all recorded intervals)
- Organ weight data (absolute and relative to the terminal body weight and brain weights)^a
- Gestation length ^a
- Pup body weights (all recorded intervals during lactation)^a
- Number of pups (live, dead, total) at birth and during lactation (days 1, 4, 7, 14, 21 and 28)^a
- Mean sperm count (homogenization-resistant testicular sperm and caudal epididymal sperm) and motility data^b

15.1.1. STATISTICAL ANALYSES CONTINUOUS DATA - MULTIPLE GROUP ANALYSES

Data will be compared between the control and treated groups. All statistical tests will be conducted at the 5% and 1%, two-sided risk levels.

15.1.2. STATISTICAL ANALYSES CONTINUOUS DATA - MULTIPLE GROUP ANALYSES FOR SPERM AND MOTILITY ANALYSIS

If a significant difference occurs (p<0.05), the Wilcoxon (Mann-Whitney U) test will be used for pair-wise comparisons of each treated group to the vehicle control group. Statistical analyses will be performed using an IBM compatible computer with SAS computer programs (SAS/STAT User's Guide, 1989).

15.2. INCIDENCE DATA

- Mortality rates
- Mating indices (male and female)
- Pregnancy rates
- Male fertility indices
- Live birth indices
- Pup viability indices (Days 0-4) and lactation indices (Days 4-28)

15.2.1. INCIDENCE DATA ANALYSIS

Analyzed using the Chi-square test (2 x n). If Chi-square analysis is not significant, no additional analyses will be performed. If Chi-square is significant, a Fisher Exact Test with Bonferonni correction will be performed to identify differences between the groups.

^a Statistical evaluation of equality of means will be made by the appropriate one way analysis of variance (ANOVA) technique, followed by a multiple comparison procedure, if needed. If needed. If ANOVA shows no difference, no additional comparisons will be made. If ANOVA is significant, Dunnett's test will be used to determine which data, if any, differ from the control.

^b Sperm motility, total count and morphology data will be compared between groups using the Kruskal-Wallis nonparametric ANOVA test.

16. REPORT

16.1. STATUS REPORT

Periodic verbal and written updates on study progress will be provided by the Study Director. In general, written status reports will be submitted weekly and at termination of the study. These reports will include:

- Exposure data
- Mortality rates
- Mean weekly body weight and body weight gain data
- Mean weekly feed consumption premating period
- Summary of detailed physical examinations
- Mating indices (males and females)
- Male fertility indices
- Pregnancy rates
- Gestation length
- Number of pups at birth (live, dead and total) and number of live pups surviving during lactation
- Mean pup body weights (lactation)
- · Individual female litter data
- Maternal gestation and lactation body weights and weight gains
- Maternal feed consumption gestation/lactation
- Summary of macroscopic postmortem evaluations (adults, weanlings)

16.2. FINAL REPORT

One unbound hard copy and one electronic copy of an audited draft report will be submitted following termination of the study. After receipt and review of the Sponsor's comments, appropriate changes will be made and two hard copies and one electronic copy of a signed, final report will be issued. (Additional copies will be provided at additional cost). The report will minimally include:

16.2.1. GENERAL

- Compliance Statement
- Quality Assurance Statement
- Abstract
- Introduction
- Experimental Design
- · Materials and Methods
- Protocol Deviations
- Discussion of study results
- Conclusion and No Observed Effect Level (NOEL) or No-Observed-Adverse-Effect Level (NOAEL) statement, if applicable

- References for experimental methodology
- Senior personnel participating in the study
- Protocol and any amendments

16.2.2. DATA TABULATIONS FOR PARENTAL GENERATIONS

- Mortality termination history
- Physical in-life observations (summary and individual data presented monthly throughout the study)
- Mating indices
- Pregnancy rates
- Male fertility indices
- Mean body weight data (all interval)
- Mean feed consumption data (all intervals)
- Mean weight gain data (premating, postmating [males], gestation and lactation intervals)
- Estrous cycle data
- Macroscopic postmortem observations (adults, weanlings)
- Microscopic pathology examinations
- Organ weight data (parental and pups)
- Sperm assessment data

16.2.3. DATA TABULATIONS FOR LITTERS AND PUPS

- Mean gestation length
- Mean number of pups (live, dead and total) at birth and live pups at Days 4, 7, 14 and weaning (Day 28)
- Litter survival indices
- Pup live birth index
- Pup viability and lactation indices
- Mean pup body weights (all recorded intervals during lactation)
- Pup sex ratio at birth and weaning
- Pup day of sexual maturation and body weight at sexual maturation
- Pup macroscopic postmortem observations
- Individual female litter data

16.2.4. APPENDICES

All exposure data, analytical methodology and individual animal data (adults, pups) including but not limited to the following will be presented in the appendices: body weight and body weight gain, feed consumption, physical observation data, litter data, organ weight data, sperm assessment data, estrous cycle data, macroscopic postmortem findings, microscopic examination data and feed/water/bedding data.

17. REFERENCES

Dunlap, W.P. and J.A. Duffy (1975) "Fortran IV functions for calculating exact probabilities associated with Z, Chi-square, T and F values." <u>Behav. Res. Methods and Instrumentations</u>, 7:59-60

Dunlap, W.P., M.S. Marx and G.J. Agamy (1981) "Fortran IV functions for calculating probabilities associated with Dunnett's Test", <u>Behav. Res. Methods and Instrumentations</u>, 13:363-366.

Hollander, M. and D.A. Wolf (1973) <u>Nonparametric Statistical Methods</u>, Wiley, New York, NY, pp. 120-123.

Siegel, S. (1956) <u>Nonparametric Statistics for the Behavioral Sciences</u>. McGraw-Hill, pp. 98-99 and 104-106.

Protocol Amendment No. 1

Study Title: Gasoline TAME Vapor Condensate: A 1-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats

Changes

1. Test Substance, Pages 1, 2, 5, 10:

Revise: Gasoline TAME Ethanol Vapor Condensate

2. Header, all pages:

Revise: Sponsor Study No. 211-TAME EtOH -1G

3. Proposed Study Dates, Page 8:

Revise:

Initiation of exposures (P):

22 15 August 2001

Experimental termination:

1 January 2002 25 December 2001

4. Prior Study Reference, Pages 15 and 22:

Revise: 00-6128 00-6127

5. Postmortem, Page 20:

Add: If a dam is found dead or is euthanized in moribund condition prior to weaning her litter, the dam will be macroscopically examined & tissues retained but no organs will be weighed. The litter will be euthanized and externally examined and discarded (if normal) or preserved (if abnormal).

If a dam entirely loses her litter, she shall resume exposures the next day (if prior to lactation day 5) or will otherwise continue exposures. She will be sacrificed on the initial day of weaning for the study (or later, as practical) and macroscopically examined & tissues retained but no organs will be weighed.

6. Organ Weights, page 21:

Revise: Paired organs will be weighed together (gonads will also be weighed separately).

Reasons for Changes

- 1. Because of difficulty with the nominal to measured comparisons during prestudy trials with Gasoline Ethanol Vapor Condensate, it was decided to conduct this study with Gasoline TAME Vapor Condensate
- 2. Substitution of test substance.
- 3. Delay of study because of substitution of test substance.
- 4. Study 00-6128 is the subchronic study with Gasoline TAME Vapor Condensate
- 5. Clarification of procedures for the dams and their litters.
- 6. Clarification of procedures for the weighing of the gonads.

Huntingdon Life Sciences Study No. 00-4202 Sponsor Study No. 211-TAME-1G Page 2 of 2 Final Protocol

Protocol Amendment No. 1

Amendment approved by:	
IACUC Huntingdon Life Sciences	Date
EWLULUS IACUC Huntingdon Life Sciences	24 A U G 01 Date
Gary M. Hoffman, B.A., DABT Study Director	
Thomas M. Gray M.S., DABT Sponsor Representative	22 August, 200 Date

American Petroleum Institute

P. 002

Huntingdon Life Sciences Study No. 00-4202 Sponsor Study No. 211-TAME-1G

Page 1 of 1 Final Protocol

Protocol Amendment No. 2

Study Title: Gasoline TAME Vapor Condensate: A 1-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats

Changes

Sperm Count, Motility and Morphology Assessments, Page 24:

Revise:

The left vas deferens will be excised and placed in a prewarmed solution of phosphate buffered saline and 1% Bovine Serum Albumin. After a minimum three minute "swimout" period, a sample will be placed in a Hamilton Thome IVOS sperm analyzer. Five fields will be selected and stored as digital images. and five fields will be stored on an optical disk. These images fields will subsequently be analyzed for percent motility and transferred to optical media for permanent storage.

Reasons for Changes			
To clarify the sperm motility evaluation procedures.			
Amendment approved by:			
(a lall)	2B Se 400		
Gary M. Hoffman, B.A., DABT Study Director Huntingdon Life Sciences	Date		

Thomas M. Gray, M.S. DABT Sponsor Representative American Petroleum Institute 28 Systems er, Zall Date Huntingdon Life Sciences Study No. 00-4202 Sponsor Study No. 211-TAME-1G Page 1 of 2 Final Protocol

P. 002

Protocol Amendment No. 3

Study Title: Gasoline TAME Vapor Condensate: A 1-Generation Whole-Body Inhalation Reproduction Toxicity Study in Rats

Changes

1. Age and Weight and Acclimation Period, page 11:

Add: The animals were approximately 7 weeks of age at initiation of the exposures following an approximately 3.5 weeks acclimation period.

2. Frequency and Duration of Inhalation Administration, page 15:

Revise: P₀ females with no confirmed day of mating would continue to be exposed for 25 days following completion of the mating period and then euthanized.

3. Sperm Count, Motility and Morphology Assessments, page 24:

Add: If a macroscopic abnormality is noted on the left testis or left epididymis, then the right testis and right epididymis will be transferred to PAI and the left testis and left epididymis will be preserved as indicated for possible histopathology.

4. Microscopic Pathology Evaluations, page 25:

Add: The male reproductive tissues (epididymis, prostate, seminal vesicle and testis) will be evaluated for the remaining 16 parental male rats per groups I and IV.

5. Statistical Evaluations/Continuous Data, page 26:

Add: Estrous Cycle data

6. Data Tabulations for Litters and Pups, page 29:

Delete: Pup day of sexual maturation and body weight at sexual maturation

Reasons for Changes

- 1. There was a 1 week delay (see Protocol Amendment No. 1) in starting this study.
- 2. Clarification of procedures.
- 3. Clarification of procedures.
- 4. A few Group IV males that were initially evaluated had sporadic occurrence of lesions affecting the genital system.
- 5. Oversight in original protocol.
- 6. The pups are not retained on test until sexual maturation.

Huntingdon Life Sciences Study No. 00-4202 Sponsor Study No. 211-TAME-1G

Page 2 of 2 Final Protocol

P. 003

Protocol Amendment No. 3

Amendment approved by:

Gary M. Hoffman, B.A., DABT

Study Director

Huntingdon Life Sciences

Date

Thomas M. Gray, M.S. DABT

Sponsor Representative

American Petroleum Institute

Testing Facility Personnel Appendix EE
--

TITLE/DEPARTMENT

NAME/DEGREE

Dari Dadgar, Ph.D.

VICE PRESIDENT, Sylvie J. Gosselin, D.V.M., Ph.D., Diplomate A.C.V.P.

VICE PRESIDENT, QUALITY
ASSURANCE AND TOXICOLOGY
OPERATIONS
Michael Caulfield

VICE PRESIDENT, ANALYTICAL

DIRECTOR, DEVELOPMENTAL AND REPRODUCTIVE TOXICOLOGY Robert M. Parker, Ph.D., D.A.B.T.

DIRECTOR, QUALITY ASSURANCE Nicki S. Iacono, B.S.

STUDY DIRECTOR Gary M. Hoffman, B.A., D.A.B.T.

PATHOLOGIST Katharine M. Whitney, D.V.M., Ph.D., Diplomate A.C.V.P.

STUDY MONITOR Brian P. Colfer, B.S.

VETERINARIAN Teresa S. Kusznir, V.M.D.

MANAGER/SUPERVISOR

Study Monitors Ron Brzozowski, B.A.

Rodent Toxicology Ellen H. Whiting, AALAS LAT

Inhalation Pharmacy

SERVICES

Analytical Services Kay Saladdin, B.S.

Pathology Services Barbara A. Litzenberger, B.S.,

M.T. (ASCP)

Report Amendments	Appendix FF

The following is a list of changes made to the final report.

Page No.	Change #1	Reason for Change
4	Added inspection of the report amendment and changed pages to the Quality Assurance Statement. Statement was re-signed.	An additional audit was performed.
32	Item No. 7 was added to the list of protocol deviations.	Deviation was omitted from the original report.
115-116	Table 22, Summary of Pup Organ Weight Data, Group II Mean and Standard Deviations for Brain Weight, Brain Weight of Female Pups, Brain to Body Weight Ratio and Brain Weight to Body Weight Ratio of Female Pups was corrected.	Brain weight for female pup number 2620-10 was corrected.
508	Appendix Y, Individual Pup Organ Weights (grams) and Organ/Body Weight Ratios (%), brain weight for female pup number 2620-10 was corrected from 1.485 g to 1.495 g, and the brain to body weight ratio was re-calculated from 1.864% to 1.876%.	The brain weight for this female pup was incorrect in the original report.

Gary M. Hoffman, B.A., D.A.B.T. Study Director

Date